christoph blume university of frankfurt winter workshop on nuclear dynamics, 2010, ochos rios,...

35
Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase Diagram Christoph Blume University of Frankfurt 26 th Winter Workshop on Nuclear Dynamics Ocho Rios, Jamaica January 2010

Upload: christina-horton

Post on 21-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Christoph Blume

University of Frankfurt

Winter Workshop on Nuclear Dynamics,

2010, Ochos Rios, Jamaica

Particle Production at the SPS and the QCD Phase DiagramParticle Production at the SPS and the QCD Phase Diagram

Christoph BlumeUniversity of Frankfurt

26th Winter Workshopon Nuclear DynamicsOcho Rios, Jamaica

January 2010

Page 2: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Outline

Christoph Blume WWND 2010, Ocho Rios, Jamaica 2

How to probe different regions of the QCD phase diagram?

Variation of center-of-mass energyWay of scanning different freeze-out parameters T and μB

Variation of system sizeHow do T and μB depend on system size

Core corona approach

Critical point searchSystematic study of multiplicity fluctuationsOther observables

How to probe different regions of the QCD phase diagram?

Variation of center-of-mass energyWay of scanning different freeze-out parameters T and μB

Variation of system sizeHow do T and μB depend on system size

Core corona approach

Critical point searchSystematic study of multiplicity fluctuationsOther observables

Page 3: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

QCD Phase Diagram

Christoph Blume WWND 2010, Ocho Rios, Jamaica 3

A. Andronic et al., arXiv: 0911.4806

L. McLarren and R.D. Pisarski,Nucl. Phys. A796,83 (2007).

Page 4: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Christoph Blume WWND 2010, Ocho Rios, Jamaica 4

QCD Phase DiagramExperimental Access

High energies (RHIC/LHC)B small

System reaches QGP phase

Low energies (AGS)B large

System stays in hadronic phase

In between (SPS/FAIR)Variation of B by changing sNN

Possible to localize critical point?

Other control parameters (e.g. system size)?

Page 5: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Christoph Blume WWND 2010, Ocho Rios, Jamaica 5

Significant change of shape at SPS energies

Peak dip structure

Rapid change of net-baryon density at y = 0

Strong variation of B

Significant change of shape at SPS energies

Peak dip structure

Rapid change of net-baryon density at y = 0

Strong variation of B

Energy DependenceNet-Baryon Distributions

BRAHMSPhys. Rev. Lett. 93 (2004), 102301

158A GeVPhys. Rev. Lett. 82 (1999), 2471

E802Phys. Rev. C 60 (1999), 064901

NA49 preliminary

Central Pb+Pb/Au+Au

Page 6: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

6

Energy DependenceExample: /π- and /π-Ratios

NA49 dataPhys. Rev. C78, 034918 (2008)

Statistical models

Generally good description at allenergies

Fixes parameters T and μB

NA49 dataPhys. Rev. C78, 034918 (2008)

Statistical models

Generally good description at allenergies

Fixes parameters T and μB

|y| < 0.4

|y| < 0.5

SHM(B): A. Andronic et al. Nucl. Phys. A 772, 167 (2006).UrQMD: M. Bleicher et al., J. Phys. G 25, 1856 (1999) and private communicationHSD: E. Bratkovskaya et al., Phys. Rev. C69, 054907 (2004)

/

/−

-/ +/− = 1.5 (+ + -)

Christoph Blume WWND 2010, Ocho Rios, Jamaica

Page 7: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Christoph Blume WWND 2010, Ocho Rios, Jamaica 7

Results from differentbeam energiesAnalysis of particle yieldswith statistical models

Freeze-out points reach QGP phase boundary at top SPS energies

Caveat: Disagreement betweendifferent LQCD results on TC

Results from differentbeam energiesAnalysis of particle yieldswith statistical models

Freeze-out points reach QGP phase boundary at top SPS energies

Caveat: Disagreement betweendifferent LQCD results on TC

QCD Phase DiagramData Points

F. Becattini et al., Phys Rev. C69, 024905 (2004).

Page 8: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

System Size DependenceFreeze-out Parameter

Christoph Blume WWND 2010, Ocho Rios, Jamaica 8

How do freeze-out parameters dependon system size ?

Statistical model fitsresult in different T

Central reactions

Way to move around in phase diagram?

How do freeze-out parameters dependon system size ?

