cálculo de uniones roscadas

63
Elementos de Máquinas Cálculo de uniones roscadas Robert Hernández Ortega Feliberto Fernández Castañeda

Upload: others

Post on 02-Oct-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cálculo de uniones roscadas

Elementos de Máquinas

Cálculo de uniones roscadas

Robert Hernández OrtegaFeliberto Fernández Castañeda

Page 2: Cálculo de uniones roscadas

Edición: Liset Ravelo Romero

Corrección: Fernando Gutiérrez Ortega

Robert Hernández Ortega y Feliberto Fernández Castañeda, 2012

Editorial Feijóo, 2012

ISBN: 978-959-250-794-4

Editorial Samuel Feijóo, Universidad Central “Marta Abreu” de Las Villas, Carretera a Camajuaní, km

5 ½, Santa Clara, Villa Clara, Cuba. CP 54830

Page 3: Cálculo de uniones roscadas

RESUMEN

Las uniones roscadas son elementos de máquinas muy importantes, que tienen sus antecedentes desde

el siglo 300 a.n.e. Se utilizan como elemento de fijación de partes y piezas. En el presente trabajo se

exponen sus características, su clasificación, sus ventajas y sus limitaciones, así como los principales

parámetros geométricos y los materiales utilizados para su construcción. Se explican asimismo las

principales fallas a que están sometidas, y los cálculos de resistencia a la rigidez y a la fatiga requeridos

para su diseño y selección. Por último, se proponen ejercicios de selección y verificación de uniones

roscadas sometidas a diferentes condiciones de cargas.

Page 4: Cálculo de uniones roscadas

Índice

Introducción 5

Las uniones roscadas

Principales Ventajas

6

Principales desventajas 7

Tipos de elementos de unión 7

Clasificación 8

Principales parámetros geométricos 9

Materiales empleados en los elementos roscados 9

Fallas de las uniones roscadas

10

Cálculo de las uniones roscadas a cargas estáticas 10

Tensiones admisibles 11

Uniones que se arman con tensado previo

13

Pretensión inicial 18

Momento de torsión de apriete 19

Cálculo del coeficiente de rigidez del sujetador 20

Cálculo del coeficiente de rigidez de las piezas sujetadas 22

Cálculo de resistencia a la fatiga 23

Procedimiento para aumentar la resistencia a la fatiga de las uniones roscadas 25

Cálculo de la carga externa sobre el tornillo más cargado 26

Ejercicios 30

Secuencia para el cálculo de verificación de una unión roscada 30

Page 5: Cálculo de uniones roscadas

Uniones roscadas sometidas a cargas externas en el plano de la unión 30

Uniones roscadas sometidas a cargas externas en los planos perpendiculares al

plano de la unión… 34

Uniones roscadas sometidas a cargas externas en los planos perpendiculares al

plano de la unión y en el plano de la unión

48

Ejercicios propuestos 56

Bibliografía 57

Anexos 58

Page 6: Cálculo de uniones roscadas

Introducción

Los primeros antecedentes de la utilización de roscas se remontan al tornillo de Arquímedes,

desarrollado por el sabio griego del cual tomó su nombre alrededor del 300 A.C. En aquella

época se empleaban para la elevación de agua en el valle del Nilo. Durante el Renacimiento

las roscas comienzan a emplearse como elementos de fijación en relojes, máquinas de

guerra y en otras construcciones mecánicas. Leonardo da Vinci desarrolla por entonces

métodos para el tallado de roscas; sin embargo, éstas siguieron fabricándose manualmente y

sin ninguna clase de normalización hasta bien entrada la Revolución industrial.6

En 1841 el ingeniero inglés Whitworth definió la rosca que lleva su nombre, haciendo William

Sellers otro tanto en los Estados Unidos en el año 1864. Esta situación se prolongó hasta

1946, cuando la ISO (International Standard Organization) definió el sistema de rosca

métrica, adoptado actualmente en prácticamente todos los países. No obstante en los

EE.UU. se sigue empleando la norma de la SAE (Society of Automotive Engineers).

Page 7: Cálculo de uniones roscadas

Las uniones roscadas

Las uniones roscadas se clasifican como uniones desarmables. Consisten en roscar

exteriormente una pieza e interiormente la otra de manera que quedan unidas mediante el

hilo de rosca. Tienen un amplio empleo pues cerca del 60 % de las piezas de las máquinas

son roscadas. Los principales elementos que las conforman son mostrados en la figura 1.

Fig. 1- Principales elementos de la unión roscada

Principales ventajas de las uniones roscadas

Son muy confiables, sobre todo a carga estática.

Presentan fácil montaje y desmontaje.

Se pueden unir diferentes tipos de materiales.

No modifican las propiedades mecánicas de las piezas a unir.

Tienen una amplia estandarización.

Bajo costo debido a su amplia estandarización y procesos de producción muy

productivos.

Principales desventajas

Los agujeros reducen la resistencia de las piezas.

No se logra la hermeticidad de las uniones por soldadura.

Se pueden aflojar o debilitar ante variaciones de la carga o la temperatura.

Page 8: Cálculo de uniones roscadas

Suelen requerir elementos adicionales para la fijación

Presentan baja resistencia a cargas variables.

Tipos de elementos de unión

Los principales tipos de elementos de unión se muestran en la figura 2. La unión mediante

perno y tuerca se emplea fundamentalmente cuando el espesor de los elementos a unir no

es muy grande y se permite hacer agujeros pasantes; por el contrario, la unión mediante

tornillo se utiliza cuando uno de los elementos a unir permite hacer un agujero pasante y en

el otro una rosca para enroscar el tornillo. Por último, la unión con espárrago se emplea

cuando no existe espacio para la tuerca o no es posible realizar el agujero roscado en una

pieza o el agujero pasante para el tornillo en la otra.

Fig. 2- Tipos de elementos de unión

Clasificación

De acuerdo a su aplicación: [5]

1) Rosca de sujeción: Se destinan para la fijación de piezas. Generalmente se fabrican de

perfil triangular con los vértices truncados. El perfil triangular posibilita:

a) Rozamiento elevado que asegura un menor peligro de aflojamiento de la rosca

apretada.

Page 9: Cálculo de uniones roscadas

b) Resistencia elevada de la rosca.

c) Comodidad de fabricación.

2) Roscas de sujeción y estancas: Se destinan tanto para la sujeción de piezas como para

evitar la salida de gases o líquidos. Son de perfil triangular pero sin juegos radiales con

vértices redondeados.

3) Roscas para la transmisión de movimiento: Se fabrican en forma trapecial con perfil

simétrico y asimétrico (Dientes de sierra) y a veces con perfil rectangular.

De acuerdo a la forma geométrica de la superficie: cilíndrica y cónica.

De acuerdo a la posición de la zona roscada: exterior e interior.

De acuerdo al perfil de la rosca: cuadrada, trapezoidal, triangular, redonda.

De acuerdo al número de filetes: De una y varias entradas.

