co2 final 1ac

27

Click here to load reader

Upload: ya-seen-him-around

Post on 21-Jul-2016

9 views

Category:

Documents


0 download

DESCRIPTION

An aff that I helped cut at camp a few years ago

TRANSCRIPT

Page 1: Co2 Final 1ac

Como Park ATCO2 Yassin Ahmed

1AC – Plan

The United States federal government should establish a tax credit for the construction of carbon dioxide pipelines in the United States.

1

1

Page 2: Co2 Final 1ac

Como Park ATCO2 Yassin Ahmed

1AC – Climate

Contention One: Climate Change

The Obama administration is rolling out carbon rules that will demand reductions now.Gardner, 3/27/2012 (Timothy – staff writer for Reuters, Government proposes first carbon limits on power plants, p. http://www.reuters.com/article/2012/03/27/us-usa-carbon-idUSBRE82Q0W120120327)

The Obama administration proposed on Tuesday the first rules to cut carbon dioxide emissions from new U.S. power plants, a move hotly contested by Republicans and industry in an election year. The Environmental Protection Agency's proposal would effectively stop the building of most new coal-fired plants in an industry that is moving rapidly to more natural gas. But the rules will not regulate existing power plants, the source of one third of U.S. emissions, and will not apply to any plants that start construction over the next 12 months. The watering down of the proposal led some ardent environmentalists to criticize its loopholes, but a power company that has taken steps to cut emissions praised the rules. While the proposal does not dictate which fuels a plant can burn, it requires any new coal plants to use costly technology to capture and store the emissions underground. Any new coal-fired plants would have to halve carbon dioxide emissions to match those of gas plants. "We're putting in place a standard that relies on the use of clean, American made technology to tackle a challenge that we can't leave to our kids and grandkids," EPA Administrator Lisa Jackson told reporters in a teleconference. Jackson could not say whether the standards, which will go through a public comment period, would be finalized before the November 6 election. If they are not, they could be more easily overturned if Obama lost. Republicans say a slew of EPA clean air measures will drive up power costs but have had little success in trying to stop them in Congress. Industries have turned to the courts to slow down the EPA's program. Some Democrats from energy-intensive states also complained. "The overreaching that EPA continues to do is going to create a tremendous burden and hardship on the families and people of America," said Senator Joe Manchin, a Democrat from West Virginia. REGULATORY CERTAINTY The EPA's overall clean-air efforts have divided the power industry between companies that have moved toward cleaner energy, such as Exelon and NextEra, and those that generate most of their power from coal, such as Southern Co and American Electric Power. Ralph Izzo, the chairman and CEO of PSEG, a utility that has invested in cleaner burning energy, said the rules provide a logical framework to confront the emissions. The rules provide the industry with "much needed regulatory certainty," that is needed to help guide future multi-billion dollar investments in the U.S. power grid, he added. Under the new standards, coal plants could add equipment to capture and bury underground for permanent storage their carbon emissions. The rules give utilities time to get those systems running, by requiring they average the emissions cuts over 30 years. Still, the coal-burning industry says that carbon capture and storage , known as CCS, is not yet commercially available . Jackson said the EPA believes the technology will be ready soon. "Every model that we've seen shows that technology as it develops will become commercially available certainly within the next 10 years".

However, a lack of financial incentives prevents the implementation of CCS operations.Handwerk, 5/22/2012 (Brian, Amid Economic Concerns, Carbon Capture Faces a Hazy Future, National Geographic, p. http://news.nationalgeographic.com/news/energy/2012/05/120522-carbon-capture-and-storage-economic-hurdles/)

Many companies have determined that expensive CCS operations simply aren't worth the investment without government mandates or revenue from carbon prices set far higher than those currently found at the main operational market, the European Trading System, or other fledgling markets. According to a recent Worldwatch Institute report, only eight large-scale, fully integrated CCS projects are actually operational, and that number has not increased in three years. "In fact, from 2010 to 2011 , the number of large-scale CCS plants operating, under construction, or being planned declined ," said Matt Lucky, the report's author. Numerous projects in Europe and North America are being scrapped altogether, Lucky added. Last month, TransAlta, the Canadian electricity giant, abandoned plans for a CCS facility at an Alberta coal-burning plant because financial incentives were too weak to justify costly investment in CCS .

This means that lowering the cost of CCS is key to commercialization.Venezia et. al, 2008 (John – Associate at the World Resources Institute, Hiranya Fernando – senior research associate at World Resources Institute, Clay Rigdon – research analyst at the World Resources Institute, Preeti Verma, Capturing King Coal: Deploying Carbon Capture and Storage Systems in the U.S. at Scale, World Resources Institute, p. 16)

2

2

Page 3: Co2 Final 1ac

Como Park ATCO2 Yassin Ahmed

Far-sighted policy design and the prudent dedication of public resources and incentives are indispensable to a scaled-up national c arbon c apture and s torage effort . Commercial players are unlikely to engage unless U.S. climate policy mandates it in some way or makes it cost effective. Historically, the power producer based technology choices on relative fuel costs and capital costs. Today the power industry must also give serious consider ation to federal and state policies being developed to reduce carbon emissions that will eventually create future carbon liabilities . Although deploying these new technologies increases present capital expenditure, that expenditure could offset future compliance costs . CCS, however, is one of many emissions reduction strategies. For CCS to de deployed at scale it must be positioned as the least-cost compliance strategy —i.e. the strategy that will reduce a power plant’s expected carbon liability at the cheapest cost.

Runaway warming is inevitable unless we take action --- err aff even if we cannot guarantee that warming is anthropogenic.Mills 2011 (Robin – Head of Consulting at Manaar Energy Consulting, Non-Resident Scholar at INEGMA, Capturing Carbon: The New Weapon in the War Against Climate Change, p. 9-11)

Even if carbon dioxide emissions were to stop today , the built-in inertia in the climate system would lead to temperatures increasing further . In addition to the 0.75CC rise since the nineteenth century, we are already committed to a further warming of 0.6°C. If emissions, and hence temperatures, continue to rise, warming may be as much as 4°C by 2050—and locally much more, 15°C hotter in the Arctic and 10°C in western and southern Africa. At this level, climate impacts will become more and more serious. Extinctions are likely to increase sharply , while extreme heat-waves, forest die-offs , flooding of major river deltas, persistent severe droughts, mass migrations,33 wars and famines are all possible. We may soon pass, or already have passed, the point at which, over the next few centuries, parts of the West Antarctic and Greenland ice sheets melt irreversibly, with potential sea level rises of 1.5 and 2-3 metres respectively.34 Due to feedback mechanisms and poorly understood components of global climate, there is even the possibility of a sudden, rapid catastrophic change . For example, open ocean absorbs more heat from the sun than ice. Melting permafrost35 and warming ocean bottom waters36 release carbon dioxide and the powerful greenhouse gas methane, driving further warming. Carbon sinks will become increasingly ineffective 37 as forests die off, soils dry out and warmer oceans dissolve less carbon dioxide, so that ecosystems may become net contributors of carbon dioxide to the atmosphere, rather than net absorbers as today. The shade of clouds may diminish over warming oceans,38 while melting ice shelves may lead to sudden collapse of grounded ice, and hence rapid rises in sea level. The picture is complicated further by some offsetting effects, due for instance to increased plant growth in a warmer, more CO2-rich world. Changes in cloudiness, snowfall and albedo (reflectiveness) of vegetation may have warming or cooling effects. Such positive feedbacks may greatly accelerate warming. Unpredictable, non-linear effects can lead to prolonged droughts in the Mediterranean, California41 or West Africa,42 or to weakening of ocean circulation43 with knock-on effects including a rise in North Atlantic sea levels of up to 1 metre, a collapse of fisheries, disruption of the South Asian monsoon,44 and possibly (albeit unlikely) sharp cooling in Europe.45 Similar rapid changes are documented from Earth history, as at the end of the Ice Ages. At one time, at the end of the so-called Younger Dryas event around 12,000 years ago, Europe warmed by some 5°C within two decades.4" It seems increasingly clear, from geological studies, that the climate system is unstable and prone to abrupt transitions from one state to another, so further warming might trigger entirely unforeseen consequences.47 We should not give in to alarmism, and such disastrous shifts are thought to be unlikely—but their consequences are serious enough to be worth guarding against. This is about as far as the weight of consensus has reached,48 Yet many individuals and corporations continue to deny the reality of anthropogenic climate change . The US petroleum and coal businesses, in particular certain commentators,49 and many of the general public across the world, 50 continue to maintain that the climate is not warming, that elevated carbon dioxide does not cause warming, that rising carbon dioxide and temperatures are not caused by humans, that the consequences of climate change will be benign, or some combination of these positions. Beyond this understanding, there remains great uncertainty and debate on how much warming will occur for given changes in atmospheric carbon dioxide, how serious the impacts of this warming will be, how the climate will change at regional and local levels, how much it is worth spending to reduce climate change,51 exactly what types of action we should