Statistical model fitsresult in different T

Central reactions

Way to move around in phase diagram?

F. Becattini et al.,Phys. Rev. C73, 044905 (2005)

Page 9: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Christoph Blume WWND 2010, Ocho Rios, Jamaica 9

System Size Dependence(Anti-)Proton y-Spectra

Preliminary data by NA49

Minimum bias Pb+Pb at 158A GeV

Preliminary data by NA49

Minimum bias Pb+Pb at 158A GeV

NA49 preliminary

NA49 preliminary

p p

H. Ströbele et al.arXiv:0908.2777

Page 10: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Christoph Blume WWND 2010, Ocho Rios, Jamaica 10

System Size DependenceNet-Protons

NA49 preliminary p - pCen.

Per.

No strong system sizedependence observed

No strong system sizedependence observed

Peripheral spectrum slightly more pronounced y-dependencethan central one

Beam rapidity not measured!

In measured rapdity range similar shape like p+p data

⇒ System size has no big influence on μB

p+p Data:M. Aguilar-Benitz et al.,Z. Phys. C 50 (1991), 405.

NA49 preliminary

central

per.

p+p

Page 11: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

11

System Size DependenceEnhancement factors of , , and

Enhancement factor

p+p data: NA49

Early saturation

Nw > 60

Core Corona Model

f (NW) = fraction of nucleons that scatter more than once

F. Becattini and J. Manninen, J. Phys. G35, 104013 (2008)K. Werner, Phys. Rev. Lett. 98, 152301 (2007)J. Aichelin and K. Werner, arXiv:0810.4465

Enhancement factor

p+p data: NA49

Early saturation

Nw > 60

Core Corona Model

f (NW) = fraction of nucleons that scatter more than once

F. Becattini and J. Manninen, J. Phys. G35, 104013 (2008)K. Werner, Phys. Rev. Lett. 98, 152301 (2007)J. Aichelin and K. Werner, arXiv:0810.4465€

M NW( ) = NW f NW( ) MCore[

+ 1− f NW( )( )MCorona ]

C+C

00

211

yyw dyppdn

dyPbPbdn

NE

158A GeV

Si+SiPb+Pb

Christoph Blume WWND 2010, Ocho Rios, Jamaica

Page 12: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

12

System Size DependenceAverage Transverse Mass: mt-m0

Similar dependence asfor multiplicities observed

Early saturation Nw > 60

Core Corona model

f(NW) = fraction of nucleons, that scatter more than once

F. Becattini and J. Manninen, J. Phys. G35, 104013 (2008)K. Werner, Phys. Rev. Lett. 98, 152301 (2007)J. Aichelin and K. Werner, arXiv:0810.4465

NA49 data: Phys. Rev. C80 (2009), 034906.

Similar dependence asfor multiplicities observed

Early saturation Nw > 60

Core Corona model

f(NW) = fraction of nucleons, that scatter more than once

F. Becattini and J. Manninen, J. Phys. G35, 104013 (2008)K. Werner, Phys. Rev. Lett. 98, 152301 (2007)J. Aichelin and K. Werner, arXiv:0810.4465

NA49 data: Phys. Rev. C80 (2009), 034906.

CoronatW

CoretWWWt

mNf

mNfNNm

1

|y| < 0.4 (0.5)

Christoph Blume WWND 2010, Ocho Rios, Jamaica

Page 13: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

System Size DependenceCore-Corona: Central ↔ Peripheral

Christoph Blume WWND 2010, Ocho Rios, Jamaica 13

Core Corona model

f(Npart) = fraction of nucleons, that scatter more than once

Centrality dependenceStronger for smaller systems

Central reactionsStill clear change of fmax

with system size

Compare fmax(Pb+Pb) ≈ 0.9and fmax(C+C) ≈ 0.65

⇒ apparent change of T + μB

Not real, just different mixture of core and corona

Thanks to K. Reygers for providing the Glauber code

Core Corona model

f(Npart) = fraction of nucleons, that scatter more than once

Centrality dependenceStronger for smaller systems

Central reactionsStill clear change of fmax

with system size

Compare fmax(Pb+Pb) ≈ 0.9and fmax(C+C) ≈ 0.65

⇒ apparent change of T + μB

Not real, just different mixture of core and corona

Thanks to K. Reygers for providing the Glauber code

System size is not a good control parameterto move around inQCD phase diagram

System size is not a good control parameterto move around inQCD phase diagram

Page 14: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

System Size DependenceCore-Corona: Asymmetric Systems

Christoph Blume WWND 2010, Ocho Rios, Jamaica 14

Core Corona model

f(Npart) = fraction of nucleons, that scatter more than once

Centrality dependence

Peculiar shape for small projectiles (e.g. C, O, Si, S)

