coherence-weighted wavepath migration for teleseismic data

37
Coherence-weighted Coherence-weighted Wavepath Migration for Wavepath Migration for Teleseismic Data Teleseismic Data J. Sheng, G. T. Schuster, K. L. Pankow, J. Sheng, G. T. Schuster, K. L. Pankow, J. C. Pechmann, and R. L. Nowack J. C. Pechmann, and R. L. Nowack University of Utah University of Utah Feb. 5, 2004 Feb. 5, 2004

Upload: gaia

Post on 15-Jan-2016

36 views

Category:

Documents


0 download

DESCRIPTION

Coherence-weighted Wavepath Migration for Teleseismic Data. J. Sheng, G. T. Schuster, K. L. Pankow, J. C. Pechmann, and R. L. Nowack. University of Utah. Feb. 5, 2004. Motivation. Given: Teleseismic data. Goal: Local crustal structure. Solution I: Receiver function (RF). Principle of RF. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Coherence-weighted Wavepath Migration for Teleseismic Data

Coherence-weighted Wavepath Coherence-weighted Wavepath Migration for Teleseismic Data Migration for Teleseismic Data

J. Sheng, G. T. Schuster, K. L. Pankow, J. Sheng, G. T. Schuster, K. L. Pankow, J. C. Pechmann, and R. L. Nowack J. C. Pechmann, and R. L. Nowack

University of UtahUniversity of Utah

Feb. 5, 2004Feb. 5, 2004

Page 2: Coherence-weighted Wavepath Migration for Teleseismic Data

MotivationMotivation

Given: Teleseismic dataGiven: Teleseismic dataGoal: Local crustal structureGoal: Local crustal structure

Solution I: Receiver function (RF)Solution I: Receiver function (RF)

Page 3: Coherence-weighted Wavepath Migration for Teleseismic Data

Principle of RFPrinciple of RF

(Langston, 1977, 1979)(Langston, 1977, 1979)

PP

PPPSPS

MohoMoho

P

Ps

Ps

P

G

G

V

R

iGsR

iGsV

Vertical Comp.Vertical Comp.

RadialRadial

Source historySource historyGreen’s fun.Green’s fun.

InstrumentInstrument

Page 4: Coherence-weighted Wavepath Migration for Teleseismic Data

ProblemsProblems

• Other phases generate artifactsOther phases generate artifacts

MohoMoho

pPspPs pSspSs pPppPp

Page 5: Coherence-weighted Wavepath Migration for Teleseismic Data

MotivationMotivation

Given: teleseismic dataGiven: teleseismic dataGoal: local crustal structureGoal: local crustal structure

Solution I: Receiver function (RF)Solution I: Receiver function (RF)

Solution II: Xcorrelogram mig. (Xmig)Solution II: Xcorrelogram mig. (Xmig)

Page 6: Coherence-weighted Wavepath Migration for Teleseismic Data

Principle of XmigPrinciple of Xmig

GhostGhostP-waveP-wave

Direct Direct P-waveP-wave

Page 7: Coherence-weighted Wavepath Migration for Teleseismic Data

ProblemsProblems

• Incident angle usually > 30 deg.Incident angle usually > 30 deg.• Irregular spacing Irregular spacing • Low frequency and long source Low frequency and long source historyhistory

Page 8: Coherence-weighted Wavepath Migration for Teleseismic Data

MotivationMotivation

Given: teleseismic dataGiven: teleseismic dataGoal: local crustal structureGoal: local crustal structure

Solution I: Receiver function (RF)Solution I: Receiver function (RF)

Solution II: Xcorrelogram mig. (Xmig)Solution II: Xcorrelogram mig. (Xmig)

Solution III: Coherence-weighted WM Solution III: Coherence-weighted WM

Page 9: Coherence-weighted Wavepath Migration for Teleseismic Data

Coherence-weighted WMCoherence-weighted WM

OutlineOutline

Synthetic TestSynthetic Test

Earthquake DataEarthquake Data

SummarySummary

Page 10: Coherence-weighted Wavepath Migration for Teleseismic Data

Coherence-weighted WM Coherence-weighted WM

Step 1:Step 1: Calculate radial and vertical RFCalculate radial and vertical RF

a.a. zero-phase traces zero-phase traces vvv *

b. source wavelet b. source wavelet vN

s1

c. deconvolution c. deconvolution s

v'