3

3

Page 4: Co2 Final 1ac

Como Park ATCO2 Yassin Ahmed

take, and how we should go about encouraging global action. Despite extensive and continuing research , these major uncertainties will persist for the foreseeable future. Some of the debate is a normative one, about the values of our civilisation, and therefore is not even capable of being solved by scientific inquiry. Such uncertainty and controversy, though, is not a reason for inaction . After all, we ban certain drugs suspected to be carcinogenic, without waiting for absolute proof, and we will only know the truth about some of these climate change disasters when they actually strike. I will take as my starting point here, in this fast-evolving area of research, the view that we should attempt to keep total warming below 2-3°C.52 The original goal of the EU, recommended by the International Climate Change Task Force, was for a maximum temperature rise of 2°C,53 but given the delay in taking major action, and the latest science, this already seems to be very tough to achieve. Anything above 2°C is already dangerous but, with luck, avoiding rises over 3°C will prevent the most damaging effects of climate change . Otherwise , we will venture into uncharted territory, where the risk of abrupt climatic changes is high : 'Once the world has warmed by 4°C, conditions will be so different from anything we can observe today (and still more different from the last ice age) that it is inherently hard to say where the warming will stop.'55

A preponderance of evidence proves warming is anthropogenic --- results in extinction.Deibel 2007 (Terry – international relations at the Naval War College, Foreign Affairs Strategy: Logic of American Statecraft, Conclusion: American Foreign Affairs Strategy Today, p. 387-390)

Finally, there is one major existential threat to American security (as well as prosperity) of a nonviolent nature, which, though far in the future, demands urgent action. It is the threat of global warming to the stability of the climate upon which all earthly life depends. Scientists worldwide have been observing the gathering of this threat for three decades now, and what was once a mere possibility has passed through probability to near certainty . Indeed not one of more than 900 articles on climate change published in refereed scientific journals from 1993 to 2003 doubted that anthropogenic warming is occurring. “In legitimate scientific circles,” writes Elizabeth Kolbert, “ it is virtually impossible to find evidence of disagreement over the fundamentals of global warming.” Evidence from a vast international scientific monitoring effort accumulates almost weekly , as this sample of newspaper reports shows: an international panel predicts “brutal droughts, floods and violent storms across the planet over the next century”; climate change could “literally alter ocean currents, wipe away huge portions of Alpine Snowcaps and aid the spread of cholera and malaria”; “glaciers in the Antarctic and in Greenland are melting much faster than expected, and…worldwide, plants are blooming several days earlier than a decade ago”; “rising sea temperatures have been accompanied by a significant global increase in the most destructive hurricanes”; “NASA scientists have concluded from direct temperature measurements that 2005 was the hottest year on record, with 1998 a close second”; “Earth’s warming climate is estimated to contribute to more than 150,000 deaths and 5 million illnesses each year” as disease spreads; “widespread bleaching from Texas to Trinidad…killed broad swaths of corals” due to a 2-degree rise in sea temperatures. “The world is slowly disintegrating,” concluded Inuit hunter Noah Metuq, who lives 30 miles from the Arctic Circle. “They call it climate change…but we just call it breaking up.” From the founding of the first cities some 6,000 years ago until the beginning of the industrial revolution, carbon dioxide levels in the atmosphere remained relatively constant at about 280 parts per million (ppm). At present they are accelerating toward 400 ppm , and by 2050 they will reach 500 ppm, about double pre-industrial levels. Unfortunately, atmospheric CO2 lasts about a century, so there is no way immediately to reduce levels, only to slow their increase, we are thus in for significant global warming; the only debate is how much and how serious the effects will be . As the newspaper stories quoted above show, we are already experiencing the effects of 1-2 degree warming in more violent storms, spread of disease , mass die offs of plants and animals, species extinction , and threatened inundation of low-lying countries like the Pacific nation of Kiribati and the Netherlands at a warming of 5 degrees or less the Greenland and West Antarctic ice sheets could disintegrate, leading to a sea level of rise of 20 feet that would cover North Carolina’s outer banks, swamp the southern third of Florida, and inundate Manhattan up to the middle of Greenwich Village. Another catastrophic effect would be the collapse of the Atlantic thermohaline circulation that keeps the winter weather in Europe far warmer than its latitude would otherwise allow. Economist William Cline once estimated the damage to the United States alone from moderate levels of warming at 1-6 percent of GDP annually; severe warming could cost 13-26 percent of GDP. But the most

4

4

Page 5: Co2 Final 1ac

Como Park ATCO2 Yassin Ahmed

frightening scenario is runaway greenhouse warming, based on positive feedback from the buildup of water vapor in the atmosphere that is both caused by and causes hotter surface temperatures. Past ice age transitions, associated with only 5-10 degree changes in average global temperatures, took place in just decades, even though no one was then pouring ever-increasing amounts of carbon into the atmosphere. Faced with this specter, the best one can conclude is that “ humankind’s continuing enhancement of the natural greenhouse effect is akin to playing Russian roulette with the earth’s climate and humanity’s life support system . At worst, says physics professor Marty Hoffert of New York University, “we’re just going to burn everything up ; we’re going to heat the atmosphere to the temperature it was in the

Cretaceous when there were crocodiles at the poles, and then everything will collapse .” During the Cold War, astronomer Carl Sagan popularized a theory of nuclear winter to describe how a thermonuclear war between the Untied States and the Soviet Union would not only destroy both countries but possible end life on this planet. Global warming is the post-Cold War era’s equivalent of nuclear winter at least as serious and considerably better supported scientifically . Over the long run it puts dangers from terrorism and traditional military challenges to shame. It is a threat not only to the security and prosperity to the United States, but potentially to the continued existence of life on this planet .

Even a one percent risk of warming means you vote aff.Strom 2007 (Robert – professor emeritus of planetary science at the University of Arizona, Hot House: Global Climate Change and the Human Condition, p. 246)

Keep in mind that the current consequences of global warming discussed in previous chapters are the result of a global average temperature increase of only 0.5 'C above the 1951-1980 average, and these consequences are beginning to accelerate. Think about what is in store for us when the average global temperature is 1 °C higher than today. That is already in the pipeline, and there is nothing we can do to prevent it. We can only plan strategies for dealing with the expected consequences, and reduce our greenhouse gas emissions by about 60% as soon as possible to ensure that we don't experience even higher temperatures. There is also the danger of eventually triggering an abrupt climate change that would accelerate global warming to a catastrophic level in a short period of time . If that were to happen we would not stand a chance. Even if that possibility had only a 1% chance of occurring, the consequences are so dire that it would be insane not to act . Clearly we cannot afford to delay taking action by waiting for additional research to more clearly define what awaits us. The time for action is now.

Reductions alone won’t solve --- removal of CO2 from the air is necessary to solve warming and ocean acidification.Mills 2011 (Robin – Head of Consulting at Manaar Energy Consulting, Non-Resident Scholar at INEGMA, Capturing Carbon: The New Weapon in the War Against Climate Change, p. 41)Capture Can Tackle Carbon Dioxide Already in the Atmosphere

We will quite possibly discover, in the next ten, twenty, or thirty years, that our emissions abatements have been insufficient, and that the climate is much more sensitive than we had imagined. In any case, the allowable annual carbon emissions by 2050 are going to be very small, around 2 tonnes per person, less than a third of current levels–and that in the context of a much richer world. A single aeroplane journey can eat up most of this budget. In this case, only carbon capture can help us . We will have to reduce the carbon dioxide concentration in the atmosphere rapidly–not merely reducing our net emissions , but actually taking them below zero. This can also help reduce ocean acidification , a non-greenhouse but serious impact of the build-up of carbon dioxide. In order to be ready for this eventually, we need to develop carbon capture techniques today on the easier opportunities –coal-fired power stations and so on–and have a network of carbon dioxide pipelines and storage sites ready. I, for one, don’t wish to discover in 2050 that disaster is upon us, and regret that it’s too late by then for a realistic ‘Plan B.’