De acuerdo al sistema de unidades empleado en su fabricación:

- Métrica (Anexo 1): Las dimensiones de la rosca se expresan en milímetros, el ángulo del

perfil es de 60º. Se designan con la letra M seguida del diámetro exterior de la rosca en

milímetros. El paso se indica sólo si es rosca fina. Ejemplo: M10 rosca métrica con diámetro

exterior 10 mm y paso (normal) 1,5 mm, M10x1, rosca métrica con diámetro exterior 10 mm y

paso 1 mm.

- Inglesa: Las dimensiones de la rosca se expresan en pulgadas seguidas del paso de la

rosca en hilos por pulgadas. Ejemplo: Rosca inglesa con diámetro exterior de

media pulgada (12,7 mm) y paso de 13 hilos en una pulgada. (El paso equivalente en

milímetros es ) UNC significa rosca gruesa.

Rosca inglesa con diámetro exterior de media pulgada (12,7mm) y paso de 20

hilos en una pulgada. (El paso equivalente en milímetros ) UNC significa rosca fina.

La rosca de tubería se designa por el diámetro interior del tubo. (En realidad el diámetro del

tubo resulta un poco mayor debido a que se ha logrado fabricar tubos de paredes más

delgadas). Ejemplo: 1/2 Diámetro interior del tubo de 1/2 pulgada (En realidad es un poco

Page 10: Cálculo de uniones roscadas

mayor). El diámetro exterior del tubo así como el paso hay que buscarlo en la norma

correspondiente.

El ángulo del perfil del vértice de la rosca inglesa es 55º.

Por ser la de mayor utilización en Cuba la rosca de sujeción en el sistema métrico es la que

se aborda en el presente trabajo.

Principales parámetros geométricos

Los parámetros geométricos principales se muestran en la figura 3.

- Diámetro exterior (mayúscula para la tuerca): d o D

- Diámetro interior o menor: d1 o D1.

- Diámetro de paso o medio: d2 o D2.

- Paso: t.

- Ángulo de la rosca o filete:

- Angulo de elevación de la rosca:

Fig. 3- Principales parámetros geométricos para roscas métricas

Materiales empleados en los elementos roscados

Los materiales más empleados son aceros al carbono y aceros medianamente aleados, con

y sin tratamiento térmico. (Ver tabla 1)

Page 11: Cálculo de uniones roscadas

Fallas de las uniones roscadas

Las fallas en las uniones roscadas se clasifican en: [2]

A carga estática:

Rotura de la rosca (“Irse de rosca”) A cortante, a aplastamiento y a flexión

Rotura del cuerpo

A carga variable (90 % del total de fallas), producto de la concentración de tensiones.

La rotura se produce en los pernos y tornillos como se indica en la figura 4.

65 % 1ro y 2do filetes de trabajo.

20 % Cambio de sección de la rosca

al cuerpo.

15 % Cambio de sección del cuerpo a

la cabeza.

Fig. 4- Zonas donde se produce la rotura de las uniones roscadas

Cálculo de las uniones roscadas a cargas estáticas

En la figura 5 se muestra un tornillo roscado sin pretensión, es decir, antes de aplicar la

fuerza (Po) en las piezas sujetadas, en el cuerpo del tornillo no actúa ninguna carga.

Fig. 5- Unión roscada no pretensada

Page 12: Cálculo de uniones roscadas

Se ha demostrado, mediante gran cantidad de ensayos de tracción en barras cilíndricas

roscadas, que una varilla sin roscar cuyo diámetro es igual al valor medio del diámetro de

paso y del diámetro menor de la rosca tendrá la misma resistencia a la tracción que la varilla

roscada. El área transversal del elemento sin roscar se llama área de esfuerzo de tracción

del elemento roscado.[1]

El tornillo se calcula, entonces, como una barra sometida a tracción.

Para el cálculo de proyecto:

El área de esfuerzo de tracción se puede obtener también por la ecuación siguiente: [3]

La cabeza del tornillo está sometida a cortante y flexión y los hilos de rosca a cortante,

aplastamiento y flexión. Se puede demostrar que para las condiciones de carga crítica de

tracción del tornillo la resistencia de la cabeza del tornillo a cortante se garantiza si su altura

y la resistencia a aplastamiento de la rosca de la tuerca se garantiza si su altura

. Por esa razón los valores normalizados son: K = 0,7d y m = 0,8d. De esta forma se

garantiza aproximadamente igual resistencia en la rosca y en el cuerpo del tornillo, es decir si

el cuerpo del tornillo no falla a tracción, la rosca tampoco fallará.

Tensiones admisibles [1]

La resistencia del perno o tornillo es el factor clave en el diseño o análisis de uniones

atornilladas. La resistencia se expresa enunciando la resistencia mínima a la tracción o

resistencia límite mínima.

La carga límite es la fuerza máxima que un perno puede resistir sin experimentar una

deformación permanente. La resistencia límite es el cociente de la carga límite y el área de

esfuerzo de tracción. La resistencia límite, por lo tanto, corresponde aproximadamente al

límite de proporcionalidad y en forma aproximada se puede considerar el 90 % de la

resistencia de fluencia estimada con desplazamiento de 0,2 %.

Page 13: Cálculo de uniones roscadas

Tabla 1. Especificaciones mecánicas para pernos, espárragos y tornillos de acero

Clase

de

resiste

ncia

(A.B)

Intervalos

de

tamaño

Resistencia

permisible a

la tracción

MPa

Resistenci

a límite

mínima a

la tracción

MPa

Resistencia

de fluencia

mínima a la

tracción MPa

Material

Marca

de

cabeza

4.6 M5-M36 225 400 240

Acero de

mediano o bajo

carbono

4.8M1,6-

M16310 420 340

Acero de

mediano o bajo

carbono

5.8 M5-M24 380 520 420

Acero de

mediano o bajo

carbono

8.8 M16-M36 600 830 660

Acero de

mediano o bajo

carbono templado

y revenido.

9.8M1.6-

M16650 900 720

Acero de

mediano o bajo

carbono templado

y revenido

10.9 M5-M36 830 1040 940

Acero

martensítico de

bajo carbono

templado y

revenido

12.9 M1.6- 970 1220 1100Acero de

aleación,

Page 14: Cálculo de uniones roscadas

M36 templado y

revenido

Las resistencias mínimas son las resistencias superadas por el 99 % de los sujetadores.

La primera cifra A de la clase de resistencia indica la centésima parte de la resistencia a la

tracción en MPa. . El producto de las dos cifras de la clase de resistencia

representa la décima parte de la tensión nominal del límite de fluencia.