Page 11: Coherence-weighted Wavepath Migration for Teleseismic Data

Coherence-weighted WM Coherence-weighted WM

Step 2:Step 2: Migrate RF and obtain Migrate RF and obtain ps, pPs, and pPp imagesps, pPs, and pPp images

Step 1:Step 1: Calculate radial and vertical RFCalculate radial and vertical RF

Page 12: Coherence-weighted Wavepath Migration for Teleseismic Data

Wavepath MigrationWavepath Migration

Plane wavePlane wave

MMpsps(x)=RRF(T(x)=RRF(TSS-T-TPP))

RR

X’X’XX

X’X’XX

X’X’XX

PP

SS

MMpPspPs(x)=RRF(T(x)=RRF(TSS+T+TPP))

MMpPppPp(x)=VRF(2T(x)=VRF(2TPP))

Page 13: Coherence-weighted Wavepath Migration for Teleseismic Data

Coherence-weighted WM Coherence-weighted WM

Step 2:Step 2: Migrate RF and obtain Migrate RF and obtain ps, pPs, and pPp imagesps, pPs, and pPp images

Step 1:Step 1: Calculate radial and vertical RFCalculate radial and vertical RF

Step 3:Step 3: Coherence weight Coherence weight

Page 14: Coherence-weighted Wavepath Migration for Teleseismic Data

Coherence-weighted WM Coherence-weighted WM

MMCWCW=W*Mps=W*Mps

00

606000 220220

Dep

th (

km)

Dep

th (

km)

Distances (km)Distances (km)

psps pPspPs pPppPp

00 220220Distances (km)Distances (km)00 220220Distances (km)Distances (km)

00

6060

Dep

th (

km)

Dep

th (

km)

00 220220Distances (km)Distances (km)

Page 15: Coherence-weighted Wavepath Migration for Teleseismic Data

Coherence-weighted WMCoherence-weighted WM

OutlineOutline

Synthetic TestSynthetic Test

Earthquake DataEarthquake Data

SummarySummary

Page 16: Coherence-weighted Wavepath Migration for Teleseismic Data

00

606000 220220

Dep

th (

km

)D

epth

(k

m)

Distances (km)Distances (km)

Synthetic ModelSynthetic Model

Page 17: Coherence-weighted Wavepath Migration for Teleseismic Data

Parameters (Synthetic)Parameters (Synthetic)

• Plane P-wave incident at 40 deg.Plane P-wave incident at 40 deg.• 221 Stations with 1km spacing 221 Stations with 1km spacing • Source peak frequency 0.6 Hz Source peak frequency 0.6 Hz

Page 18: Coherence-weighted Wavepath Migration for Teleseismic Data

00

7070

Synthetic SeismogramSynthetic SeismogramT

rave

ltim

e (s

ec.)

Tra

velt

ime

(sec

.)

VerticalVertical RadialRadial

Page 19: Coherence-weighted Wavepath Migration for Teleseismic Data

00

2020

Tra

velt

ime

(sec

.)T

rave

ltim

e (s

ec.)

Radial RF (Synthetic)Radial RF (Synthetic)

Page 20: Coherence-weighted Wavepath Migration for Teleseismic Data

00

2020

Tra

velt

ime

(sec

.)T

rave

ltim

e (s

ec.)