5

5

Page 6: Co2 Final 1ac

Como Park ATCO2 Yassin AhmedOcean acidification results in extinction --- CO2 is the driver.Parry, 3/2/2012 (Wynne – senior writer for LiveScience, Oceans Turning Acidic Faster than Past 300 Million Years, Live Science, p. http://www.livescience.com/18786-ocean-acidification-extinction.html)

The oceans are becoming more acidic faster than they have in the past 300 million years, a period that includes four mass extinctions, researchers have found. Then, as is happening now, increases in carbon dioxide in the atmosphere warmed the planet and made the oceans more acidic. These changes are associated with major shifts in climate and mass extinctions . But while past increases in the atmosphere's carbon dioxide levels resulted from volcanoes and other natural causes, today that spike is due to human activities, the scientists note. "What we're doing today really stands out," lead researcher Bärbel Hönisch, a paleoceanographer at Columbia University's Lamont-Doherty Earth Observatory, said in a news release. "We know that life during past ocean acidification events was not wiped out — new species evolved to replace those that died off. But if industrial carbon emissions continue at the current pace, we may lose organisms we care about — coral reefs, oysters, salmon." [Humans Causing 6th Mass Extinction] As the level of carbon dioxide in the atmosphere increases, oceans absorb that carbon dioxide, which turns into a carbon acid . As a result the pH — a measure of acidity — drops, meaning the water has become more acidic. This dissolves the carbonates needed by some organisms, like corals, oysters or the tiny snails salmon eat. In their review, published Thursday (March 1) in the journal Science, Hönisch and colleagues found the closest modern parallel about 56 millions ago in what is called the Paleocene-Eocene Thermal Maximum, when atmospheric carbon concentrations doubled, pushing up global temperatures. Extinctions in the deep sea accompanied this shift. (The PETM occurred about 9 million years after the dinosaurs went extinct.) But, now, the ocean is acidifying at least 10 times faster than it did 56 million years ago, according to Hönisch. Ocean acidification may also have occurred when volcanoes pumped massive amounts of carbon dioxide into the air 252 million years ago, at the end of the Permian period, and 201 million years ago, at the end of the Triassic period, they found. Both are associated with mass extinctions. "The current rate of (mainly fossil fuel) carbon dioxide release stands out as capable of driving a combination and magnitude of ocean geochemical changes potentially unparalleled in at least the last 300 million years of Earth history,

raising the possibility that we are entering an unknown territory of marine ecosystem change ," the researchers conclude in their paper.

U.S. development of CCS is necessary --- its role in the world determines the rate of CO2 emissions. Stephens, 6/28/2012 (Jennie – Assistant Professor of the Environmental Science and Policy Program in the Department of International Development for Community and Environment at Clark University, An Uncertain Future Capture and Storage for Carbon, Public Interest Report, Federation of American Scientists, p. http://www.fas.org/blog/pir/2012/06/28/an-uncertain-future-capture-and-storage-for-carbon-css/)

As the coal-reliant countries of the world have been increasingly forced to consider reducing carbon dioxide (CO2) emissions to mitigate climate change, carbon capture and storage (CCS) has emerged as a technology with critically important political influence. Visions of “clean” coal-fired power plants that will not emit CO2 into the atmosphere have provided powerful motivation for large public and private investments in CCS technology1. And the scale of CO2 emission reductions deemed necessary for climate stabilization is so large that some consider CCS a necessary future technology without which society will be unable to mitigate climate change . Despite growing interest and investment in CCS, the technology’s future remains uncertain and the pace of technological development has been slower than many had envisioned five or ten years ago.2 STATUS OF CCS TECHNOLOGY CCS incorporates various technologies associated with capturing and transporting CO2 and storing the compressed gas somewhere other than the atmosphere. Most current conceptualizations of a complete CCS system focus on the potential of storing the CO2 in underground geologic reservoirs, although ocean storage and terrestrial storage have also been considered. The different components of a fully integrated CCS system are at various levels of technical readiness, but most parts of a full CCS system have been used and applied, often at a smaller scale, in other industrial applications. Despite growing interest and investment, a fully integrated coalfired power plant with CCS has not yet been demonstrated.3There are, however, numerous small scale projects that focus on demonstrating a limited part of a full CCS system.4A public database maintained by the U.S. Department of Energy’s National Energy Technology Laboratory currently documents a total of 254 CCS projects, including proposed, active and cancelled projects.5These projects are geographically distributed in 27 countries including 65 projects focused on capture, 61 projects focused on storage, and 128 that

6

6

Page 7: Co2 Final 1ac

Como Park ATCO2 Yassin Ahmed

involve both capture and storage. Of these projects, most are in the planning phase and only 20 are actually currently capturing and/or injecting CO2. Among the current priorities for advancing CCS are enhancing the capture process to reduce the energy intensity and cost of capture, demonstrating underground CO2 capture in a diverse set of geologic formations, and demonstrating and deploying integrated and scaled-up CCS power-plant systems that allow for “learning-by-doing.” A CHANGE IN COAL POLITICS IN THE UNITED STATES The potential of CCS technology has changed the politics of coal in many places, but its influence in the United States is particularly pronounced. The United States has so far focused its national response to climate change on technology rather than policy and is among the countries in the world that has invested most heavily in CCS.6 The scope and scale of U.S. interest in CCS is critica l, because due to its size, status, and disproportionate contribution to accumulated CO2 emissions, the U nited S tates has unique potential for political and technological influence over energy technology development and the trajectory of global atmospheric CO2 concentrations . The magnitude of the U.S. reliance on coal (about 45 percent of the nation’s electricity comes from coal) has been a dominant factor influencing both national energy policy and the lack of national climate policy. Politicians from regions of the country where the coal industry is most influential have been among the most powerful opponents of national climate change legislation. For coal states and politicians representing those states, however, CCS has provided a potential vision of a carbon constrained future in which the coal industry could still thrive. From a political perspective, therefore, the potential of CCS technology has been valuable in contributing to the engagement of critical actors in national climate policy discussions; CCS has enabled some constituents who had been previously reluctant to even acknowledge the challenges of climate change to engage in the climate-energy political discourse.

U.S. is modeled --- demonstrating the economic feasibility of CCS gets other nations like China and India on-board.MIT News Release, 3/14/2007 (MIT Panel Provides Policy Blueprint for Future of Use of Coal as Policymakers Work to Reverse Global Warming, p. http://web.mit.edu/coal/)

Leading academics from an interdisciplinary Massachusetts Institute of Technology (MIT) panel issued a report today that examines how the world can continue to use coal, an abundant and inexpensive fuel, in a way that mitigates , instead of worsens, the global warming crisis. The study, "The Future of Coal – Options for a Carbon Constrained World," advocates the U.S. assume global leadership on this issue through adoption of significant policy actions. Led by co-chairs Professor John Deutch, Institute Professor, Department of Chemistry, and Ernest J. Moniz, Cecil and Ida Green Professor of Physics and Engineering Systems, the report states that carbon capture and sequestration ( CCS) is the critical enabling technology to help reduce CO2 emissions significantly while also allowing coal to meet the world's pressing energy needs. According to Dr. Deutch, "As the world's leading energy user and greenhouse gas emitter, the U.S. must take the lead in showing the world CCS can work . Demonstration of technical, economic, and institutional features of CCS at commercial scale coal combustion and conversion plants will give policymakers and the public confidence that a practical carbon mitigation control option exists, will reduce cost of CCS should carbon emission controls be adopted, and will maintain the low-cost coal option in an environmentally acceptable manner." Dr. Moniz added, "There are many opportunities for enhancing the performance of coal plants in a carbon-constrained world – higher efficiency generation, perhaps through new materials; novel approaches to gasification, CO2 capture, and oxygen separation; and advanced system concepts, perhaps guided by a new generation of simulation tools. An aggressive R&D effort in the near term will yield significant dividends down the road, and should be undertaken immediately to help meet this urgent scientific challenge." Key findings in this study: • Coal is a low-cost, per BTU, mainstay of both the developed and developing world, and its use is projected to increase. Because of coal's high carbon content, increasing use will exacerbate the problem of climate change unless coal plants are deployed with very high efficiency and large scale CCS is implemented. • CCS is the critical enabling technology because it allows significant reduction in CO2 emissions while allowing coal to meet future energy needs. • A significant charge on carbon emissions is needed in the relatively near term to increase the economic attractiveness of new technologies that avoid carbon emissions and specifically to lead to large-scale CCS in the coming decades. We need large-scale demonstration projects of the technical, economic and environmental performance of an integrated CCS system. We should proceed with carbon sequestration projects as soon as possible. Several integrated large-scale demonstrations with appropriate measurement, monitoring and verification are needed in the U nited S tates over the next decade with government support . This is important for establishing public confidence for the very large-scale sequestration program

7

7

Page 8: Co2 Final 1ac

Como Park ATCO2 Yassin Ahmed

anticipated in the future. The regulatory regime for large-scale commercial sequestration should be developed with a greater sense of urgency, with the Executive Office of the President leading an interagency process. • The U.S. government should provide assistance only to coal projects with CO2 capture in order to demonstrate technical, economic and environmental performance. • Today, IGCC appears to be the economic choice for new coal plants with CCS. However, this could change with further RD&D, so it is not appropriate to pick a single technology winner at this time, especially in light of the variability in coal type, access to sequestration sites, and other factors. The government should provide assistance to several "first of a kind" coal utilization demonstration plants, but only with carbon capture.