Uniones que se arman con tensado previo

En las uniones roscadas los tornillos se estiran y las piezas se comprimen. En la figura 6 se

representa el ensamble tornillo y junta como si se tratara de dos resortes, las piezas

mediante un resorte a compresión de constante y el tornillo mediante otro resorte a

tracción de constante [2]

Fig.6- Esquema representativo de la unión roscada

Este fenómeno se ilustra en la figura 7, mediante una unión hermética de un recipiente a

presión, donde en a) se tiene la unión ajustada sin carga, en b) se tiene la unión con la

precarga inicial aplicada V donde la fuerza resultante de tracción sobre los tornillos y de

compresión sobre las piezas coinciden con el valor de V y los desplazamientos de estos

elementos dependerán de la rigidez de los mismos, en c) el recipiente contiene el fluido,

produciéndose la carga externa sobre los elementos de la unión lo cual origina un incremento

de la fuerza de tracción y de la deformación en los tornillos que tiende a separar las

piezas, reduciéndose la deformación de estas en la misma medida en que se deforman los

tornillos. La precarga remanente en la junta V' tiene que garantizar la hermeticidad y solidez

de la unión.

Page 15: Cálculo de uniones roscadas

Fig. 7- Esquema representativo de las deformaciones

En la figura 8 se muestra por separado la relación fuerza-desplazamiento para los tornillos y

para las piezas-junta, donde:

VEs la precarga o pretensión inicial que produce la deformación mínima en el tornillo

y la máxima sobre las piezas-junta .

PEs la carga externa de tracción que produce un incremento de la fuerza sobre el tornillo

y de la deformación del tornillo , alcanzando este, cuando P es máximo, la

deformación . Esto a su vez provoca una reducción de la precarga sobre las piezas-junta

disminuyendo la deformación de las piezas y la junta , en la misma magnitud en

que se incrementa en los tornillos , alcanzándose en las piezas y junta el valor mínimo

de deformación .

V'Es la precarga o pretensión residual mínima con que queda la junta cuando actúa la

presión pmax. V' tiene que garantizar la hermeticidad o solidez de la unión.

PoEs la fuerza de tracción total sobre el tornillo.

Page 16: Cálculo de uniones roscadas

Fig. 8- Relación fuerza-desplazamiento en la unión roscada

De acuerdo con la ley de Hooke se puede obtener la ecuación que permite el cálculo de la

rigidez K:

Para el tornillo:

=tan

Para las piezas sujetadas:

=tan

Constante de rigidez o constante elástica del tornillo.

Constante de rigidez o constante elástica de las piezas y junta.

Del gráfico de la figura 8 se puede ver que la carga externa P se reparte de la forma

siguiente:

Page 17: Cálculo de uniones roscadas

Donde:

Reducción de la precarga en la zona de unión de las piezas, el valor menor de la

precarga es V'.

Es el incremento de la carga en el tornillo.

La fuerza máxima en el tornillo Po y la fuerza de precarga mínima en la junta V' vienen dadas

por la expresión:

La variación del desplazamiento o deformación será entonces:

De donde se obtiene:

y

Relacionando estas expresiones se obtiene:

Donde:

De un análisis similar se puede obtener también:

Page 18: Cálculo de uniones roscadas

CConstante de la unión. (Fracción de la carga externa P que actúa sobre el tornillo.).

Generalmente el valor de C está alrededor de 0,2 lo que significa que las piezas sujetadas

toman aproximadamente el 80 % de la carga.

Entonces se puede expresar en función de C

La carga total sobre el tornillo:

La pretensión inicial y la residual:

Las tensiones de tracción en el tornillo:

De donde se puede obtener la ecuación para comprobar la resistencia del perno a carga

estática calculando un coeficiente n que representa cuántas veces hay que aumentar la

carga externa P para que las tensiones en el tornillo se igualen a las tensiones permisibles:

[1]

De donde:

Cualquier valor de n > 1 en esta ecuación asegura que el esfuerzo en el perno es menor que

la resistencia limite.

En una unión roscada se debe garantizar también que con la acción de la fuerza externa P

las piezas sujetadas no se separen. Si ocurre la separación, la carga externa total será

Page 19: Cálculo de uniones roscadas

impuesta al perno y la pretensión residual en las piezas es igual a cero. Sea el valor de la

carga externa que originaría la separación de la junta.

El factor de seguridad que previene contra la separación de la unión: [1]

Otra condición que debe cumplir la unión roscada es garantizar que las piezas sujetadas no

se deslicen una respecto a otra. Esta comprobación se realiza en aquellas uniones donde la

fuerza resultante en el plano de la unión Q es diferente de cero, los tornillos se han montado

con holgura y no existen elementos de descarga tales como chavetas, pines, escalones y

otros. Si se consideran las fuerzas de rozamiento en el empalme aplicadas en los ejes de los

tornillos el factor de seguridad que previene contra el deslizamiento de las piezas se puede

calcular por la ecuación: [5]

Donde:

Número de superficies de empalme

Coeficiente de fricción entre las piezas de la unión. Para las superficies secas de los

elementos de máquinas de hierro fundido y acero , para superficies no

trabajadas

Fuerza transversal sobre el tornillo más cargado.

Pretensión inicial V

Si la resistencia total del perno no se utiliza en el desarrollo del pretensado, entonces la junta

será ineficaz y débil. Los pernos de buena calidad pueden ser precargados en el intervalo de

plasticidad para desarrollar más resistencia. El alargamiento real del perno debe usarse

Page 20: Cálculo de uniones roscadas

siempre que sea posible, en especial con carga a la fatiga para estimar la precarga. Se

recomienda, tanto para cargas estáticas como para cargas de fatiga, que los valores

siguientes se utilicen para la precarga inicial: [1]

Para conexiones no permanentes, tornillos reutilizables

Para conexiones permanentes

Donde:

es la carga límite obtenida de la ecuación:

son las tensiones admisibles obtenidas de la tabla 1.

En el caso de otros materiales un valor aproximado es

Momento de torsión de apriete

Una parte del momento de apriete del perno ocasiona torsión en el mismo, lo que aumenta el

esfuerzo de tracción principal. Sin embargo, tal efecto de torsión se mantiene solo por la

fricción en la cabeza del perno y la tuerca y en el transcurso del tiempo se relaja y reduce

ligeramente la tensión del perno. En consecuencia, como regla, un perno se fracturará

durante el apriete, o no sufrirá ruptura en ningún momento. [1]

El momento de torsión de apriete define la precarga que se desea obtener en la unión

roscada. Existen diferentes medios para asegurar que se desarrolle tal precarga. Si la

longitud total del sujetador se pudiera medir con un micrómetro después de hecha la unión,

el alargamiento del perno debido a la precarga V se calcula mediante la ecuación:

Entonces solo resta apretar la tuerca hasta que el perno se alargue en la distancia Esto

aseguraría haber obtenido la precarga deseada. Sin embargo, por lo general no se puede

medir el alargamiento del sujetador ya sea porque su extremo roscado queda dentro de un

agujero ciego o porque es difícil acceder a él. En tales casos debe estimarse el momento de

torsión requerido para desarrollar la precarga especificada. Luego puede utilizarse una llave

torsiométrica, un dispositivo neumático de impacto o el método simple de giro de tuerca.

Page 21: Cálculo de uniones roscadas

Una relación aproximada entre el par torsional T y la fuerza de pretensión V es:

Donde:

Coeficiente de torsión.

