coastal and estuarine fine sediment processes - gbv › dms › goettingen › 322398290.pdfcoastal...

12
Proceedings in Marine Science Coastal and Estuarine Fine Sediment Processes Edited by William H. McAnally Coastal & Hydraulics Laboratory Engineering Research and Development Center Vicksburg, MS, USA Ashish J. Mehta Department of Civil and Coastal Engineering University of Florida Gainesville, FL, USA 2001 ELSEVIER Amsterdam - London - New York - Oxford - Paris - Shannon - Tokyo

Upload: others

Post on 06-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Coastal and Estuarine Fine Sediment Processes - GBV › dms › goettingen › 322398290.pdfCoastal and Estuarine Fine Sediment Processes Edited by William H. McAnally Coastal & Hydraulics

Proceedings in Marine Science

Coastal and EstuarineFine Sediment ProcessesEdited by

William H. McAnally

Coastal & Hydraulics LaboratoryEngineering Research and Development CenterVicksburg, MS, USA

Ashish J. MehtaDepartment of Civil and Coastal EngineeringUniversity of FloridaGainesville, FL, USA

2001ELSEVIERAmsterdam - London - New York - Oxford - Paris - Shannon - Tokyo

Page 2: Coastal and Estuarine Fine Sediment Processes - GBV › dms › goettingen › 322398290.pdfCoastal and Estuarine Fine Sediment Processes Edited by William H. McAnally Coastal & Hydraulics

Contents

Preface v

William H. McAnally and Ashish J. Mehta

Contributing Authors xxi

Cohesive sediment transport modeling: European perspective 1E. A. Toorman1 INTRODUCTION 12 FUNDAMENTAL RESEARCH 1

2.1 Numerical modeling as research tool 22.2 Collaborations 42.3 Research priorities 4

3 SEDIMENT-TURBULENCE INTERACTION 63.1 Settling and flocculation 63.2 Stratification 63.3 Deposition and erosion 83.4 Validation 9

4 BED DYNAMICS 94.1 Consolidation 104.2 Generalized bed dynamics 11

5 PIONEERING AREAS 115.1 Behavior of sand-mud mixtures 125.2 Mudflats dynamics and biological mediation 125.3 Long-term predictions 13

6 CONCLUSIONS 137 ACKNOWLEDGMENT 13

REFERENCES 13Collisional aggregation of fine estuarial sediment 19

W. H. McAnally and A. J. Mehta1 INTRODUCTION 192 COHESION 203 AGGREGATE CHARACTERISTICS 214 COLLISIONS 22

4.1 Two-body collisions 224.2 Three-body collisions 254.3 Four-body collisions 27

5 SHEAR STRESSES ON AGGREGATES 285.1 Two-body-collision-induced stresses 285.2 Three-body-collision-induced stresses 285.3 Flow-induced stress 29

Page 3: Coastal and Estuarine Fine Sediment Processes - GBV › dms › goettingen › 322398290.pdfCoastal and Estuarine Fine Sediment Processes Edited by William H. McAnally Coastal & Hydraulics

6 COLLISION EFFICIENCY AND COLLISION DIAMETERFUNCTION 29

7 CONCLUSIONS 378 ACKNOWLEDGMENT 37

REFERENCES 37

Erosion of a deposited layer of cohesive sediment 41/. Piedra-Cueva and M. Mory1 INTRODUCTION 412 EXPERIMENTAL PROCEDURE 443 EROSION RATE DETERMINATION 464 DIMENSIONAL ANALYSIS 485 CONCLUSIONS 496 ACKNOWLEDGMENT 51

REFERENCES 51

Critical shear stress for cohesive sediment transport 53K. Taki1 INTRODUCTION 532 MUD LAYER SURFACE PATTERNS 543 ELECTROCHEMICAL EFFECT 544 FORCES ON PARTICLES 555 ANCHORING FORCE 566 CRITICAL SHEAR STRESS 597 CONCLUSIONS 60

REFERENCES 61

Mud scour on a slope under breaking waves 63, H. Yamanishi, O. Higashi, T. Kusuda and R. Watanabe1 INTRODUCTION 632 IMPACT OF BREAKING WAVE ACTION 643 BREAKING WAVE EXPERIMENTS 66