• Congress should remove any expectation that construction of new coal plants without CO2 capture will be "grandfathered" and granted emission allowances in the event of future regulation. This is a perverse incentive to build coal plants without CO2 capture today. • Emissions will be stabilized only through global adherence to CO2 emission constraints. China and India are unlikely to adopt carbon constraints unless the U.S. does so and leads the way in the development of CCS technology .

8

8

Page 9: Co2 Final 1ac

Como Park ATCO2 Yassin Ahmed

1AC – Solvency

Contention Two: Solvency

The plan solves in five independent ways.

The first is return on investment --- developing pipelines changes economic calculus more than any other factor.Roddy 2012 Dermot J. Roddy, Science City Professor of Energy, Newcastle University, 3-12, [“Development of a CO2network for industrial emissions,” Applied Energy Volume 91, Issue 1, March 2012, Pages 459–465, http://www.sciencedirect.com/science/article/pii/S0306261911006672] E. Liu

The subject of Carbon Capture and Storage (CCS) for power sta- tions running on coal or natural gas is both important and promi- nent. The application of CCS to other industries which have large carbon dioxide (CO2) emissions is equally important but much less prominent. Industry accounts for 40% of global energy-related CO2 emissions. In 2007 the global figure for direct CO2emissions from industry was 7.6 Gte of direct CO2emissions to which could be

added3.9 GteofindirectCO2emissionsfrompowerstationssupply- ingelectricityto industry[1]. The much-quotedIEA‘‘blue map’’sce- nario for halving global CO2emissions between 2005 and 2050 shows a 19% contribution from CCS which is split roughly equally between the power generation sector and the rest of industry [1]. Intuitively it would seem obvious that financial benefits could be available from building CO2pipelines to serve the needs of a cluster of CO2emitters (both industrial and power-sector) com- pared with a collection of point-to-point transportation and stor- age solutions. Confirmation comes from the economic cost model developed by McCoy and Rubin which draws by analogy upon as-built costs for 263 natural gas pipelines built in the USA be- tween 1995 and 2005. Their cost model shows that return on investment is significantly more dependant on pipeline capacity

and on cost of capital than on any other factor that they considered [2]. Further confirmation is provided by Middleton and Bielicki when they quantify the cost of networks up to 50 Mte/year and compare them with point-to-point solutions [3]. The previous UK government’s CCS strategy includes the comment that ‘‘the establishment of an embryonic UK CO2 transport and storage infrastructure may sustain existing and future investment in carbon intensive process industries through the assurance that they will be able to access a system to handle their CO2when the carbon market drives them to CCS ’’ [4]. It also talks about the possibility of storing CO2on behalf of other countries. For at least 10 years, Norway has also been considering the merits of develop- ing a CO2infrastructure and extending it to handle much of Northern Europe’s industrial CO2emissions [5]. A number of regional studies have been carried out to investi- gate the potential for CO2cluster development. A study of the Yorkshire and Humber area in the UK found that 90% of the re- gion’s 90 Mte/year of CO2emissions comes from 12 large CO2emit- ters, and developed some ideas for building a CO2collection and storage network [6]. A Scottish study makes a case for building a CO2collection network to transport 20 Mte/year of CO2for ulti- mate storage under the North Sea [7]. A Portuguese study divides the country’s 27 biggest CO2 emitters into three clusters and identifies suitable storage sites [8]. An Italian study identifies an 8 Mte/year CO2cluster in the industrialised part of Northern Italy and links it to three storage sites [9]. A large-scale study in Califor- nia links 37 potential sources to 14 potential reservoirs, with the prospect of storing up to 50 Mte/year of CO2[3]. Similar studies have been carried out in North East England, the Rotterdam area, the Northern Netherlands, Germany and at various other locations in the USA.

Second, access. Pipelines are necessary to make sequestration feasible nationwide. Capture is currently separate from storage.Williams 2007 Eric Williams, Project Director, Climate Change Policy Partnership, Nicholas Institute for Environmental Policy Solutions, Duke University, et al., Nora Greenglass and Rebecca Ryals, 3-8-07, [“Carbon Capture, Pipeline and Storage: A Viable Option for North Carolina Utilities? ,” Nicholas Institute for Environmental Policy Solutions and The Center on Global Change, Duke University , www.nicholas.duke.edu/cgc/news/carboncapture.pdf] E. Liu

? Geologic sequestration is not economically or technically feasible within North Carolina An assessment of geologic storage in North Carolina reveals little available storage capacity. The best in-state option can store only 29.91 MMTCO2, about three year’s worth of captured CO2 (assuming around 1,600 MW of generating capacity). A new pipeline would be required to transport the CO2 to the reservoir, making the project

9

9

Page 10: Co2 Final 1ac

Como Park ATCO2 Yassin Ahmed

economically infeasible .? CCS may be viable if the captured CO2 is piped out of North Carolina and stored elsewhere Carbon dioxide emissions captured from North Carolina coal plants could be transport ed to viable geologic sinks in the Appalachian Basin or Gulf Coast region, requiring the construction of a multi- state pipeline on existing rights of way along the East Tennessee and Texas Eastern natural gas pipelines. The lowest-cost pipeline and storage option for plants in North Carolina is to build a multi- state pipeline capable of supporting the transfer of CO2 from around 10,400 MW of capacity feeding in along the pipeline route. The timing of the carbon capture and pipeline system dramatically affects the net present value

(NPV) of the whole system , and the price of CO2 has considerable influence over the timing of building capture equipment and pipeline. The optimal timing of the pipeline for a given CO2 price is different with IGCC than with SPC. At a CO2 price of $7.2 per ton ($15 per ton levelized)9, IGCC becomes cost-effective on a NPV basis, assuming CCS is brought on-line in 2027. This scenario would avoid almost 800 million tons of CO2 over its lifetime compared to SPC with CCS (CCS and pipeline beginning in 2039).

Third, stimulates investment. Tax credits for pipelines provide an economic incentive to participate in CCS technology.Apt et. al, 10/9/2007 (Jay – Professor of Technology at the Tepper School of Business and Engineering and Public Policy, Director of the Carnegie Mellon Electricity Industry Center, Lee Gresham, M. Granger Morgan – Lord Chair Professor in Engineering, Professor and Department Head of the Engineering and Public Policy, and Adam Newcomer – Exelon Power Team, Incentives for Near-Term Carbon Dioxide Geological Sequestration, A White Paper prepared for The Gasification Carbon Management Working Group, Carnegie Mellon Electricity Industry Center, p. 49)

1. A federal sequestration tax credit and investment tax credit for CO2 pipelines Currently, 15% of the costs incurred in enhanced oil recovery are eligible for the enhanced oil recovery federal tax credit (claimed on form 8830). The Energy Tax Incentives Act of 2005 provides a 30% business investment credit for solar energy and fuel cell property and certain solar lighting systems; a 10% investment tax credit is provided for microturbines (claimed on form 3468). A tax credit in the range of 10 to 30 percent of incurred costs for carbon dioxide pipelines would be in accord with the federal tax credits used to encourage the above investments. A sequestration tax credit for geologic sequestration is likely to provide an effective incentive for sequestration projects . Such a sequestration tax credit should have provisions that reduce the tax credit if the U.S. enacts legislation resulting in a carbon price above the effective price established by the tax credit. Like the production tax credit, the sequestration tax credit may be designed with time limits both for the date by which the projects must be underway and the conclusion date of the tax credit.