Depende de los materiales del tornillo, de la tuerca, y de las piezas sujetadas, de la

lubricación, y en general de las condiciones de explotación. Considera la fricción en la rosca

y en la cara de apoyo de la cabeza del tornillo o la tuerca. Para las condiciones comerciales

promedio se maneja, si existe alguna lubricación, K=0,15, si las roscas están bien limpias y

secas K = 0,2. La siguiente tabla muestra los valores de K para algunos casos de aplicación

en la industria.

Tabla 2. Coeficiente de torsión

Condición del perno

Sin revestimiento, acabado negro 0,3

Con revestimiento de zinc (galvanizado) 0,2

Con lubricación 0,18

Con revestimiento de cadmio 0,16

Cálculo del coeficiente de rigidez del sujetador. [1]

La constante de rigidez es la relación entre la fuerza aplicada al sujetador y la deformación

producida.

El agarre en una junta con perno es el grosor total del material sujetado. En la tabla 3 figura

a) el agarre es la suma de los espesores de ambos elementos y ambas arandelas. En la

figura b) el agarre es el espesor de la parte superior más el de la arandela.

La rigidez de la porción de un perno o tornillo que está dentro de la zona de sujeción consta

de dos partes: la de la porción no roscada o espiga y la de la porción roscada . Por lo

tanto, la constante de rigidez del perno es equivalente a la de dos resortes en serie.

Page 22: Cálculo de uniones roscadas

Rigidez de la parte roscada del perno o tornillo:

Rigidez de la parte no roscada del perno o tornillo:

Longitud de la parte roscada del perno o tornillo.

Área de la parte no roscada del perno o tornillo.

Longitud de la parte no roscada del perno o tornillo.

Es la rigidez estimada del perno o tornillo en la zona de agarre.

Tabla 3. Dimensiones de la zona de agarre

a) b)

Diámetro exterior de la rosca.

Longitud del agarre.

Longitud de la zona roscada

Longitud del agarre efectivo.

Page 23: Cálculo de uniones roscadas

LLongitud del sujetador.

Longitud de la zona no roscada.

Longitud de la zona roscada dentro del

agarre.

Longitud de la zona roscada útil

Cálculo del coeficiente de rigidez de las piezas sujetadas [1]

Puede haber más de dos elementos abarcados por el agarre del sujetador. Todos ellos

actúan como resortes de compresión en serie, y por tanto, la constante elástica total de los

elementos de la unión es:

Si una de las piezas es una empaquetadura suave, su rigidez en relación con las otras

generalmente es tan pequeña, que en la práctica el efecto de estas últimas se puede

despreciar y solo se debe considerar la rigidez del empaque. Si no existe dicha

empaquetadura, la rigidez de los elementos es difícil de evaluar, excepto por

experimentación, debido a que la compresión se extiende progresivamente entre la cabeza

del perno y la tuerca y, en consecuencia, el área no es uniforme. Sin embargo, hay algunos

casos en los que esta área puede ser determinada.

Page 24: Cálculo de uniones roscadas

Los resultados experimentales muestran que la presión permanece elevada hasta una

distancia aproximadamente igual a 1,5 veces el radio del perno o tornillo. Sin embargo, la

presión decrece a mayor distancia del mismo. Cuando la carga está restringida a una zona

anular de la cara de arandela (acero templado, hierro fundido o aluminio), el ángulo del cono

de presión se encuentra en un intervalo de 25° a 33°. Aquí se asume un valor medio de

30°.

Fig. 9- Compresión de las piezas sujetadas

Aplicando el cálculo infinitesimal se puede demostrar que la rigidez del tronco de cono (Ver

figura 9) para un ángulo del cono de presión de 30º

Esta ecuación debe resolverse por separado para cada porción troncocónica de la junta.

Cálculo de resistencia a la fatiga. [1]

Las uniones de perno con carga de tracción, sometidas a la acción de fatiga, se pueden

analizar directamente por los métodos estudiados en el curso de resistencia de materiales.

La tabla 4 contiene valores medios de factores de reducción de resistencia a la fatiga,

correspondientes al entalle bajo la cabeza del perno, y al principio de la rosca en la espiga

del mismo.

Page 25: Cálculo de uniones roscadas

Tabla 4. Coeficiente de reducción de la resistencia a la fatiga para elementos roscados .

Método de

elaboración

Clase de resistencia

Laminado Por corte

Entalle

3,6 a 6,8 2,2 2,8 2,1

6,6 a 10,9 3,0 3,8 2,3

La mayor parte de las veces, el tipo de carga de fatiga encontrado en el análisis de uniones o

juntas con pernos, es uno en el cual la carga aplicada exteriormente fluctúa entre cero y

alguna fuerza máxima P. Esta sería la situación en un cilindro hermético, por ejemplo, donde

puede existir o no una presión.

Entonces:

y

Por consiguiente la componente alternante del esfuerzo del perno es:

y el esfuerzo medio:

El análisis de esta ecuación muestra que se compone de un término constante , y el

esfuerzo alternante . Una precarga elevada en uniones atornilladas sometidas a cargas de

fatiga tiene especial importancia debido a que hace que el primer término de dicha ecuación

sea relativamente pequeño en comparación con el segundo, que es la pretensión inicial.

El factor de seguridad de acuerdo con el criterio de Goodman [1] se puede calcular por la

ecuación:

Page 26: Cálculo de uniones roscadas

Después de evaluar el factor de seguridad que previene contra una falla por fatiga, se debe

comprobar también la posibilidad de fluencia:

En la tabla 5 se muestran límites de fatiga totalmente corregidos para los pernos IS0 más

utilizados con este fin. Los valores indicados incluyen el efecto del Coeficiente de reducción

sobre la resistencia a la fatiga

Tabla 5. Límites de fatiga corregidos totalmente para pernos y tornillos con rosca laminada

Clase Intervalos de

dimensiones

Límite de fatiga

(MPa)

ISO 8.8 M16-M36 129

ISO 9.8 M1,6-M16 140

ISO 10.9 M5-M36 162

ISO 12.9 M1,6-M36 190

Procedimiento para aumentar la resistencia a la fatiga de las uniones roscadas [2]

Una vez elegido el material, que tiene una influencia importante en la resistencia a carga

variable, el aumento de la resistencia a la fatiga se puede lograr:

Disminuyendo para un valor de constante, el ciclo se aproxima a uno de tensiones

constantes. Esto se puede lograr disminuyendo la rigidez del tornillo (tornillos más largos

huecos, etc.) y aumentando la rigidez de las piezas (eliminando la utilización de juntas o

disminuyendo su espesor, mejorando el acabado superficial de las superficies de las piezas

que se unen, etc.).

Disminuyendo la concentración de tensiones aumentando la calidad de fabricación de la

rosca. (Rosca rectificada o laminada)

Mejorando la distribución de la carga a lo largo de la rosca (tuercas de tracción).

