classical pendulum feels quantum back-action · 2020. 11. 12. · classical pendulum feels quantum...

46
Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto

Upload: others

Post on 19-Aug-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Classical Pendulum Feels Quantum Back-Action

GWADW2014

University of Tokyo Nobuyuki Matsumoto

Page 2: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Outline

• Introduction of our recent research

- Advantages of the triangular optical cavity

(suppl. info. A.1) ⇒ Opt. Express 22, 12915 (2014)

- Observation of Quantum Back-Action

(RPN: Radiation Pressure Noise)

Page 3: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

What is Quantum Back-Action?

side view front view enlarged view

Image (classical case)

Our case

Vacuum fluctuation of the coherent light sways the mirror

Page 4: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Requirement for reaching the SQL

Thermal bath 300 K

Thermal bath 300 K

𝜅

𝛾𝑚

gravitational dilution

𝑄𝑒𝑛 𝑎 : photon annihilation operator 𝑐 : phonon annihilation operator 𝜅: decay rate of the optical cavity 𝛾𝑚: decay rate of the pendulum 𝑄𝑒𝑛: Q enhancement factor due to the dilution

Quantum back-action/thermal fluctuating force > 1

Increase of intra-cavity power

Decrease of mechanical decay (𝑄𝑒𝑛)

Page 5: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Requirement for reaching the SQL

Thermal bath 300 K

Thermal bath 300 K

𝜅

𝛾𝑚

gravitational dilution

𝑄𝑒𝑛

Quantum back-action/thermal fluctuating force > 1

Increase of intra-cavity power

Anti torsional spring effect

𝑘𝑜𝑝𝑡

Trade-off

Decrease of mechanical decay (𝑄𝑒𝑛)

Page 6: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

signal to noise ratio of RPN to TN

Back-action/thermal noise

Finesse~1000 Mass~5 mg Intrinsic Q~1000

SQL can be reached

trade-off is not considered

Back-action=Thermal noise

Increasing Back-action force

Decreasing Thermal fluctuating force

Page 7: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Yaw unstable

Finesse~1000 Mass~5 mg Intrinsic Q~1000

𝑘𝑤𝑖𝑟𝑒 = 𝑘𝑜𝑝𝑡, for yaw motion

trade-off is considered

SQL can not be reached

Increasing Back-action force

Decreasing Thermal fluctuating force Back-action/thermal noise

Page 8: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Opt. Express 22, 12915 (2014)

• Our strategy for reaching the SQL

Key feature:

Optical positive torsional spring effect

(triangular optical cavity)

⇒Large gravitational dilution under high circulating power

Page 9: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

The difference between linear and triangular cavities

Radiation pressure torque

Rotation of the pendulum

Radiation pressure torque

5cm エポキシ樹脂 Rotation of the pendulum

Anti-restoring force Restoring force?

Page 10: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Measurement of an optical torsional spring in a triangular cavity

The change of the resonant frequency of the yaw motion with increasing the intracavity power was measured.

Setup

1064 nm

Page 11: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Measurement of an optical torsional spring in a triangular cavity

• The change of the resonant frequency (yaw motion) with increasing the intracavity power

⇒Positive torsional spring effect Systematic error

Statistical error Yaw motion

Theory

Page 12: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

The second half

• Parts of the measurement is underway to show validity of our result. (error evaluation of the mechanical Q-factor, frequency noise)

• Our strategy for reaching the RPN

Key features:

- Optical positive torsional spring effect

- Gravitational dilution

- Double optical spring (Optical dilution)

side view front view enlarged view

0.2mm 3um

4mm

5mg

Page 13: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction
Page 14: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Result

Quantum Back-Action (±16 % error but not displayed)

360 < 𝑄𝑒𝑓𝑓 < 3,900

Electric noise

𝑄𝑒𝑓𝑓 = (3.57 ± 1.94) × 103

𝑓𝑒𝑓𝑓 = 164 ± 126

𝑆𝐹𝐹,𝑞

𝑆𝐹𝐹,𝑡ℎ

= 0.80 ± 0.10

Estimated values Measured values

Thermal+Back-action (±13 % error)

Suspension thermal noise (estimation of the error is underway

Measured data (±7% error)

𝑓𝑒𝑓𝑓 = 130.0 ± 0.1

Page 15: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Double optical spring

①Triangular cavity

→stability & low dissipation

②Stability

→high intracavity power

→use of ( translational )

optical spring

→reduction of the technical noise

Force imposed on the mirror

On resonance⇒no spring effect

Red-detuning ⇒negative restoring, & positive damping

Blue-detuning ⇒positive restoring, & negative damping

Page 16: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Intra-cavity power

Without increasing thermal noise, reduction of the technical noise

stable

detuning

Linear range (PDH method)