Fourth, enhanced oil recovery. Pipelines are necessary for continued EOR --- they link CO2 sources with oil recovery.MIT Energy Initiative, 7/23/2010 (Role of Enhanced Oil Recovery in Accelerating the Deployment of Carbon Capture and Sequestration, p. 4-5)

Federal CCS programs have paid relatively little attention to the CO2 transportation infrastructure , but this is a key enabler for building both EOR and DSF sequestration . Looking well into the future, a CO2 -EOR program utilizing hundreds of millions of tons of CO2 annually will likely require tens of thousands of miles of CO2 pipeline . A “giant horseshoe” configuration was discussed at the symposium, linking the major CO2 sources of the Midwest with the producing regions of the Gulf Coast, West Texas, and the Rockies . Clearly, such an ambitious undertaking should occur with public support only with evidence that large-scale CO2 -EOR using anthropogenic sources will materialize as an opportunity for both climate risk mitigation and enhanced oil production. Satisfying these needs will probably require sustained “high” (i.e., current) oil price levels and a price (or cap) on CO2 emissions. However, even the initial steps to implement anthropogenic CO2 -EOR should be taken with a view toward beginning to build the physical infrastructure in a way that would be needed for a future major scale-up.

10

10

Page 11: Co2 Final 1ac

Como Park ATCO2 Yassin AhmedFinancial incentives for CO2 pipelines can piggy back off of existing EOR infrastructure. Connecting the source to the sink will incentivize further development of CCS technology.MIT Energy Initiative, 7/23/2010 (Role of Enhanced Oil Recovery in Accelerating the Deployment of Carbon Capture and Sequestration, p. 40-41)

Continental-Scale CO2 Pipeline Network Requirements The analyses of the scale of the CO2 -EOR opportunity that would be created by the ACES legislation would require new, continental-scale pipeline infrastructure to connect the CO2 sources to the sinks. Some participants advocated direct public intervention in the development of the necessary infrastructure and proposed a type of hybrid model for funding. The model would combine some of the lessons learned in building the transcontinental railroad system and the development of the unconventional natural gas pipeline system. Leadership was deemed essential , a characteristic that was critical to the building of the transcontinental railroad, which offers parallels in scale of the project, risk levels, and the involvement of the private markets. The development of unconventional natural gas “ piggy backed” on the infrastructure built for conventional gas ; the overlap of resource locations for conventional and unconventional gas resources is somewhat analogous to the current co-location of MPZs and ROZs. According to several of the participants, the exploitation of ROZs is only a matter of technology and investment. Participants discussed a hybrid of both models as a possible avenue for developing a national CO2 -EOR sequestration program. Some components of such a program would have to be built from scratch such as the measurement and verification procedures as well as the new pipelines, analogous to the ground-level development of the railroad system. The experience with the development of unconventional natural gas offers an analogy in terms of leveraging the existing EOR infrastructure and tapping into the subsurface fluid flow expertise of the oil and gas industry. These new pipelines and distribution networks could be financed through a quasi-governmental agency by the issuance of climate change bonds. Significant CO2 pipeline networks already exist in West Texas and these segments can provide the foundation for the further expansion of the network that will connect the anthropogenic sources of CO2 to the geologically well-characterized EOR oil basins, both MPZs and ROZs. At later stages, the network could be used to transport the captured CO2 into the depleted natural CO2 domes. The resulting infrastructure was described as “the Horseshoe” pipeline concept, as seen in Figure 12. The national pipeline would be constructed by filling in the gaps as shown by the dotted lines; according to the participants, the most important piece in this network would be the connection between East and West Texas. The shaded areas in Figure 12 represent the areas of large CO2 -EOR projects. Finally, it was argued that establishing the pipeline connection between the source and the sink would expand demand for captured anthropogenic CO2 and would incentivize the research needed to achieve a multifold reduction in the cost of capture . Thus, the availability of pipeline capacity could facilitate the breakthrough of the “chicken and egg” problem .

CO2-EOR overcomes barriers to a transition to CCS technology.Kemp, 7/30/2012 (John – Reuters market analyst, U.S. bets on producing oil with captured CO2, Reuters, p. http://www.reuters.com/article/2012/07/30/column-kemp-oil-co-idUSL6E8IUGHM20120730)

For policymakers, the real significance of CO2-EOR is its potential to act as a catalyst or "early action

pathway" to overcome barriers to a wider roll out of CCS infrastructure . CO2 capture and storage is capital intensive and immensely costly at every stage: technology for stripping it out of the combustion exhaust; pipelines for transport; wells for injection; and an appropriate monitoring, compliance, legal and regularly framework. In practice the costs are often prohibitive. But if the captured CO2 that is a by-product of combustion can be given a value as an input into EOR, the effective costs are reduced . Crucially, there are significant scale and network economies. Once pipelines have been built to transport CO2 to EOR projects, it is much cheaper to build out the network to store additional volumes in other non-oil bearing formations.

Fifth, certainty and predictability. Federal action is necessary to maintain low costs of pipeline construction.Mack 2009 Joel Mack is a partner in the envi- ronment, land, and resources depart- ment at Latham & Watkins LLP in San. Diego and Buck Endemann, Litigation Attorney in San Diego, CA , 10-28-09, [“Making carbon dioxide sequestration

11

11

Page 12: Co2 Final 1ac

Como Park ATCO2 Yassin Ahmedfeasible: Toward federal regulation of CO2sequestration pipelines,” lw.com/upload/pubContent/_pdf/pub3385_1.pdf] E. Liu

The United States is embarking for the first time on examining and reducing CO2emissions in order to reduce global climate change impacts. Given the large amounts of CO2emissions from coal-fired power plants, to the extent policymakers envision using geologic sequestration of CO2 to address any appreciable fraction of current and future CO2emissions, the required infrastructure investment will be massive, and may be required over a limited period of time. In order for cost of CO2 sequestration pipelines to be borne efficiently by the private sector or utility ratepayers, and to accomplish these objectives in a timely fashion, the regulatory structures in place need to assure certainty , efficiency and predictability in the siting and regulatory process, in ratemaking require- ments, and in the ability to obtain the necessary real property entitlement to construct such pipelines. The current system, while certainly functioning well over the existing pipeline network, is simply not structured to handle the development in a short period of time of perhaps 50,000 or 100,000 miles of these pipelines at a cost of many billions of dollars. The current system is not structured to attract private equity or debt capital investment, similar to the way the private sector has invested in our electric generation and natural gas pipeline infrastructure. A comprehensive federal program is ultimately what is required for this investment to be made on a timely basis and relying to the maximum extent on private sources of capital and the global capital markets. As the United States moves towards a reduced carbon footprint, the nation will have to deal with the CO2emissions from our large fleet of coal-fired, base load power plants. Geologic sequestration is a technology that will likely be a major part of the solution to this

problem, and in order for that to happen, the United States will have to invest substantially in a massive increase of its CO2 pipeline transportation capacity . The current regulatory regime, consisting of state utility commission oversight and very limited federal regulation over rate complaints and pipeline safety, is likely to prove inadequate to support the massive infrastructure development required to 68An alternative form of federal regulation, such as that in place for electric transmission corridors, while preserving state feedback, is not likely to solve the implement this objective in a timelyand capital-efficient manner. This article recommends that Congress adopt legislation to provide for preemptive, federal licensing, rate regulation and oversight of these pipelines in order to provide the certaintyand clarity that will give the private sector the certainty, predictability and confidence to invest in

this very important part of our infrastructure.