3.1 Breaking wave height Hb 663.2 Breaking water depth hb 683.3 Estimation of breaking wave pressure 68

4 RHEOLOGICAL CHARACTERISTICS.; 715 SCOUR EXPERIMENTS 736 CONCLUSIONS 777 ACKNOWLEDGMENT 77

REFERENCES 77

Fluid mud in the wave-dominated environment revisited 79Y. Li and A. J. Mehta1 INTRODUCTION 792 CRITERION FOR FLUID MUD GENERATION 81

Page 4: Coastal and Estuarine Fine Sediment Processes - GBV › dms › goettingen › 322398290.pdfCoastal and Estuarine Fine Sediment Processes Edited by William H. McAnally Coastal & Hydraulics

XI

3 FLUID MUD THICKNESS 834 FLUME DATA 855 LAKE OKEECHOBEE 876 CONCLUDING COMMENTS 907 ACKNOWLEDGMENT 91

REFERENCES 92

Response of stratified muddy beds to water waves 95R. Silva Jacinto and P. Le Hir1 INTRODUCTION 952 ANALYTIC MODELING 973 NON-LINEAR RHEOLOGICAL BEHAVIOR 1004 APPLICATION OF THE ANALYTICAL MODEL 1025 RESULTS 103

REFERENCES 108

Assessment of the erodibility of fine/coarse sediment mixtures 109H. Torfs, J. Jiang and A. J. Mehta1 INTRODUCTION 1092 THRESHOLD FOR SINGLE GRAIN SIZE 1103 THRESHOLD FOR FINE/COARSE GRAIN MIXTURES 1124 FLUME DATA 114

4.1 Experimental conditions 1144.2 Selection of $cg, alcg, ct^, a3cg, d^, q, £, and ^c 1144.3 Determination ofK1 118

5 RATE OF EROSION 1196 CONCLUSIONS 122

REFERENCES 123

Rapid siltation from saturated mud suspensions 125J. C. Winterwerp, R. E. Uittenbogaard and J. M. de Kok1 INTRODUCTION 1252 THE 1DV POINT MODEL 1273 THE CONCEPT OF SATURATION 1304 FIELD MEASUREMENTS 1345 NUMERICAL SIMULATIONS OF FIELD MEASUREMENTS 1346 PROGNOSTIC SIMULATIONS 1427 DISCUSSION, SUMMARY AND CONCLUSIONS 1448 ACKNOWLEDGMENT 145

REFERENCES 145

Density development during erosion of cohesive sediment 147C. Johansen and T. Larsen1 INTRODUCTION 1472 EXPERIMENTAL SETUP 147

Page 5: Coastal and Estuarine Fine Sediment Processes - GBV › dms › goettingen › 322398290.pdfCoastal and Estuarine Fine Sediment Processes Edited by William H. McAnally Coastal & Hydraulics

Xll

3 RESULTS 1504 CONCLUSIONS 155

REFERENCES 155

Clay-silt sediment modeling using multiple grain classes. Part I:Settling and deposition 157A. M. Teeter1 INTRODUCTION 1572 SIZE-SPECTRA RESPONSE TO DEPOSITION 1583 NUMERICAL METHODS 160

3.1 Effects of concentration on settling velocity 1603.2 Effects of fluid shear and concentrations on settling velocity 1623.3 Deposition rate 167

4 RESULTS OF NUMERICAL DEPOSITION EXPERIMENTS 1685 CONCLUSIONS 170

REFERENCES 170

Clay-silt sediment modeling using multiple grain classes. Part II:Application to shallow-water resuspension and deposition 173A. M. Teeter1 INTRODUCTION 1732 METHODS 175

2.1 Model description 1752.2 Model comparison data sets 1782.3 Coefficient adjustment for model comparison 181

3 RESULTS 1814 CONCLUSIONS 185

REFERENCES 186

Analysis of nearshore cohesive sediment depositional process usingfractals 189LI Yan and XIA Xiaoming1 INTRODUCTION 1892 METHOD 190