Resonant freq.~130Hz Q-value~4000

Resonant freq.~2Hz Q-value~47e4

On resonance

Red-detuning

Blue-detuning

Page 17: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Intra-cavity power

stable

detuning

Linear range (PDH method)

Resonant freq.~130Hz Q-value~4000

Resonant freq.~2Hz Q-value~47e4

On resonance

Red-detuning

Blue-detuning

Triangular cavity ⇒increasing the signal, reduction of the thermal, & powerful double optical spring, under the stable system

Without increasing thermal noise, reduction of the technical noise

Page 18: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Details of the experiment

Main experiment

i. Setup

ii. Measurement of the cavity linewidth

iii. Measurement of an optical spring

iv. Quality factor of the pendulum

v. Intensity stabilization of the laser

vi. Calibration

Page 19: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Setup Triangular cavity Intensity stabilization

Incident laser system

Page 20: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Triangular cavity Intensity stabilization

Incident laser system

Page 21: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Setup

Fixed (half inch) mirror

Controlled mirror ~100g

Movable mirror ~5mg

PD

Cavity length control

PDH method Servo filter

Stabilized laser

Nd:YAG laser (Innolight Mephisto)

detuning

Intra-cavity power

Linear range (PDH method)

Displacement fluctuation of the mirror

Triangular cavity

Round trip length~9cm Finesse~1100 Intracavity power~3.6W

50 mm

20 mm

5 ± 0.5 mW

100 ± 10 mW 3.00 W

0.61 W

Page 22: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Setup

Vacuum tank (~1e-3Pa)

Double stack (>4Hz)

Ring-like middle mass ( Copper , >1Hz)

Suspended platform (>1Hz)

Triangular cavity

Coil-springs

Page 23: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Vibration isolation (double stack)

Vacuum tank

Vibration isolation (double pendulum)

Page 24: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

① ②

① ③

Page 25: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Details of the experiment

Main experiment

i. Setup

ii. Measurement of the cavity linewidth ⇒Estimation of the signal level

iii. Property measurement of the optical spring ⇒Estimation of the signal level

iv. Quality factor of the pendulum ⇒Estimation of the thermal noise level

v. Intensity stabilization of the laser ⇒Elimination of the classical noise of the light

vi. calibration

Page 26: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction
Page 27: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

𝑇𝑡𝑜𝑡𝑎𝑙 = (5.7 ± 1.3) × 10−3 𝑇𝑖𝑛2𝑇𝑜𝑡ℎ𝑒𝑟𝑠 = (7.6 ± 2.4) × 10−7

in2

frequency

Intra-cavity power

scan

in1

Page 28: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

m

N

Cavity W

m

Servo V

V

PD V

W

Actuator N

V

Movable mirror

Controlled mirror

G=Output/Input

Input (Sine wave)

Output

Optical spring

Measurement of the optical spring by the open-loop transfer function 1.Disturbance input→ Measurement of a response 2. Offset adjustment of a control signal (detuning adjustment) ⇒returning to 1

Measurement of the optical spring

Power spectrum of the quantum back-action

Optomechanical coupling: g

Page 29: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Statistical error Systematic error

Resonant frequency of the pendulum

Optomechanical coupling constant

Page 30: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Quality factor of the pendulum • Thermal fluctuating force

• Damped oscillation→life time⇔mechanical Q-value

⇒ ( )

Ringdown measurement

Intensity modulation at about 600 uHz (due to the difference of resonant freq. between the pendulum and side motion)

Damped oscillation of the pendulum

Measured data

Page 31: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Error of the quality factor

Q-factor is currently measured to obtain its error by Kentaro Komori. Improvement for reducing the side motion: i. the direction of the incident laser on the suspended mirror ii. excitation of the pendulum

Preliminary result: Q~270,000 (Similar but low-quality pendulum was used)

Am

plit

ud

e [

a.u

.]