A piece-meal approach fails --- it’s too inconsistent and results in a race to the bottom. Federal action is key.Horne 2010 (Jennifer, J.D. at S.J. Quinney College of Law at the University of Utah, Getting from here to there: Devising an Optimal Regulatory Model for CO<2> Transport in a New Carbon Capture and Sequestration Industry, Journal of Land, Resources & Environmental Law, p. Lexis)

B. The Case for a Comprehensive Federal Approach The challenge of transitioning to a commercial- scale CCS industry calls for a well-coordinated, comprehensive approach to regulation. A national market will require a high degree of uniformity and certainty . The surest and most expedient [*376]

path to a market with those features is comprehensive federal regulation - for CCS generally, and transport specifically. Like natural gas and oil pipelines - both complex, enormous systems with national reach n128 - CCS will benefit from the sort of consistent regulation from one state to the next that a federal approach can provide, and that a piecemeal state -based approach cannot . n129 This is especially true if CCS is to become a national industry that helps to solve the climate change dilemma. As Delissa Hayano has argued: The costs and logistics of compressing, transporting, and sequestering CO<2> on the scale necessary to address [climate change] concerns requires a national interest parallel to that motivating the construction of equivalent-scale national infrastructure projects such as the interstate road system. n130 While state-based regulation can be effective for certain types of markets, it would be a less-than-ideal fit for CCS transport. State -based regulation would create too much inconsistency and complexity . n131 In another context, Professor Lincoln Davies has described a state -based approach to promoting renewable energy development as risk ing " crazy-quilt" regulation . n132 Specifically, the sheer variety of state-based Renewal Portfolio Standard (RPS) models that have sprung up in recent years have yielded widely

12

12

Page 13: Co2 Final 1ac

Como Park ATCO2 Yassin Ahmed

varying standards from one state to the next. n133 The result is a fragmenting of renewable energy into multiple markets , not the creation of a single uniform national one . While the differentiation possible from state regulation long has been lauded as promoting innovations through laboratories of democracy, n134 to promote an industry that necessarily will be interstate in nature, such as CCS transport, federal models often are invoked. n135 The rationales typically offered for federal regulation include: (1) that uniform regulation is needed to ensure a well-functioning [*377] market; n136 (2) that federal regulation is necessary to avoid state " races to the bottom ;" n137 and (3) that such regulation is essential to avoid fragmentation across borders in creating a network system national or regional in scope. n138 As the Supreme Court has observed in the dormant Commerce Clause context, "This principle that our economic unit is the Nation ... has as its corollary that the states are not separable economic units." n139 For each of the different CCS transport regulatory design elements, these rationales apply, albeit to somewhat varying extents. Pipeline safety is regulated at the federal level, rather than state-by-state, for good reason. The PHMSA regulates design, construction, and on-going operations and testing for interstate pipelines in various industries. n140 A consistent set of standards provides consistent protection for the public and the environment no matter where the pipeline's location. Effects from an accident may be localized, n141 but the possible effects on global warming from CO<2> leakage reach far and wide. n142 Indeed, the need for uniform regulation often is invoked for industries where standards of performance or operation are more efficient if standardized. n143 They clearly apply for safety regulation in a network industry like CCS transport, where the need for safe operation does not change from one jurisdiction to the next and the risk of different safety requirements could unnecessarily increase construction costs, or worse, result in incompatible subsystems. For rate and access regulation, federal regulation may be somewhat less important than it is for safety or siting, but it will still facilitate consistency and avoid confusion in the transport market , particularly when it comes to access. Nondiscriminatory access requirements can come in different forms. For example, in natural gas, pipelines must offer nondiscriminatory access but operate as contract carriers. n144 That means that the pipeline owner contracts in advance with a customer to provide access to a set amount of its capacity. n145 In oil, pipelines operate under a system of prorationing. In this system, even when the pipeline capacity is fully utilized, if another customer requires transport service, the pipeline is obliged to accommodate the new customer and adjust the capacity available to other customers accordingly. n146 In CCS, if a pipeline runs through multiple states, and each state uses a different nondiscriminatory access model , [*378] confusion and inefficiency would result . In such

circumstances, a uniform set of requirements for access will be far more workable .

CO2 transportation infrastructure investment reduces the barriers and spills over to the development of CCS technology.Bohm, 3/4/2010 (Mark – Climate Change Engineering Specialist with Suncor Energy, The Economics of Transportation of CO2 in Common Carrier Network Pipeline Systems, Carbon Capture Journal, p. http://www.carboncapturejournal.com/displaynews.php?NewsID=523)Establishing a widespread CO2 transportation infrastructure requires a strategic approach that takes into account the magnitude of potential deployment scenarios for CCS with hundreds of megatonnes (Mt) of CO2 transported every year through pipeline systems. Transporting CO2 by pipeline is not a new technology; in the US almost 4,000 miles of CO2 pipeline for enhanced oil recovery (EOR) are in operation. However, the infrastructure for mass CCS could be on the scale of the current gas transmission infrastructure for Europe or North America, and will require significant investment to construct and operate. The CO2 Capture Project (a partnership of seven oil and gas majors to advance CCS) has been looking at the issues surrounding the economics of transportation of CO2 in common carrier network pipeline systems. The CCP commissioned a study to examine different approaches to infrastructure development. In the study two approaches have been evaluated. The first would see the development of a point-to-point system, the second the development of common carrier pipeline networks, including backbone pipeline systems. This study has helped our understanding of the challenges involved; shedding light on what would be the best scenario and how in practical terms CO2 infrastructure might evolve. The results of this study were presented in a paper - Assessing issues of financing a CO2 transportation pipeline infrastructure commissioned by the CCP, and completed by Environmental Resources Management (ERM). Results of the Study The study confirmed that an integrated backbone pipeline network is likely to be the most efficient long-term option . It offers the lowest

13

13

Page 14: Co2 Final 1ac

Como Park ATCO2 Yassin Ahmedaverage cost on a per tonne basis for operators over the life of the projects if sufficient capacity utilization is achieved

relatively early in the life of the pipeline. Crucially, integrated pipelines reduce the barriers to entry and are more likely to lead to the faster development and deployment of c arbon c apture and s torage . Particularly in situations where government money is being used to finance CO2 transportation it makes sense to pursue an integrated approach that provides equitable, open access to other large final emitters. This will reduce the barriers to entry and will encourage faster adoption of CCS . However, point-topoint

pipelines offer lower costs for the first movers and do not have the same capacity utilization risk. It is clear that without government incentives for the development of optimized networks, project developers are likely to build point-to-point pipelines. Other forms of financial support may be needed which overcome commercial barriers and ensure optimized development of CO2 pipeline networks So what is the way forward? Guaranteed capacity utilization is essential for integrated backbone pipeline networks to become economically viable. Public policy is needed that provides some guarantees as to capacity utilization. Government incentives or loan guarantees are also needed to support a backbone infrastructure and encourage the development of optimized networks . Government support in the first years, when capacity is ramping up, will be essential for eventual commercial viability .

Piggy backing off of EOR infrastructure resolves liability issues.Marston and Moore 2008 (Philip – energy regulatory attorney, and Patricia – oil and gas attorney, From EOR to CCS: The Evolving Legal and Regulatory Framework for Carbon Capture and Storage, Energy Law Journal, p. Lexis-Nexis)

The key conclusion of this review is that existing federal and state legal regimes developed for the EOR business already adequately address many aspects of the needs of such a CCS infrastructure , especially if the early phase of CCS implementation builds on the EOR infrastructure . It also highlights the importance of avoiding the creation of unintended regulatory barriers to incorporating anthropogenic sources of CO<2> into the existing EOR-based infrastructure and transactions. This existing framework can serve as a foundation upon which policy makers can build in order allow the U.S. to implement quickly a carbon emissions reduction program without jeopardizing existing successful energy-related projects. In sum, rather than crafting detailed regulations for an industry that may not come into existence for years to come, our recommendation is that policy makers focus on incremental use of the existing EOR industry , for example by focusing initially on the injection of CO<2> into the best known and recognized of potential underground reservoirs - those oil and gas reservoirs that have already been identified, described and even unitized for enhanced oil recovery by the injection of CO<2>. There will be adequate time to identify more potential sequestration sites that include the deep saline aquifers or coal seams and to draft law for regulating the additional infrastructure that will ultimately be required to make use of those sites. Certainly, Federal government involvement may be required to address the issues of long-term "post-closure" liability for CO<2> injections made for CCS purposes into less-well defined saline aquifer formations. Similarly, where incentive payments are made at the time of initial injection, some mechanism will be required for ensuring the integrity of the incentive regime and reflecting the possibilities for injected CO<2> to be recycled and re-used in EOR activities. But, in the early stages of implementing a carbon emissions reduction regime, the established yet evolving state laws and regulatory rules reflect a deep understanding of the relevant problems and show how the existing state-based legal framework can be utilized for CO<2> storage and how - with some tweaking and refining - it can be amended to allow a progressive transition from incidental injection for EOR to incremental injection for CCS.