Page 27: Cálculo de uniones roscadas

Cálculo de la carga externa sobre el tornillo más cargado [5]

Hasta ahora se ha estudiado el cálculo de una unión roscada suponiendo que se conoce la

carga externa P que actúa sobre el perno o tornillo más cargado. Si los tornillos están

uniformemente distribuidos en el área de la unión, como se muestra en la figura 10, se

recomienda la secuencia siguiente para el cálculo de dicha fuerza:

Fig. 10- Cuerpo sujetado por 6 tornillos

1) Se determinan las coordenadas del centro geométrico de la unión. Generalmente se

encuentra en la intersección de los dos ejes de simetría del grupo de tornillos. Si los tornillos

no se han colocado simétricamente se calcula por las ecuaciones siguientes:

Donde:

Es el área de la sección transversal de cada tornillo:

Son las coordenadas del centro geométrico del grupo de tornillos en el sistema de

coordenadas auxiliar

Page 28: Cálculo de uniones roscadas

Después de determinado el centro geométrico se ubica, en él, el origen del sistema de

coordenadas. (figura 11)

2) Se trasladan las cargas externas al centro geométrico de la unión. Se recomienda hacer el

análisis por planos. Un plano (X, Y) que coincide con el plano de la unión y otros dos planos

(Z, Y y Z, X) perpendiculares, entre si y al plano de la unión. En el caso más general se

tienen tres fuerzas y tres momentos. (figura 11)

Fig. 11- Cargas en el centro de la unión

3) Se determina la fuerza axial resultante P sobre el tornillo más cargado (Tornillo 1 figura

12) en los planos verticales al plano de la unión.

Page 29: Cálculo de uniones roscadas

Fig. 12- Carga total sobre el tornillo

Carga total de tracción sobre el tornillo o perno más

cargado.

Donde:

Carga de tracción en el tornillo o perno debido a la acción de la resultante de

las fuerzas externas.

Carga de tracción en el tornillo o perno debido a la acción del momento

resultante My

Carga de tracción en el tornillo o perno debido a la acción del momento

resultante Mx

Número de tornillos.

Mx y My Momentos resultantes respecto a los ejes X e Y.

y Coordenadas del tornillo que se analiza respecto a los ejes X y Y.

y Coordenadas de cada tornillo i respecto a los ejes X y Y.

Page 30: Cálculo de uniones roscadas

Cantidad de tornillos en cada posición o

4) Se determina la fuerza transversal resultante sobre el tornillo más cargado atendiendo a

las fuerzas que actúan en el plano de la unión (Tornillo 5 figura 12) y sobre el tornillo más

cargado en el plano vertical al plano de la unión (Tornillo 1 figura 12). En este caso:

a) Si la unión se ha realizado con elementos de descarga (Pines, chavetas, etc.) Q = 0

b) Si no existen elementos de descarga la carga total transversal sobre el tornillo más

cargado se calcula por la ecuación:

Donde:

y

Carga transversal sobre el perno o tornillo en el eje X debido a la acción de la

resultante Rx de las fuerzas externas.

Carga transversal sobre el perno o tornillo en el eje Y debido a la acción de la

resultante Ry de las fuerzas externas.

Carga transversal sobre el tornillo o perno debido a la acción del momento

resultante Mz de las fuerzas externas respecto al eje Z. En el caso general esta fuerza hay

que descomponerla en sus componentes en el eje x y en el eje y .

Posición del tornillo que se analiza respecto al centro geométrico de la unión.

Posición del tornillo i respecto al centro geométrico de la unión.

Cantidad de tornillos en cada posición

Page 31: Cálculo de uniones roscadas

Ejercicios

Secuencia para el cálculo de verificación de una unión roscada

1. Se determinan las cargas externas longitudinal P y transversal Q sobre los tornillos más

cargados.

2. Se calculan las constantes de rigidez del tornillo y de las piezas y la constante de la

unión C si la carga total de tracción es diferente de cero

3. Se determina la pretensión inicial V.

4. Se calcula el factor de seguridad de la unión para cargas estáticas.(n>1)

5. Se calcula el factor de seguridad que previene contra la separación de la unión (n>1)

6. Si Q , los tornillos se han montado con holgura y no se utilizan elementos de descarga

se calcula el factor de seguridad que previene contra el deslizamiento de las piezas.

7. Si Q y los tornillos se han montado con ajuste se calculan al cizallamiento y al

aplastamiento. Esta comprobación se realiza por los métodos estudiados en el curso de

resistencia de materiales.

8. Se calcula el factor de seguridad que previene contra la falla por fatiga.

9. Se calcula el factor de seguridad que previene contra la posibilidad de fluencia.

Uniones roscadas sometidas a cargas externas en el plano de la unión

Ejercicio 1: Verifique las uniones roscadas que se muestran en las figuras 13, 14 y 15.

Page 32: Cálculo de uniones roscadas

Fig. 13- Acoplamiento rígido de bridas [4]

Page 33: Cálculo de uniones roscadas

Fig. 14- Sprocket unido al núcleo por

una unión roscada

Fig. 15- Polea unida al núcleo por una

unión roscada.

Considere la carga constante y la unión permanente.

El torque que se transmite T=250N.m

Clase de los tornillos 4,8

Coeficiente de fricción entre las bridas

Los tornillos se montan con holgura.

Solución:

Observe que en los tres casos se tiene la misma unión roscada. Los tornillos y las piezas

sujetadas tienen las mismas dimensiones. La unión roscada está cargada solamente con un

momento T en el plano de la unión.

Cálculo de las fuerzas externas P y Q

1) El centro geométrico de la unión coincide con el eje de rotación. Se selecciona un sistema

de coordenadas como se muestra en la figura 13. Observe que el plano de la unión está

Page 34: Cálculo de uniones roscadas

formado por los ejes X y Y. Los planos perpendiculares al plano de la unión son los

formados por los ejes Z y Y y Z y X.

2) y 3) En los planos perpendiculares al plano de la unión no actúan cargas. La única carga

externa es el momento torsor y actúa en el plano de la unión. Entonces la carga externa P =

0

4) Como no existen elementos de descarga la carga total transversal sobre el tornillo más

cargado es:

Donde:

y

Carga transversal sobre el perno debido a la acción del momento resultante

Mz=T En este caso todos los tornillos están igualmente cargados debido a que se

encuentran a igual distancia del centro geométrico de la unión.

Observe que no es necesario descomponer en los ejes X y Y la carga transversal sobre los

tornillos debido a la acción del momento torsor ya que es la única que existe.

Se tiene entonces la fuerza transversal en cada uno de los tornillos:

5) Se determina la pretensión inicial V.

Para conexiones permanentes

Page 35: Cálculo de uniones roscadas

Donde es la carga límite obtenida de la ecuación

Son las tensiones admisibles obtenidas de la tabla 1 para la clase 4.8.

Área de resistencia obtenida del anexo 1 para tornillo M10.