2.1 Field survey 1902.2 Fractal principle : 1922.3 Fractal parameters 193

3 RESULTS 1933.1 Depositional process and fractal dimension 1933.2 Depositional sequence and fractal dimension 194

4 DISCUSSION 1984.1 Depositional process and depositional sequence 1984.2 Potential fluctuation range 198

5 CONCLUSIONS 1996 ACKNOWLEDGMENT 199

Page 6: Coastal and Estuarine Fine Sediment Processes - GBV › dms › goettingen › 322398290.pdfCoastal and Estuarine Fine Sediment Processes Edited by William H. McAnally Coastal & Hydraulics

xm

REFERENCES 199

Laboratory experiments on consolidation and strength of bottommud 201L. M. Merckelbach, G. C. Sills and C. Kranenburg1 INTRODUCTION 2012 EXPERIMENTAL SET-UP 202

2.1 X-ray density measurement 2022.2 Pore water pressure measurements 2032.3 Shear stress measurements 2032.4 Calculation of effective stress 2042.5 Determination of permeability 204

3 EXPERIMENTAL RESULTS 2043.1 Density profiles 2043.2 Pore water pressure profiles 2063.3 Peak shear stress profiles 206

4 EFFECTIVE STRESS AND PERMEABILITY 2065 PEAK SHEAR STRESS 2116 CONCLUSIONS 2127 ACKNOWLEDGMENT 212

REFERENCES 212

A framework for cohesive sediment transport simulation for thecoastal waters of Korea 215D. Y. Lee, J. L. Lee, K. C. Jun and K. S. Park1 INTRODUCTION 2152 SEDIMENT TRANSPORT PREDICTION 2163 COHESIVE SEDIMENT TRANSPORT 2184 FIRST PHASE SEDIMENT TRANSPORT SIMULATION 219

4.1 Coupled simulation mode 2204.2 Uncoupled fast simulation mode 221

5 SIMULATION TEST 2236 CONCLUSIONS 224

REFERENCES 227

Application of the continuous modeling concept to simulate high-concentration suspended sediment in a macrotidal estuary 229P. Le Hir, P. Bassoullet and H. Jestin1 INTRODUCTION 2292 MAIN FEATURES OF THE IDV CONTINUOUS MODEL 231

2.1 Turbulence closure 2322.2 Generalized viscosity 2322.3 Settling velocity 2342.4 Initial and boundary conditions 2352.5 Numerical features 236

Page 7: Coastal and Estuarine Fine Sediment Processes - GBV › dms › goettingen › 322398290.pdfCoastal and Estuarine Fine Sediment Processes Edited by William H. McAnally Coastal & Hydraulics

XIV

3 STEADY STATE SIMULATIONS 2363.1 Calibration of turbulence damping functions 2363.2 Equilibrium profile 2363.3 Saturation concentration 238

4 FLUID MUD FLOW IN THE GIRONDE 2404.1 The SEDIGIR experiment 2404.2 Simulation of SEDIGIR data 240

5 CONCLUSIONS 2456 ACKNOWLEDGMENT 245

REFERENCES 246

Modeling of fluid mud flow on an inclined bed 249R. Watanabe, T. Kusuda, H. Yamanishi and K. Yamasaki1 INTRODUCTION 2492 MOVEMENT OF FLUID MUD ON AN INCLINED BED 2503 EXPERIMENTAL RESULTS AND INTERPRETATION 252

3.1 Settling velocity 2533.2 Constitutive equation in fluid mud 2533.3 Deposition rate on bed mud 2533.4 Dispersion coefficient in the fluid mud 254

4 NUMERICAL SIMULATION AND DISCUSSION 2575 CONCLUSIONS 259

REFERENCES 260

Predicting the profile of intertidal mudflats formed by cross-shoretidal currents 263W. Roberts and R. J. S. Whitehouse1 INTRODUCTION 2632 FORCING ON MUDFLATS 2643 TIME AND SPACE SCALES 2664 EQUILIBRIUM PROFILE 2675 SIMULATED ANNEALING METHOD 2706 MORPHODYNAMIC APPROACH 2727 CALCULATED PROFILES 2728 COMBINATION OF CONDITIONS 2799 DISCUSSION 28010 CONCLUSIONS 28311 ACKNOWLEDGMENT 283

REFERENCES 284

Monitoring of suspended sediment concentration using vessels andremote sensing 287J.-Y. Jin, D.-Y. Lee, J. S. Park, K. S. Park and K. D. Yum1 INTRODUCTION 2872 INSTRUMENTATION 288