No risk of earthquakes or leaks --- best studies and analysis are on our side.Peridas, 6/26/2012 (George – scientist at the Natural Resources Defense Council Climate Center, CCS and Earthquakes – Anything to Worry About?, p. http://www.globalccsinstitute.com/community/blogs/authors/gperidas/2012/06/26/ccs-and-earthquakes-anything-worry-about-0)

Zoback and Gorelick however appear to have been causing undue alarm in the media . They state (p. 2) that their “principal concern is not that injection associated with CCS projects is likely to trigger large earthquakes; the problem is that even small to moderate earthquakes threaten the seal integrity of a CO2 repository”. They acknowledge that only slip on large faults can result in earthquakes large enough to cause damage to human

14

14

Page 15: Co2 Final 1ac

Como Park ATCO2 Yassin Ahmed

environments, and that such faults are easily identified and avoided. No objections on that last point. The potential for slip on existing faults/fractures and seismicity can and should be taken into account during site selection. This is routinely done as part of a proper geomechanical assessment , and Federal Underground Injection Control Program regulations for geologic sequestration operations require “[i]nformation on the seismic history including the presence and depth of seismic sources and a determination that the seismicity would not interfere with containment”.1 Large seismic events can be avoided in a straightforward way through proper siting and operations. Zoback ’s and Gorelick ’s argument s against CCS hinge on the assertion that “[b]ecause laboratory studies show that just a few millimeters of shear displacement are capable of enhancing fracture and joint permeability, several centimeters of slip would be capable of creating a permeable hydraulic pathway that could compromise the seal integrity of the CO2 reservoir and potentially reach the near surface.” In plain English, the authors are saying that even a small earthquake can cause CO2 to escape all the way to the surface, without investigating the circumstances under which this might happen or their applicability to broad scale CCS. This creates the impression that it will happen in every case, and is a big logical leap and a gross simplification , for several reasons. First, the laboratory studies they cite were performed on granite, which is extremely unlikely to be used as a sealing layer, or “caprock” in a real-life sequestration project. Almost certainly, the caprock will be shale or another low permeability sedimentary rock. The way that a strong but brittle rock like granite deforms in response to stress is very different from the way that softer and more ductile shales and other sedimentary rocks deform, and is therefore not a good analogue.2 Second, concluding de facto that joint and fracture permeability in the caprock(s) would increase in all cases, and that a pathway would be created that would result in the migration of CO2 to the surface, is wrong. The degree to which joint and fracture permeability is increased, if at all, depends on many factors, including roc k type, stress state, and in-filling materials. This is well documented in a large body of literature on shear-induced behavior of fractures and faults (if you want a flavor, take a look here3 for example). In fact, situations abound where many large faults that exhibit large slip act as seals and have no effect on permeability . Such is the case in California and Iran, where trapped oil and gas exists despite frequent large natural earthquakes. In these areas, in fact, faults themselves have acted as seals as opposed to pathways for fluid migration, and trap ped hydrocarbons

over geologic time. Another well-documented event is the magnitude 6.8 earthquake in Chuetsu, which did not result in any leaks in the nearby Nagaoka CO2 injection project. Despite frequent and large natural earthquakes therefore, CO2 and other fluids have remained trapped in the subsurface. Additionally, assuming that CO2 will reach the surface implies that the fault in question extends from the injection zone to the surface. As the authors themselves note, such a large fault would be easy to identify and avoid . Even if a fault allows CO2 to migrate out of the injection zone, many sites also have multiple sealing layers that impede the motion of fluids to the surface as well as multiple permeable layers that can act as secondary containers. In fact, studies show that such layered systems can help prevent fluids from reaching the surface .4 Assuming that a pathway will be created all the way to the surface is a huge leap of logic. Fluids can and do move along faults and fractures – but this does not mean that the containment “box” has been breached – fluids can simply move within the “box”, leaving the caprocks intact. In other words, jumping to the conclusion that a small induced earthquake would result in surface leakage is wrong. That’s not to say that it cannot happen, but the problem with the authors’ assertion is that they then postulate that not enough sites for sequestration can be found that avoid this scenario to meaningfully deploy CCS at scale. Although they acknowledge that certain geological settings are ideally suited to secure sequestration of CO2, such as in the case of the Sleipner project in Norway (which features a highly porous and permeable reservoir consisting of weak, poorly cemented sandstone that is laterally extensive), they then extrapolate that not enough sites like Sleipner can be found around the U.S. to house the necessary volumes of CO2 to mitigate climate change. This extrapolation is based on speculation and comes with no scientific justification . The authors do not study the potential for sites like Sleipner – i.e. with sufficient porosity and permeability to accommodate injected CO2 without giving rise to unacceptable stresses – to be found around the country. This can only be done with a rigorous geologic assessment, and there is no evidence to suggest that such sites cannot be found in sufficient numbers. Not all sequestration sites need to be slam-dunk cases with porosity and permeability like Sleipner’s in order to safely accommodate CO2. Of course – wouldn’t it be nice if things were ideal everywhere, but a

15

15

Page 16: Co2 Final 1ac

Como Park ATCO2 Yassin Ahmed

wide range of geological settings can also accommodate CO2 safely without causing unacceptable seismicity risk. The regulation of maximum allowable pressure, evaluation of seismic risk, and of the conditions in which transmissive faults would threaten groundwater is central to Federal regulations under the Underground Injection Control Program . Industry and regulators should take note, however: even though smaller earthquakes caused by injection may cause no physical damage or human harm, the public may reject the idea of CO2 injection if these quakes and perceptible. Zoback and Gorelick’s assertions were met with skepticism by expert scientists. Sally Benson (Stanford professor of Energy Resources Engineering and Director of Stanford's Global Climate and Energy Project, and Lead Coordinating Author of the Underground Geological Storage Chapter in the IPCC Special Report on CCS) said “of course, you need to pick sites carefully, but finding these kinds of locations does not seem infeasible”. I think Rob Finley hit the nail on the head when he compared Zoback and Gorelick's analysis to early criticisms of the Wright brothers and the notion at the time that airplanes would never work at scale. Rob is the principal investigator of the Midwest Geological Sequestration Consortium, which is now operating a large CO2 injection project in Decatur, Illinois, and has spent considerable time and money investigating the geology of the Illinois Basin. Julio Friedmann at Lawrence Livermore National Lab points out that “[b]y 2020, we're going to have somewhere between 15 and 20 projects around the world. That will be a good time to assess what we've learned and whether [CCS] can be scaled up more.” The last in the series of international conferences on the subject attracted 1,500 people. None of them appear to have voiced the seeming impossibilities for CCS that Zoback and Gorelick describe in their “Perspective”. Should we therefore be alarmed by the prospect of CO2 injection in terms of earthquakes? My view is “ no ” – we should however be vigilant. Improperly conducted CCS does have the potential to cause earthquakes, due to the volumes of CO2 injected. But preventing and predicting these is within our capabilities. Avoiding the large ones is straightforward. It is worth noting that large natural earthquakes have not compromised the storage security in natural and man-made sites that trap CO2 and hydrocarbons. This does not mean, of course, that we should tolerate CCS projects that could cause earthquakes. Avoiding smaller quakes that may not cause harm but may alarm the public and local communities will require will careful site operation and regulation. And that can and must be done. Regulators and prospective injectors, do your homework.

EOR does not increase emissions.Biello, 4/9/2009 (David – Associate Editor of Environment and Energy at Scientific American, Enhanced Oil Recovery: How to Make Money from Carbon Capture and Storage Today, Scientific American, p. http://www.scientificamerican.com/article.cfm?id=enhanced-oil-recovery)

In all of these projects, the CO2 basically scours more hydrocarbons out of the oil field. When injected into the oil reservoir, it mixes with the oil and mobilizes more of it—like turpentine cleaning paint—and then allows it to be pumped to the surface. Using carbon dioxide to churn out more fossil fuels —and permanently storing some of the CO2 in the process—might sound counterproductive to limiting climate change because those fuels, when burned, put more CO2 into the atmosphere. But it does reduce overall emissions by at least 24 percent , calculates petroleum engineer Ronald Evans , Denbury's senior vice president of reservoir engineering: every recovered barrel of oil eventually puts 0.42 metric ton of CO2 into the atmosphere, but 0.52 to 0.64 metric ton are injected underground recovering it . In fact, Kinder Morgan's Bradley estimates that enhanced oil recovery in the U.S. could reduce CO2 emissions by 4 percent , if done correctly.

