cluster varieties with coefficients - unamlara/talks/londonfeb2019.pdf · geometric:...

24
Cluster varieties with coefficients L. Bossinger jt. B. Fr´ ıas-Medina, T. Magee, A. N´ ajera Ch´ avez Universidad Nacional Aut´onoma de M´ exico, Oaxaca arXiv:1809.08369 arXiv:1809.08369 L. Bossinger jt. B. Fr´ ıas-Medina, T. Magee, A. N´ ajera Ch´ avez 1/ 24

Upload: others

Post on 13-May-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

Cluster varieties with coefficients

L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez

Universidad Nacional Autonoma de Mexico, Oaxaca

arXiv:1809.08369

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 1/ 24

Page 2: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

Motivation

Algebraic: Fomin-Zelevinsky x-pattern and y -pattern.x-pattern can be endowed with coefficients: what abouty -pattern?

Geometric: Gross-Hacking-Keel-Kontsevich introduce flatfamily Aprin: what is the cluster dual X -analogue?

Toric degenerations: GHKK degenerate Grassmannians totoric varieties using A-structure. Rietsch-Williams degenerateGrassmannians to toric varieties using X -structure: how arethey related?

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 2/ 24

Page 3: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

Mutations

N ∼= Zn lattice, {·, ·} : N × N → Z, M = N∗

µ(n,m) : TN 99K TN

µ∗(n,m)(zm′) = zm

′(1 + zm)m

′(n).

Let {ei} basis of N, {fi} dual basis of M

TN := Spec(C[M]) = SpecC[z±f1 , . . . , z±fn ]

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 3/ 24

Page 4: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

A-cluster varieties

fix s0 = {ei} basis of N, vi := {ei , ·} ∈ M s = {esi } new basis of N by certain pseudoreflections

Definition (A-cluster mutation)

µ(−ek ,vk ) : TN,s0 99K TN,s

µ∗(−ek ,vk )(zm′) = zm

′(1 + zvk )m

′(−ek )

A :=⋃s∼s0

TN,s glued by A-mutations.

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 4/ 24

Page 5: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

Example: A in case A2

σ0

σ1σ2

σ3

σ4

z f1

z f2

z f1

z−f2 (1 + z f1 )

z−f1−f2 (1 + z f1 + z f2 )

z−f2 (1 + z f1 )

z−f1 (1 + z f2 )

z−f1−f2 (1 + z f1 + z f2 ) z f2

z f1 (1 + z f2 )

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 5/ 24

Page 6: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

X -cluster varieties

Exchange M and N

µ(m,n) : TM 99K TM

µ∗(m,n)(zn′) = zn

′(1 + zn)n

′(m).

Definition (X -cluster mutation)

s0 = {ei} basis of N, vi := {ei , ·} ∈ M

µ(vk ,ek ) : TM,s0 99K TM,s

µ∗(vk ,ek )(zn′) = zn

′(1 + zek )n

′(vk )

X :=⋃s∼s0

TM,s glued by X -mutations.

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 6/ 24

Page 7: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

Example: X in case A2

σ0

σ1σ2

σ3

σ4

ze2

ze1

z−e2

ze1 (ze2 + 1)

ze1 (1+ze2 )+1

ze2

1ze1 (ze2 +1)

ze1 +1

ze1+e2

ze1ze1 (1+ze2 )+1

z−e1

ze1+e2ze1 +1

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 7/ 24

Page 8: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

Cluster Varieties with coefficients

R := C[t1, . . . , tn], c ∈ Zn, c = c+ − c−

µ(n,m),c : TN(R) 99K TN(R)

µ∗(n,m),c(zm′) = zm

′(tc+ + tc− zm)m

′(n)

Definition (cluster mutation with coefficients)

A-cluster mutation with coefficients:

µ(−ek ,vk ),ck : TN,s0(R) 99K TN,s(R).

X -cluster mutation with coefficients:

µ(vk ,ek ),ck : TM,s0(R) 99K TM,s(R).

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 8/ 24

Page 9: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

Example: X with coefficients in case A2

σ0

σ1σ2

σ3

σ4

ze2

ze1

z−e2

ze1 (t2ze2 + 1)

t1ze1 (1+t2z

e2 )+1

ze2

1ze1 (t2z

e2 +1)

t1ze1 +1

ze1+e2

ze1t1z

e1 (1+t2ze2 )+1

z−e1

ze1+e2t1z

e1 +1

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 9/ 24

Page 10: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

Flat families

Lemma

TN(R) = TN ×C An → An extends to flat family

Aprin :=⋃s∼s0

TN,s(R)→ An

TM(R) = TM ×C An → An extends to flat family

X :=⋃s∼s0

TM,s(R)→ An

Aprin X

πA ↘ ↙ πXAn

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 10/ 24

Page 11: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

g-vectors

Theorem (FZ - Laurent phenomenon)

z fsi ∈ R[z±f1 , . . . , z±fn ] is a global function on Aprin.

Theorem (GHKK)

In π−1A (1) = A:

z fsi |t=1 = z f

si ∈ C[A],

a global function on A.

In π−1A (0) = TN :

z fsi |t=0 = zg

si ∈ C[M],

a character of TN .

The gsi ∈ M form a simplicial fan called the g-fan.

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 11/ 24

Page 12: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

A-compactifications

freeze j , i.e. never mutate µ(−ej ,vj ) allow z fj = 0(Partial) compactification:

A \ D = A.