Page 8: Coastal and Estuarine Fine Sediment Processes - GBV › dms › goettingen › 322398290.pdfCoastal and Estuarine Fine Sediment Processes Edited by William H. McAnally Coastal & Hydraulics

XV

2.1 Instruments 2882.2 Instrument set-up in a ferry 289

3 IMPLEMENTATION TESTS 2894 CONCLUSIONS 2965 ACKNOWLEDGMENT 298

REFERENCES 298

Seasonal variability of sediment erodibility and properties on amacrotidal mudflat, Peterstone Wentlooge, Severn estuary, UK 301H. J. Mitchener and D. J. O'Brien1 INTRODUCTION 3012 SITE DESCRIPTION 3033 MONITORING STRATEGY 3054 MEASUREMENTS 3055 METHODS 306

5.1 The measurement of in situ erosion thresholds 3065.2 Surface sample analysis 307

6 RESULTS 3086.1 Temporal variability, April to September 1997 3086.2 Spatial variability, April to September 1997 3136.3 Winter deployment erosion thresholds and sediment properties... 3146.4 Intercomparisons 314

7 DISCUSSION 3178 CONCLUSIONS 3199 ACKNOWLEDGMENT 320

REFERENCES 320

Observations of long and short term variations in the bed elevationof a macro-tidal mudflat 323M. C. Christie, K. R. Dyer and P. Turner1 INTRODUCTION 323

1.1 Tidal flat characteristics 3242 METHODOLOGY 326

2.1 Instrumentation 3262.2 Calculated bed shear stresses 3262.3 Suspended load 326

3 RESULTS 3283.1 Calm conditions 3283.2 Storm conditions 3313.3 Seasonal considerations 335

4 DISCUSSION 3385 CONCLUSIONS 3416 ACKNOWLEDGMENT 341

REFERENCES 341

Page 9: Coastal and Estuarine Fine Sediment Processes - GBV › dms › goettingen › 322398290.pdfCoastal and Estuarine Fine Sediment Processes Edited by William H. McAnally Coastal & Hydraulics

Influence of salinity, bottom topography, and tides on locations ofestuarine turbidity maxima in northern San Francisco Bay 343D. H. Schoellhamer1 INTRODUCTION 3432 STUDY AREA 3453 VERTICAL PROFILE AND TIME-SERIES DATA 3464 RESULTS: CRUISE DATA 3475 RESULTS: TIDALLY AVERAGED TIME-SERIES DATA 3476 DISCUSSION 349

6.1 Gravitational circulation 3506.2 Salinity stratification 3526.3 Bed storage 3526.4 Tides and surface ETM observation 353

7 CONCLUSIONS 3558 ACKNOWLEDGMENT 355

REFERENCES 356

Boundary layer effects due to suspended sediment in the AmazonRiver estuary 359S. B. Vinzon and A. J. Mehta1 INTRODUCTION 3592 VELOCITY AND SSC STRUCTURES 3593 BOUNDARY LAYER CHARACTER 364

3.1 Velocity 3643.2 Viscosity 3663.3 Velocity profile 367

4 TIDAL VELOCITY 3685 BOTTOM SHEAR STRESS 3696 CONCLUDING REMARKS 3717 ACKNOWLEDGMENT 372

REFERENCES 372

Modeling mechanisms for the stability of the turbidity maximum inthe Gironde estuary, France 373A. Sottolichio, P. Le Hir and P. Castaing1 INTRODUCTION 3732 THE GIRONDE ESTUARY 3743 BRIEF DESCRIPTION OF THE MODELS 375

3.1 Depth-averaged (2DH) model 3763.2 Three-dimensional (3D) model 3763.3 Sedimentary behavior 376

4 RESULTS 3774.1 Two-dimensional horizontal simulation 3774.2 Three-dimensional simulation 380

5 DISCUSSION AND CONCLUSION 382

Page 10: Coastal and Estuarine Fine Sediment Processes - GBV › dms › goettingen › 322398290.pdfCoastal and Estuarine Fine Sediment Processes Edited by William H. McAnally Coastal & Hydraulics

XV11

6 ACKNOWLEDGMENT 385REFERENCES 385

The role of fecal pellets in sediment settling at an intertidal mudflat,the Danish Wadden Sea 387T. J. Andersen1 INTRODUCTION 3872 STUDY SITE 3883 METHODS 3904 RESULTS AND DISCUSSION 391