=17980N

6) Se calcula el factor de seguridad de la unión para cargas estáticas. (P=0)

7) Se calcula el factor de seguridad que previene contra la separación de la unión:

8) Como y los pernos se han montado con holgura se calcula el factor de seguridad que

previene contra el deslizamiento de las piezas.

Como la carga es constante y P = 0 no es necesario comprobar la resistencia a la fatiga de

los pernos.

Uniones roscadas sometidas a cargas externas en los planos perpendiculares al plano

de la unión

Ejercicio 2: En la figura 16 se muestra la unión de la tapa de un recipiente que se empleará

para almacenar un fluido a una presión que varía entre 0 y 18 MPa. Verifique la unión si se

conoce además:

Cantidad de pernos 12

Clase de los pernos 10,9

Material de las piezas: Acero

Page 36: Cálculo de uniones roscadas

Fig. 16. Recipiente a presión

Fig.17- Dimensiones del tornillo y tuerca

Fig.18- Cono de deformación y dimensiones

de los elementos de la unión

Solución:

1) El centro geométrico de la unión coincide con el centro de la tapa.

2) El punto de aplicación de la resultante de la carga externa sobre los pernos se encuentra

en el centro geométrico de la unión, o sea en el centro de la tapa. Todos los pernos resultan

igualmente cargados con una fuerza externa máxima igual a:

y una fuerza mínima P=0

Page 37: Cálculo de uniones roscadas

En resumen, la resultante de las fuerzas externas actúa en el plano perpendicular al plano de

la unión (traccionando los pernos) y su punto de aplicación coincide con el centro

geométrico. En el plano de la unión no actúan cargas. (Q=0)

3) Se calculan las constantes de rigidez del perno y de las piezas en la zona de agarre y

la constante de la unión C.

Rigidez del perno:

Rigidez de la parte roscada del perno:

Longitud de la parte roscada del perno.(Tabla 3 y figura 17).

Área de esfuerzo de tracción o área de resistencia (anexo1).

Rigidez de la parte no roscada del perno:

Área de la parte no roscada del perno.

Longitud de la parte no roscada del perno. (Figura 17)

La rigidez total del perno:

Rigidez de las piezas sujetadas:

Hay 3 elementos abarcados por el agarre del sujetador (Figura 18), pero como los tres son

de acero resultan dos conos exactamente iguales. La constante elástica total es:

Page 38: Cálculo de uniones roscadas

Aquí figura 18, figura 17, d=12 figura 16

La constante de la unión

4) Se determina la pretensión inicial V.

Para conexiones permanentes

La carga límite

Tensiones admisibles de la tabla 1 para la clase 10.9

Área de resistencia del anexo 1 para tornillo M12.

5) Se calcula el factor de carga de la unión para cargas estáticas.

6) Se calcula el factor de seguridad que previene contra la separación de la unión

7) El factor de seguridad que previene contra la falla por fatiga de acuerdo al criterio de

Goodman.

Donde:

Page 39: Cálculo de uniones roscadas

Tabla 5 para tornillo M12 y clase 10.9

Tabla 1 para tornillo clase 10.9

7) El factor de seguridad que previene contra la posibilidad de fluencia

Donde:

La componente alternante del esfuerzo:

y el esfuerzo medio:

Tabla 1

Ejercicio 3: Verifique la unión roscada que se utiliza para la fijación del reductor de

engranajes cilíndricos de un paso [4] que se muestra en las figuras19 y 20.

Se conocen los siguientes datos:

Considere los espárragos clase 8,8.

Considere la carga variable.

El cuerpo del reductor es de hierro fundido y la plancha donde se fija es de acero.

Momento torsor en el árbol de entrada

Momento torsor en el árbol de salida

Page 40: Cálculo de uniones roscadas

Fig.19- Reductor de engranajes de un paso

Fig. 20- Cono de deformación y dimensiones de la unión

Solución:

1) El centro geométrico de la unión se encuentra en la intersección de los dos ejes de

simetría. (Ver figura 19)

2) Las cargas externas se componen de los momentos en cada árbol. El momento

resultante es la suma de los dos y actúa en el plano (Z,Y) perpendicular al plano de la unión

(X, Y).

3) Los tornillos más cargados son los 2 de la izquierda y la fuerza externa P que actúa sobre

cada uno de ellos:

Page 41: Cálculo de uniones roscadas

4) En el plano de la unión, aunque no existen elementos de descarga ya que no hay

cargas en ese plano.

5) Se calculan las constantes de rigidez del perno y de las piezas en la zona de agarre y

la constante de la unión C.

Rigidez del espárrago:

Rigidez de la parte roscada del espárrago:

Donde:

La longitud de la parte roscada del espárrago dentro de la zona de agarre (Tabla 3 y figuras

20 y 21).

Área de resistencia del anexo 1 para tornillo M20.

Rigidez de la parte no roscada del espárrago:

Longitud de la parte no roscada del perno. (figura 20)

La rigidez total del perno:

Page 42: Cálculo de uniones roscadas

Fig. 21- Partes del cono de deformación

Para de la tabla 3 la longitud de la zona de agarre es:

Rigidez de las piezas sujetadas:

El cono de deformación en la zona de agarre se compone de las partes que se indican en la

figura 21.

Rigidez del cono Nº 1

Material acero:

Rigidez del cono Nº 2

Material hierro fundido:

Módulo de elasticidad para la fundición gris

Rigidez del cono Nº 3

Page 43: Cálculo de uniones roscadas

Material hierro fundido:

Rigidez del cono Nº 4

Material acero:

La rigidez total de las piezas sujetadas.

La constante de la unión

4) Se determina la pretensión inicial V.

Para conexiones permanentes

La carga límite

Tensiones admisibles de la tabla 1 para la clase 8.8

Área de resistencia del anexo 1 para rosca M20.

5) Se calcula el factor de carga de la unión para cargas estáticas.

6) Se calcula el factor de seguridad que previene contra la separación de la unión

Page 44: Cálculo de uniones roscadas

7) El factor de seguridad que previene contra la falla por fatiga de acuerdo al criterio de

Goodman.

Donde:

Tabla 5 para tornillo M12 y clase 8.8

Tabla 1 para tornillo clase 8.8

7) El factor de seguridad que previene contra la posibilidad de fluencia

Donde:

La componente alternante del esfuerzo:

y el esfuerzo medio:

Tabla 1

Ejercicio 4: Verifique la unión roscada que se utiliza para la fijación del motor que se

muestra en las figuras 22 y 23. Se conocen los siguientes datos:

Considere los tornillos clase 8.8

Page 45: Cálculo de uniones roscadas

Considere la carga variable, la unión permanente y los materiales de las piezas sujetadas de

acero.

Fig.22- Motor eléctrico

Fig.23- Fijación del motor a la plancha.

Solución:

1) El centro geométrico de la unión se encuentra en la intersección de los dos ejes de

simetría. (Ver figura 22)

2) Las cargas externas se componen solamente de un momento por lo que no es necesario

el traslado de las fuerzas al centro geométrico de la unión.