Aprin

↓ πAAn

π−1A (1) = A

π−1A (0) = TV(P)

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 12/ 24

Page 13: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

Example: Grassmannian

1 2

5

4

37

6

(partially) compactify: D := D3 ∪ · · · ∪ D7

A = A \ D and A = C (Gr2(C5)),

affine cone of Gr2(C5) ↪→ P6 with Plucker embedding.

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 13/ 24

Page 14: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

X -compactifications

zesi local function on X can not allow ze

si = 0

partially compactify locally: replace TM by AM = An

Theorem (BFMN)

X -gluing with coefficients yields a flat family

X :=⋃s∼s0

AM,s(R)→ An

with π−1

X(1) = X Fock-Goncharov special completion, and

π−1

X(0) = TV(g-fan).

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 14/ 24

Page 15: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

Example: X in case A2

σ0

σ1σ2

σ3

σ4

ze2

ze1

z−e2

ze1 (t2ze2 + 1)

t1ze1 (1+t2z

e2 )+1

ze2

1ze1 (t2z

e2 +1)

t1ze1 +1

ze1+e2

ze1t1z

e1 (1+t2ze2 )+1

z−e1

ze1+e2t1z

e1 +1

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 15/ 24

Page 16: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

Homogenization

R = C[t1, . . . , tn] induces multigrading on R(ze1 , . . . , zen):

deg(ti ) := −deg(zei ).

Theorem (BFMN)

The zesi ∈ R(ze1 , . . . , zen)

are homogeneous of degree csi ∈ Zn;

are unique homogeneous extensions of zesi ∈ C(ze1 , . . . , zen)

of multidegree csi ;

have a limit in π−1X (0) = TM :

limt→0zesi = zc

si .

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 16/ 24

Page 17: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

Grassmannians: GHKK-degeneration

C (Gr2(C5)) \ D = A WD : X → C

WD =5∑

i=1

ϑi ∈ C[z±e1 , . . . , z±e7 ].

Using Aprin: degeneration of Gr2(C5) to toric variety with polytope

ΞD = {W tropD ≥ 0} ∩ HD ⊂ R6.

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 17/ 24

Page 18: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

Grassmannians: RW-degeneration

Gr2(C5) \ D = A◦ and Wq=1 : A◦ → C

Wq=1 =5∑

i=1

Wi ∈ C[z±f1 , . . . , z±f7 ].

Get flat degeneration of Gr2(C5) to toric variety with polytope

∆q=1 = {W tropq=1 ≥ 0} ⊂ R6.

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 18/ 24

Page 19: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

p-map

AC (Gr2(C5)) ⊃ Xp

Gr2(C5) ⊃ A◦ X ◦p

Consider wD : X ◦ → C.

Key-Lemma (BCMN)

There exists a unique choice of p-map such that

p∗(wD) = Wq=1 and p∗(ΞD) = ∆q=1.

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 19/ 24

Page 20: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

The RW-family

T = (C∗)6 with coordinates x , x , x , x , x , x

ΦS : T → Gr2(C5)

for example:

Φ∗s (p12) = 1,

Φ∗s (p34) = x x x x2 ,

Φ∗s (p24) = x x x x x2 (1 + x ) . . .

where p12 = z f7 , p34 = z f5 , p24 = z−f2(z f4+f1 + z f3+f5) . . .

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 20/ 24

Page 21: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

The families: RW

x ’s behave as X -variables:

x = ze2 , x = ze1 ,

x = z−e3 , x = z−e2−e4 ,

x = z−e1−e5 , x = z−e1−e2−e7 .

can extend Φ∗s (pij) to X:

Φ∗s (p12) = 1,

Φ∗s (p34) = x x x x2 ,

Φ∗s (p24) = x x x x x2 (1 + t x ) . . .

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 21/ 24

Page 22: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

Recap

GHKK RW

A ⊂ C (Gr2(C5)) A◦ ⊂ Gr2(C5)

Aprin-family open X-family

WD : X → C Wq=1 : A◦ → CA ∼= X

A \ D = A A◦ \ D◦ = A◦ ∼= X ◦

Aprin-family ∼= Aprin-family

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 22/ 24

Page 23: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

Thank you!

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 23/ 24

Page 24: Cluster varieties with coefficients - UNAMlara/talks/LondonFeb2019.pdf · Geometric: Gross-Hacking-Keel-Kontsevich introduce at family A prin: what is the cluster dual X-analogue?

References

BFMN Lara Bossinger, Bosco Frıas-Medina, Timothy Magee, and Alfredo Najera Chavez. Toric degenerations ofcluster varieties and cluster duality. arXiv:1809.08369, 2018.

BFMN Lara Bossinger, Man-Wai Cheung, Timothy Magee, and Alfredo Najera Chavez. On cluster duality forGrassmannians. In preparation, 2019.

FG16 Vladimir V. Fock and Alexander B. Goncharov. Cluster Poisson varieties at infinity. Selecta Math. (N.S.)22(4), 2569–589, 2016.

FZ02 Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. J. Amer. Math. Soc.,15(2):497–529, 2002.

FZ07 Sergey Fomin and Andrei Zelevinsky. Cluster algebras. IV. Coefficients. Compos. Math. 143(1),112164,2007.

GHKK18 Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich. Canonical bases for cluster algebras. J.Amer. Math. Soc., 31(2):497–608, 2018.

RW17 Konstanze Rietsch and Lauren Williams. Newton-Okounkov bodies, cluster duality, and mirror symmetryfor Grassmannians. arXiv:1712.00447, 2017.

arXiv:1809.08369 L. Bossinger jt. B. Frıas-Medina, T. Magee, A. Najera Chavez 24/ 24