Vertical RF (Synthetic)Vertical RF (Synthetic)

Page 21: Coherence-weighted Wavepath Migration for Teleseismic Data

ps Image (Synthetic)ps Image (Synthetic)

00

606000 220220

Dep

th (

km

)D

epth

(k

m)

Distances (km)Distances (km)

Page 22: Coherence-weighted Wavepath Migration for Teleseismic Data

pPs Image (Synthetic)pPs Image (Synthetic)

00

606000 220220

Dep

th (

km

)D

epth

(k

m)

Distances (km)Distances (km)

Page 23: Coherence-weighted Wavepath Migration for Teleseismic Data

pPp Image (Synthetic)pPp Image (Synthetic)

00

606000 220220

Dep

th (

km

)D

epth

(k

m)

Distances (km)Distances (km)

Page 24: Coherence-weighted Wavepath Migration for Teleseismic Data

CW Image (Synthetic)CW Image (Synthetic)

00

606000 220220

Dep

th (

km

)D

epth

(k

m)

Distances (km)Distances (km)

Page 25: Coherence-weighted Wavepath Migration for Teleseismic Data

Coherence-weighted WMCoherence-weighted WM

OutlineOutline

Synthetic TestSynthetic Test

Earthquake DataEarthquake Data

SummarySummary

Page 26: Coherence-weighted Wavepath Migration for Teleseismic Data

Earthquake Data Earthquake Data

Page 27: Coherence-weighted Wavepath Migration for Teleseismic Data

Great Salt Lake

Great Salt Lake

41.841.8

39.839.8

-113.5-113.5 -110.5-110.5

Lat

itu

de

(deg

.)L

atit

ud

e (d

eg.)

Longitude (deg.)Longitude (deg.)

Station MapStation Map

Page 28: Coherence-weighted Wavepath Migration for Teleseismic Data

Processing ParametersProcessing Parameters

120120

5050

270270

200200Tim

e (s

ec.)

Tim

e (s

ec.)

50 sec.50 sec.

50 sec.50 sec.

Passband:Passband:0.2~0.6 Hz0.2~0.6 Hz

Water-level:Water-level:0.0010.001

Page 29: Coherence-weighted Wavepath Migration for Teleseismic Data

Radial RF Radial RF

00

202000 200200

Tim

e (s

ec.)

Tim

e (s

ec.)

Distances (km)Distances (km)

Page 30: Coherence-weighted Wavepath Migration for Teleseismic Data

00

202000 200200

Tim

e (s

ec.)

Tim

e (s

ec.)

Distances (km)Distances (km)

Vertical RF Vertical RF

Page 31: Coherence-weighted Wavepath Migration for Teleseismic Data

00

606000 200200

Dep

th (

km

)D

epth

(k

m)

Distances (km)Distances (km)

ps Image ps Image

Page 32: Coherence-weighted Wavepath Migration for Teleseismic Data

00

606000 200200

Dep

th (

km

)D

epth

(k

m)

Distances (km)Distances (km)

pPs Image pPs Image

Page 33: Coherence-weighted Wavepath Migration for Teleseismic Data

00

606000 200200

Dep

th (

km

)D

epth

(k

m)

Distances (km)Distances (km)

pPp Image pPp Image

Page 34: Coherence-weighted Wavepath Migration for Teleseismic Data

00

606000 200200

Dep

th (

km

)D

epth

(k

m)

Distances (km)Distances (km)

CW Image CW Image

Page 35: Coherence-weighted Wavepath Migration for Teleseismic Data

Coherence-weighted WMCoherence-weighted WM

OutlineOutline

Synthetic TestSynthetic Test

Earthquake DataEarthquake Data

SummarySummary

Page 36: Coherence-weighted Wavepath Migration for Teleseismic Data

SummarySummary

• ps, pPs, and pPp arrivals in RF can be migrated ps, pPs, and pPp arrivals in RF can be migrated to provide a different perspective. to provide a different perspective.

• CWWM can combine three images to correctly CWWM can combine three images to correctly image the reflector with attenuated artifacts. image the reflector with attenuated artifacts.

• This method can image the Moho at the depth This method can image the Moho at the depth consistent with previous studies. consistent with previous studies.

Page 37: Coherence-weighted Wavepath Migration for Teleseismic Data

AcknowledgmentAcknowledgment

I thank the sponsors of the 2003 UTAM I thank the sponsors of the 2003 UTAM Consortium for their financial support . Consortium for their financial support .