3) Los tornillos más cargados son los 2 de la izquierda y la fuerza externa P que actúa sobre

cada uno de ellos:

Page 46: Cálculo de uniones roscadas

En el plano de la unión, aunque no existen elementos de descarga, 0Q ya que no hay

cargas en ese plano.

3) Se calculan las constantes de rigidez del perno y de las piezas en la zona de agarre y

la constante de la unión C.

Rigidez del perno:

Rigidez de la parte roscada del perno:

Longitud de la parte roscada del perno.(Tabla 3 y figura 23).

Área de esfuerzo de tracción o área de resistencia (anexo1).

Rigidez de la parte no roscada del perno:

Longitud de la parte no roscada del perno. (Figura 23)

La rigidez total del perno:

Rigidez de las piezas sujetadas:

Hay 3 elementos abarcados por el agarre del sujetador (figura 23), la arandela y la plancha

son de acero mientras que el cuerpo del motor es de hierro fundido.

Fig.24- Cono de deformación

Page 47: Cálculo de uniones roscadas

Rigidez de las piezas sujetadas:

El cono de deformación en la zona de agarre se compone de las partes que se indican en la

figura 24.

Rigidez del cono Nº 1

Material acero:

Rigidez del cono Nº 2

Material hierro fundido:

Módulo de elasticidad para la fundición gris

Rigidez del cono Nº 3

Material hierro fundido:

Rigidez del cono Nº 4

Material acero:

La rigidez total de las piezas sujetadas.

Page 48: Cálculo de uniones roscadas

La constante de la unión

4) Se determina la pretensión inicial V.

Para conexiones permanentes

La carga límite

Tensiones admisibles de la tabla 1 para la clase 8.8

Área de resistencia del anexo 1 para tornillo M12.

5) Se calcula el factor de carga de la unión para cargas estáticas.

6) Se calcula el factor de seguridad que previene contra la separación de la unión

7) El factor de seguridad que previene contra la falla por fatiga de acuerdo al criterio de

Goodman.

Donde:

Tabla 5 para tornillo M12 y clase 8.8

Tabla 1 para tornillo clase 8.8

Page 49: Cálculo de uniones roscadas

7) El factor de seguridad que previene contra la posibilidad de fluencia

Donde:

La componente alternante del esfuerzo:

y el esfuerzo medio:

Tabla 1

Uniones roscadas sometidas a cargas externas en los planos perpendiculares al plano

de la unión y en el plano de la unión

Ejercicio 5: Verifique la unión roscada de la chumacera que se muestra en las figuras 25 y

26. Se conocen los datos siguientes:

Material de la chumacera y de la base: Acero

Espárragos clase 9,8

Considere la carga variable

Page 50: Cálculo de uniones roscadas

Fig. 25- Chumacera

Fig 26- Cono de deformación y dimensiones

de la unión

Para de la tabla 3 la longitud de la zona de agarre es:

Solución:

1) Determinación de las coordenadas del centro geométrico de la unión a partir del sistema

de coordenadas de referencia . (Coincide con la intersección de los dos ejes de

simetría)

Se toma un nuevo sistema de coordenadas que coincide con la intersección de los ejes de

simetría del grupo de tornillos.

2) Para determinar las cargas externas que actúan sobre la unión se realiza el análisis por

planos:

Plano Z-Y

Page 51: Cálculo de uniones roscadas

Las fuerzas que actúan sobre la chumacera al ser trasladadas hacia el centro geométrico de

la unión en este plano no producen momentos.

Plano X-Y

Las fuerzas y momentos que actúan en este plano no tienen importancia ya que como se ve

en la figura los tornillos son colocados con pines cónicos que soportan las cargas en este

plano. Q = 0

Plano Z-X

Como se observa en la figura los tornillos más cargados son el 1 y el 2.

Fig. 27- Plano Z, X

Carga total de tracción sobre los espárragos 1 y 2.

Page 52: Cálculo de uniones roscadas

3) Se calculan las constantes de rigidez del perno y de las piezas en la zona de agarre y

la constante de la unión C.

Rigidez del perno:

Rigidez de la parte roscada del perno:

Donde:

La longitud de la parte roscada del espárrago dentro de la zona de agarre (Tabla 3 y figuras

25 y 26).

Área de resistencia del anexo 1 para rosca M16.

Rigidez de la parte no roscada del espárrago:

Longitud de la parte no roscada del espárrago. (figura 26)

La rigidez total del perno:

Rigidez de las piezas sujetadas:

Hay 3 elementos abarcados por el agarre del sujetador (figura 26), pero como los tres son de

acero resultan dos conos exactamente iguales. La constante elástica total es:

Page 53: Cálculo de uniones roscadas

Aquí figura 26, figura 26

La constante de la unión

4) Se determina la pretensión inicial V.

Para conexiones permanentes

La carga límite

Tensiones admisibles de la tabla 1 para la clase 9.8.

Área de resistencia del anexo 1 para rosca M16.

5) Se calcula el factor de carga de la unión para cargas estáticas.

6) Se calcula el factor de seguridad que previene contra la separación de la unión.

7) El factor de seguridad que previene contra la falla por fatiga de acuerdo al criterio de

Goodman.

Page 54: Cálculo de uniones roscadas

Donde:

Tabla 5 para rosca M16 y clase 9.8

Tabla 1 para tornillo clase 9.8

7) El factor de seguridad que previene contra la posibilidad de fluencia

Donde:

La componente alternante del esfuerzo:

y el esfuerzo medio:

Tabla 1

Verifique la unión de la misma chumacera, si en este caso el montaje se realiza sin los

pasadores cónicos.

1) Determinación de las coordenadas del centro geométrico de la unión. Igual al ejercicio

anterior

Page 55: Cálculo de uniones roscadas

Fig.28- Plano X, Y

2) En este caso los espárragos más cargados en el plano de la unión son los números 1 y 4,

pero como los números 1 y 2 son los más cargados en los planos perpendiculares (Ver

ejercicio anterior ) la comprobación se le realiza al número 1 que es el más cargado en

general.

La fuerza transversal sobre el espárrago 1

Donde:

y

La fuerza en el espárrago por Rx

La fuerza en el espárrago por Ry

La fuerza en el espárrago por Mz

Page 56: Cálculo de uniones roscadas

La componente en el eje x de

La componente en el eje y de

Donde:

La fuerza total en el eje x

La fuerza total en el eje y

.

La fuerza total

3) y 4) C, V: Igual al ejercicio anterior.

5) y 6) El factor de seguridad de la unión para cargas estáticas, y el factor de seguridad que

previene contra la separación de la unión es igual al ejercicio anterior.

7) Como los tornillos se han montado con holgura se calcula el factor de seguridad que

previene contra el deslizamiento de las piezas.

Page 57: Cálculo de uniones roscadas

8) y 9) El factor de seguridad que previene contra la falla por fatiga y el factor de seguridad

que previene contra la posibilidad de fluencia es igual al ejercicio anterior.