4.1 Primary grain composition of floe fractions 3975 CONCLUSIONS 3996 ACKNOWLEDGMENT 399

REFERENCES 399

Parameters affecting mud floe size on a seasonal time scale: Theimpact of a phytoplankton bloom in the Dollard estuary, TheNetherlands 403W. T. B. van der Lee1 INTRODUCTION 4032 BINDING PROCESSES 404

2.1 Salt flocculation 4042.2 Biological cohesion of floes 406

3 FIELD EXPERIMENTS AND METHODOLOGY 4073.1 Study area 4073.2 Measurement methods 4073.3 Measurement frequency 4093.4 VIS data processing 409

4 RESULTS 4105 DISCUSSION : 4146 CONCLUSIONS 4187 ACKNOWLEDGMENT 419

REFERENCES 419

Salt marsh processes along the coast of Friesland, The Netherlands... 423B. M. Janssen-Stelder1 INTRODUCTION 4232 MEASURING METHODS 4263 METHODS OF ANALYSES 4274 RESULTS 428

4.1 Local morphodynamics in the pioneer zone 4284.2 Local hydrodynamics 4294.3 Morphology of channels and tidal flats seaward of the pioneer

zone 4325 DISCUSSION 435

Page 11: Coastal and Estuarine Fine Sediment Processes - GBV › dms › goettingen › 322398290.pdfCoastal and Estuarine Fine Sediment Processes Edited by William H. McAnally Coastal & Hydraulics

6 CONCLUSIONS 4367 ACKNOWLEDGMENT 436

REFERENCES 437

Prediction of contaminated sediment transport in the Maurice River-Union Lake, New Jersey, USA 439E. J. Hayter and R. Gu1 TRANSPORT OF CONTAMINANTS IN SURFACE WATERS 4392 CONTAMINATED SEDIMENT TRANSPORT MODEL 441

2.1 Hydrodynamic module 4412.2 Cohesive sediment transport module 4422.3 Cohesionless sediment transport module 4452.4 Contaminant transport module 446

3 MAURICE RIVER-UNION LAKE ARSENIC TRANSPORTMODELING 447

4 RESULTS OF MODEL SIMULATIONS 4555 CONCLUSIONS 4566 DISCLAIMER 456

REFERENCES 457

Entrance flow control to reduce siltation in tidal basins 459T. J. Smith, R. Kirby and H. Christiansen1 INTRODUCTION 4592 MEASUREMENTS OF SEDIMENT TRANSPORT 463

2.1 Parkhafen, Hamburg 4632.2 Instrumentation 4632.3 Measurements 4652.4 Results 465

3 SEDIMENT FLUXES INTO A TIDAL BASIN 4683.1 Tidal filling 4683.2 Entrainment across the mixing layer 4683.3 Application to the Parkhafen 474

4 ENTRANCE FLOW CONTROL 4744.1 Principles 4744.2 Impact on the flow regime 476

5 APPLICATION IN THE KOHLFLEET, HAMBURG 4795.1 Potential benefits 4795.2 Actual savings 479

6 CONCLUSIONS 4837 ACKNOWLEDGMENT 483

REFERENCES 483

An examination of mud slurry discharge through pipes 485P. Jinchai, J. Jiang and A. J. Mehta1 INTRODUCTION 485

Page 12: Coastal and Estuarine Fine Sediment Processes - GBV › dms › goettingen › 322398290.pdfCoastal and Estuarine Fine Sediment Processes Edited by William H. McAnally Coastal & Hydraulics

XIX

2 MUD SLURRY FLOW 4863 EXPERIMENTAL RESULTS 4874 CONCLUSIONS 4935 ACKNOWLEDGMENT 493

REFERENCES 494

Beach dynamics related to the Ambalapuzha mudbank along thesouthwest coast of India 495A. C. Narayana, P. Manojkumar and R. Tatavarti1 INTRODUCTION 4952 METHOD 4973 RESULTS 499

3.1 Pre-monsoon season 5023.2 Monsoon 5023.3 Post-monsoon season 502

4 DISCUSSION 5035 CONCLUSIONS 5056 ACKNOWLEDGMENT 506

REFERENCES 506