16

16

Page 17: Co2 Final 1ac

Como Park ATCO2 Yassin Ahmed

1AC – No War

Contention Three: No War

Nuclear deterrence prevents great power wars.G. John Ikenberry 2011 [Albert G. Milbank Professor of Politics and International Affairs at Princeton University, “A World of Our Making”, Issue #21, Summer 2011, http://www.democracyjournal.org/21/a-world-of-our-making-1.php?page=all]

There are four reasons to think that some type of updated and reorganized liberal international order will persist. First, the old and traditional mechanism for overturning international order—great-power war—is no longer likely to occur . Already, the contemporary world has experienced the longest period of great-power peace in the long history of the state system. This absence of great-power war is no doubt due to several factors not present in earlier eras, namely nuclear deterrence and the dominance of liberal democracies . Nuclear weapons —and the deterrence they generate— give great powers some confidence that they will not be dominated or invaded by other major states. They make war among major states less rational and there-fore less likely . This removal of great-power war as a tool of overturning international order tends to reinforce the status quo. The United States was lucky to have emerged as a global power in the nuclear age, because rival great powers are put at a disadvantage if they seek to overturn the American-led system. The cost-benefit calculation of rival would-be hegemonic powers is altered in favor of working for change within the system. But, again, the fact that great-power deterrence also sets limits on the projection of American power presumably makes the existing international order more tolerable. It removes a type of behavior in the system— war, invasion, and conquest between great powers —that historically provided the motive for seeking to overturn order. If the violent over-turning of international order is removed, a bias for continuity is introduced into the system.

Any leader trying to launch nuclear weapons would be assassinated.Walsh 85 (Edward, Lieutenant Colonel in the United States Air Force, “Nuclear War Opposing Viewpoints, p. 51)

No president or dictator, madman or otherwise would take it upon himself [sic] to launch an all out nuclear attack without due consultation with his [sic] staff. It is a natural human phenomenon that t here would be certain members of this staff with a n invincible sense of survival who would resort to assassination before allowing themselves and their nation to be subjected to a retaliat ory holocaust .

No miscalculation – states will do anything to avoid nuclear war because the consequences are so severe.Waltz 95 (Kenneth, adjunct professor of political science at Columbia University, The Spread of Nuclear Weapons, p. 7-8)

Countries more readily run the risks of war when defeat, if it comes, is distant and is expected to bring only limited damage. Given such expectations, leaders do not have to be crazy to sound the trumpet and urge their people to be bold and courageous in the pursuit of victory. The outcome of battles and the course of campaigns are hard to foresee because so many things affect them. Predicting the result of conventional wars has proved difficult. Uncertainty about outcomes does not work decisively against the fighting of wars in conventional worlds. Countries armed with conventional weapons go to war knowing that even in defeat their suffering will be limited. Calculations about nuclear war are differently made. A nuclear world calls for a different kind of reasoning. If countries armed with nuclear weapons go to war , they do so knowing t hat their suffering may be unlimited . Of course, if also may not be, but that is not the kind of uncertainty that encourages anyone to be use force. In a conventional world, one is uncertain about winning or losing. In a nuclear world, one is uncertain about surviving or becoming annihilated. If force is used, and not kept within limits, catastrophe will result. That prediction is easy to make because it does not require close estimates of opposing forces. The number of one's cities that can be severely damaged is equal to the number of strategic warheads an adversary can deliver. Variations of number mean little within wide ranges. The expected effect of the deterrent achieves an easy clarity because wide margins of error in estimates of the damage one may suffer do not matter. Do we expect to lose one city or two, two cities or ten? When these are the pertinent questions, we stop thinking about running risks and start worrying about how to avoid them . In a conventional world, deterrent threats are ineffective because the damage threatened is distant, limited and problematic. Nuclear weapons make military miscalculation difficult and politically pertinent prediction easy .

Nuclear war won’t escalate – first use will end in conflict resolutionQuinlan 1997 (Michael – under-secretary of state for defense, Thinking About Nuclear Weapons, p. 31)

17

17

Page 18: Co2 Final 1ac

Como Park ATCO2 Yassin Ahmed

There are good reasons for fearing escalation: the confusion of war; its stresses, anger, hatred, and the desire for revenge; reluctance to accept the humiliation of backing down; perhaps the temptation to get further blows in first. Given all this, the risks of escalation—which Western leaders were rightly wont to emphasise in the interests of deterrence—are grave. But this is not to say that they are virtually certain, or even necessarily odds-on; still less that they are so for all the assorted circumstances in which the situation might arise, in a nuclear world to which past experience is only a limited guide. It is entirely possible, for example, that the initial use of nuclear weapons, breaching a barrier that has held since 1945,might so appall both sides in a conflict that they recognised an overwhelming common interest in composing their differences. The human pressures in that direction would be very great. Even if initial nuclear use did not quickly end the fighting, the supposition of inexorable momentum in a developing exchange, with each side rushing to overreaction amid confusion and uncertainty, is implausible; it fails to consider what the decision-makers' situation would really be. Neither side could want escalation ; both would be appalled at what was going on; both would be desperately looking for signs that the other was ready to call a halt ; both , given the capacity for evasion or concealment which modern delivery systems can possess, could have in reserve ample forces invulnerable enough not to impose `use or lose' pressures. As a result, neither could have any predisposition to suppose, in an ambiguous situation of enormous risk, that the right course when in doubt was to go on copiously launching weapons. And none of this analysis rests on any presumption of highly subtle, pre-concerted or culture-specific rationality; the rationality required is plain and basic.

Even if it does, no extinction.Nyquist, 5/20/1999 (J.R. – contributing editor and author of Origins of the Fourth World War, Is Nuclear War Survivable, p. http://www.antipas.org/news/world/nuclear_war.html)

The truth is, many prominent physicists have condemned the nuclear winter hypothesis. Nobel laureate Freeman Dyson once said of nuclear winter research , “I t’ s an absolutely atrocious piece of science , but I quite despair of setting the public record straight.” Professor Michael McElroy, a Harvard physics professor, also criticized the nuclear winter hypothesis. McElroy said that nuclear winter researchers “stacked the deck ” in their study , which was titled “Nuclear Winter: Global Consequences of Multiple Nuclear Explosions” (Science, December 1983). Nuclear winter is the theory that the mass use of nuclear weapons would create enough smoke and dust to blot out the sun, causing a catastrophic drop in global temperatures. According to Carl Sagan, in this situation the earth would freeze. No crops could be grown. Humanity would die of cold and starvation. In truth, natural disasters have frequently produced smoke and dust far greater than those expected from a nuclear war. In 1883 Krakatoa exploded with a blast equivalent to 10,000 one-megaton bombs, a detonation greater than the combined nuclear arsenals of planet earth. The Krakatoa explosion had negligible weather effects . Even more disastrous, going back many thousands of years, a meteor struck Quebec with the force of 17.5 million one-megaton bombs, creating a crater 63 kilometers in diameter. But the world did not freeze. Life on earth was not extinguished. Consider the views of Professor George Rathjens of MIT, a known antinuclear activist, who said, “Nuclear winter is the worst example of misrepresentation of science to the public in my memory.” Also consider Professor Russell Seitz , at Harvard University ’s Center for International Affairs, who says that the nuclear winter hypothesis has been discredited . Two researchers, Starley Thompson and Stephen Schneider, debunked the nuclear winter hypothesis in the summer 1986 issue of Foreign Affairs. Thompson and Schneider stated : “the global apocalyptic conclusions of the initial nuclear winter hypothesis can now be relegated to a vanishingly low level of probability .” OK, so nuclear winter isn’t going to happen. What about nuclear fallout? Wouldn’t the radiation from a nuclear war contaminate the whole earth, killing everyone? The short answer is: absolutely not. Nuclear fallout is a problem, but we should not exaggerate its effects. As it happens, there are two types of fallout produced by nuclear detonations. These are: 1) delayed fallout; and 2) short-term fallout. According to researcher Peter V. Pry, “Delayed fallout will not, contrary to popular belief, gradually kill billions of people everywhere in the world.” Of course, delayed fallout would increase the number of people dying of lymphatic cancer, leukemia, and cancer of the thyroid. “However,” says Pry, “these deaths would probably be far fewer than deaths now resulting from ... smoking, or from automobile accidents.” The real hazard in a nuclear war is the short-term fallout. This is a type of fallout created when a nuclear weapon is detonated at ground level. This type of fallout could kill millions of people, depending on the targeting strategy of the attacking country. But short-term fallout rapidly subsides to safe levels in 13 to 18 days. It is not permanent. People

18

18

Page 19: Co2 Final 1ac

Como Park ATCO2 Yassin Ahmed

who live outside of the affected areas will be fine. Those in affected areas can survive if they have access to underground shelters. In some areas, staying indoors may even suffice. Contrary to popular misconception, there were no documented deaths from short-term or delayed fallout at either Hiroshima or Nagasaki. These blasts were low airbursts, which produced minimal fallout effects. Today’s thermonuclear weapons are even “cleaner.” If used in airburst mode, these weapons would produce few (if any) fallout casualties.

19

19