Time [s]

Komori-kun

Page 32: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Intensity stabilization of the laser

Page 33: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Before stabilization

After stabilization (OOL) Requirement

1.4 × 10−8 1 Hz

Rel

ativ

e In

ten

sity

No

ise

Leve

l

Our best data

simultaneous measurement

Back-action force is enhanced by the classical noise

turbomolecular pumps is switched off

turbomolecular pumps is switched on

Page 34: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Details of the experiment

Main experiment

i. Setup

ii. Measurement of the cavity linewidth ⇒Estimation of the signal level

iii. Property measurement of the optical spring ⇒Estimation of the signal level

iv. Quality factor of the pendulum ⇒Estimation of the thermal noise level

v. Intensity stabilization of the laser ⇒Elimination of the classical noise of the light

vi. Calibration

Page 35: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Calibration Cavity W

m

Actuator N

V

PD A

W[Ω]

m

N

Movable mirror

Controlled mirror

phase compensation

Notch (on)

Servo V

V

Page 36: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Calibration Cavity W

m

Actuator N

V

PD A

W[Ω]

m

N

Movable mirror

Controlled mirror

phase compensation

Notch (off)

Servo V

V

Open-loop transfer function

Page 37: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Calibration Cavity W

m

Actuator N

V

PD A

W[Ω]

m

N

Movable mirror

Controlled mirror

phase compensation

Notch (on)

Servo V

V

Transfer function

Page 38: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Calibration Cavity W

m

Actuator N

V

PD A

W[Ω]

m

N

Movable mirror

Controlled mirror

phase compensation

Notch (on)

Servo V

V

Open-loop function for locking a MI

0

50

100

Gai

n [d

B]

100

101

102

300

200

100

0

Frequency [Hz]

Phas

e [d

eg.]

bvacuum tank

cavity length control loop

BS

PD

controlled

mirror

fixedmirror

a

(1.4 ± 0.1) × 10−6N

V

Page 39: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Calibration Cavity W

m

Actuator N

V

PD A

W[Ω]

m

N

Movable mirror

Controlled mirror

phase compensation

Notch (on)

Servo V

V

The model of a coupled oscillator

1.5 × 10−5m

N

Page 40: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Calibration Cavity W

m

Actuator N

V

PD A

W[Ω]

m

N

Movable mirror

Controlled mirror

phase compensation

Notch (on)

Servo V

V

(8.5 ± 0.6) × 10−11V

m

Page 41: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Calibration Cavity

W

m

Servo V

V

Actuator N

V

PD A

W[Ω]

S

A F

m

N

Movable mirror

Controlled mirror

Displacement fluctuation = 𝑋𝑒𝑟𝑟(1 + 𝑆𝐹𝐴)/𝑆

𝑋𝑒𝑟𝑟

Notch off (theory)

Notch off (measured)

Notch on (theory)

Notch on (estimated from the measured data)

𝑆𝐹𝐴

𝑆 = (8.5 ± 0.6) × 10−11V

m

Page 42: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Calibration Cavity

W

m

Servo V

V

Actuator N

V

PD A

W[Ω]

S

A F

m

N

Movable mirror

Controlled mirror

Displacement fluctuation = 𝑋𝑒𝑟𝑟(1 + 𝑆𝐹𝐴)/𝑆

𝑋𝑒𝑟𝑟

Sensor noise⇒𝑛𝑠/𝑆

Filter noise⇒𝐴𝑛𝐹

Page 43: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Result

Quantum Back-Action (±16 % error but not displayed)

360 < 𝑄𝑒𝑓𝑓 < 3,900

Electric noise

𝑄𝑒𝑓𝑓 = (3.57 ± 1.94) × 103

𝑓𝑒𝑓𝑓 = 164 ± 126

𝑆𝐹𝐹,𝑞

𝑆𝐹𝐹,𝑡ℎ

= 0.80 ± 0.10

Estimated values Measured values

Thermal+Back-action (±13 % error)

Suspension thermal noise (estimation of the error is underway

Measured data (±7% error)

𝑓𝑒𝑓𝑓 = 130.0 ± 0.1

Page 44: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Summary of parameters

Page 45: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Next Step

• Reaching the SQL using MZ interferometer 1. Mass 5 mg ⇒ 15 mg

2. Diameter 3 um ⇒ 1 um

3. Length 5 cm ⇒ 2 cm

4. Improve of clamping

(Q-factor will be 8-times)

5. Other material (e.g. CNTF)

(test is underway)

Q-factor will be increased from 4.7 × 105 to 2 × 107

(2 × 9 2.5 × 8 ≈ 58 > 40)

Suspension thermal noise

Quantum noise

Mirror thermal noise

SQL can be reached

Page 46: Classical Pendulum Feels Quantum Back-Action · 2020. 11. 12. · Classical Pendulum Feels Quantum Back-Action GWADW2014 University of Tokyo Nobuyuki Matsumoto . Outline •Introduction

Conclusion

• Triangular cavity has potential to reach the SQL. • At the moment, the ratio of quantum back-action to

thermal noise is estimated to be 0.80 ± 0.10. Next ⇒More validity of the measurement e.g.) error of the Q-factor, freq. noise, dependence of the laser power, and correlation measurement Improve of the pendulum ⇒ reaching the SQL