Ejercicios propuestos

Ejercicio 6: Resuelva el ejercicio 2 si se coloca una junta entre la tapa y el cuerpo para

asegurar que no ocurra escape de fluido. Considere la rigidez de la junta igual a cero, o sea

el coeficiente de la unión C = 1.

Ejercicio 7: Resuelva el ejercicio 3 si se coloca en el árbol de entrada del reductor una polea

que provoca una fuerza de 4000 N. Considere la dirección de la fuerza 45º respecto a la

horizontal y aplicada en las coordenadas que se indican en la figura 19.

Page 58: Cálculo de uniones roscadas

Referencias Bibliográficas

1. Budynas−Nisbett: Shigley’s Mechanical Engineering Design, McGraw−Hill, 2006,

pp.652-758.

2. Dobrovolski. V.: Elementos de Máquinas, Editorial MIR, 1981. pp.128-157.

3. Mott, Robert L.: Diseño de Elementos de Máquinas, Volumen 3, Félix Varela, 2010

pp.711-728.

4. Reshetov, D N.: Atlas de Diseño de Elementos de Máquinas, Pueblo y Educación,

1986, pp.11-21.

5. Reshetov, D N.: Elementos de Máquinas Construcción de Maquinarias, 1989, pp.128-

190

6. http://es.wikipedia.org/w/index.php?title=Tornillo&oldid=52888566»

Page 59: Cálculo de uniones roscadas

Anexo 1. Características de las roscas métricas

d(mm) t

1 2 3 mm

0.5 16.15

0.8 14.2

5.

5

0.5 19.9

0.5 24.0

0.75 22.06

1 20.1

0.5 33.5

0.75 31.17

1 28.9

0.5 44.5

0.75 41.8

1 39.2

8

1.25 36.6

0.5 57.2

0.75 54.1

1 51.1

9

(1.25

)

48.1

0.5 71.3

d(mm) t

1 2 3 mm

1 575.2

1.5 555.4(28

)2 536.0

0.7

5

674.1

1 663.3

1.5 642.1

2 621.2

(3) 580.5

3

0

3.5 560.6

1.5 735.132

2 712.7

0.7

5

819.2

1 807.4

1.5 783.9

2 760.8

(3) 715.6

3

3

3.5 693.6

3

5

1.5886.3

d(mm) t

1 2 3 mm

1 2739.

7

1.5 2696.

4

2 2653.

4

3 2568.

4

4 2484.

8

6

0

(5.5

)

2362.

0

1.5 2883.

6

2 2839.

1

(3) 2751.

2

62

(4) 2664.

7

1 3123.

4

1.5 3077.

164

2 3031.

1

Page 60: Cálculo de uniones roscadas

0.75 67.9

1 64.5

1.25 61.2

1

0

1.5 58.0

0.5 87.1

0.75 83.3

1 79.5

11

(1.25

)

75.9

0.5 104.

4

0.75 100.

2

1 96.1

1.25 92.1

1.5 88.1

1

2

1.75 84.3

0.5 143.

8

0.75 138.

9

1 134.

0

1.25 129.

2

1.5 124.

6

1

4

2 115.

1 965.5

1.5 939.9

2 914.5

3 864.9

3

6

4 816.7

3

8

1.5 1051.

7

1 1137.

8

1.5 1109.

9

2 1082.

4

3 1028.

4

3

9

4 975.8

1.5 1169.

8

(2) 1141.

5

40

(3) 1086.

0

1 1324.

2

1.5 1294.

2

2 1264.

4

4

2

3 1206.

0

3 2940.

3

4 2850.

8

6 2676.

0

1.5 3176.

2

2 3129.

5

(3) 3037.

2

65

(4) 2946.

2

1 3532.

2

1.5 3482.

9

2 3434.

0

3 3337.

3

4 3241.

9

6

8

6 3055.

3

1.5 3695.

3

2 3644.

970

3 3545.

2

Page 61: Cálculo de uniones roscadas

4

(1) 199.

5

15

1.5 145.

1

0.5 189.

5

0.75 183.

8

1 178.

2

1.5 167.

3

1

6

2 156.

7

(1) 252.

7

17

1.5 191.

0

0.5 241.

4

0.75 235.

0

1 228.

6

1.5 216.

2

2 204.

2

1

8

2.5 192.

5

0.5 299.

(4) 1148.

9

4.5 1120.

9

1 1524.

8

1.5 1492.

5

2 1460.

6

3 1397.

7

(4) 1336.

2

4

5

4.5 1306.

0

1 1739.

5

1.5 1705.

0

2 1670.

9

3 1603.

6

(4) 1537.

7

4

8

5 1473.

2

1.5 1854.

5502 1818.

9

4 3446.

9

6 3254.

4

1 3966.

1

1.5 3913.

9

2 3862.

1

3 3759.

4

4 3658.

1

72

6 3459.

8

1.5 4253.

6

2 4199.

6

3 4092.

5

75

4 3986.

8

1 4425.

2

1.5 4370.

0

2 4315.

2

7

6

3 4206.

7

Page 62: Cálculo de uniones roscadas

6

0.75 292.

4

1 285.

4

1.5 271.

5

2 258.

0

2

0

2.5 244.

8

0.5 364.

1

0.75 356.

2

1 348.

4

1.5 333.

1

2 318.

1

22

2.5 303.

4

0.75 426.

3

1 417.

7

1.5 400.

9

2 384.

4

2

4

3 352.

(3) 1748.

7

1 2047.

8

1.5 2010.

3

2 1973.

2

3 1900.

0

(4) 1828.

3

5

2

5 1757.

8

1.5 2255.

8

2 2216.

5

(3) 2138.

9

54

(4) 2062.

7

1 2381.

2

1.5 2340.

8

2 2300.

7

3 2221.

7

5

6

4 2144.

0

4 4099.

5

6 3889.

3

(78

)

2 4551.

2

1 4909.

4

1.5 4851.

3

2 4793.

5

3 4679.

1

4 4566.

0

80

6 4344.

1

(82

)

2 5042.

1

1.5 5488.

2

2 5426.

8

3 5304.

9

4 5184.

5

8

5

6 4947.

8

1.5 6164.

Page 63: Cálculo de uniones roscadas

5

1 454.

7

1.5 437.

2

25

2 420.

0

26 1.5 475.

0

0.75 543.

1

1 533.

5

1.5 514.

4

2 495.

7

2

7

3 459.

4

5.5 2030.

0

1 2381.

2

1.5 2340.

8

2 2300.

7

3 2221.

7

4 2144.

0

5

6

5.5 2030.

0

1.5 2515.

4

2 2473.

9

(3) 2904.

7

58

(4) 2995.

1

3

2 6099.

2

3 5970.

1

4 5842.

3

90

6 5590.

8

1.5 6879.

8

2 6811.

0

3 6674.

5

4 6539.

3

9

5

6 6273.

1

1.5 7634.

5

2 7562.

0

3 7418.

1

4 7275.

6

10

0

6 6994.

7