Core Corona model

f(Npart) = fraction of nucleons, that scatter more than once

Centrality dependence

Peculiar shape for small projectiles (e.g. C, O, Si, S)

Limiting case: p + A

f(Npart) = 1 / Npart

Model applicable in p+A?First attempt in T. Šuša et al., Nucl. Phys. A698 (2002) 491c

Page 15: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Christoph Blume WWND 2010, Ocho Rios, Jamaica 15

Critical PointTheoretical Predictions

M. Stephanov,CPOD conference 09

Lattice QCD difficult for B > 0

Sign problem in Fermion-determinant

Progress in recent years(e.g. Fodor and Katz)

Results strongly divergent

Typically B > 200 MeV

Perhaps no critical point at allfor B < 500 MeV (de Forcrand and Philipsen)

Lattice QCD difficult for B > 0

Sign problem in Fermion-determinant

Progress in recent years(e.g. Fodor and Katz)

Results strongly divergent

Typically B > 200 MeV

Perhaps no critical point at allfor B < 500 MeV (de Forcrand and Philipsen)

Page 16: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Critical PointObservables

Christoph Blume WWND 2010, Ocho Rios, Jamaica 16

Elliptic flow v2

R. A. Lacey et al., arXiv:0708.3512: η/s versus T and μB.

E. Shuryak, arXiv:hep-ph/0504048: Decrease (increase) of baryon (meson) flow.Higher experimental precision required.

mt-Spectra of baryons and anti-baryonsAsakawa et al., Phys. Rev. Lett. 101 (2008) 122302.Higher experimental precision required.

Di-pion (sigma) intermittency studyT. Anticic et al., arXiv 0912.4198.No unambiguous signal seen yet

Fluctuations: multiplicity and/or 〈 pt 〉Stephanov, Rajagopal, Shuryak, Phys. Rev. D60 (1999), 114028.

Elliptic flow v2

R. A. Lacey et al., arXiv:0708.3512: η/s versus T and μB.

E. Shuryak, arXiv:hep-ph/0504048: Decrease (increase) of baryon (meson) flow.Higher experimental precision required.

mt-Spectra of baryons and anti-baryonsAsakawa et al., Phys. Rev. Lett. 101 (2008) 122302.Higher experimental precision required.

Di-pion (sigma) intermittency studyT. Anticic et al., arXiv 0912.4198.No unambiguous signal seen yet

Fluctuations: multiplicity and/or 〈 pt 〉Stephanov, Rajagopal, Shuryak, Phys. Rev. D60 (1999), 114028.

Page 17: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Christoph Blume WWND 2010, Ocho Rios, Jamaica 17

Critical PointMultiplicity Fluctuations

Pb+Pb, 158A GeV1 < y < ybeam

Charged multiplicity n

Extensive quantity tight centrality selection (1%) to reduce volume fluctuations

Scaled variance

Energy dependence of

Data narrower than Poisson ( < 1)

Trend reproduced by UrQMD

Charged multiplicity n

Extensive quantity tight centrality selection (1%) to reduce volume fluctuations

Scaled variance

Energy dependence of

Data narrower than Poisson ( < 1)

Trend reproduced by UrQMD

Page 18: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Christoph Blume WWND 2010, Ocho Rios, Jamaica 18

Critical PointMultiplicity Fluctuations

n-Fluctuations as a function of B n-Fluctuations as a function of B

NA49 data:Phys. Rev. C79,044904 (2009)

B from stat. model fit:F. Becattini et al.,Phys. Rev. C73,044905 (2006)

Amplitude ofFluctuations:M. Stephanov et al.Phys. Rev. D60, 114028 (1999)

Width of crit. region:Y. Hatta and T. Ikeda, Phys. Rev. D67, 014028 (2003)

Position ofcrit. point:Z. Fodor and S. KatzJHEP 0404, 050 (2004)

Page 19: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Critical PointElliptic Flow v2

Christoph Blume WWND 2010, Ocho Rios, Jamaica 19

Energy dependenceof v2 of protons and pions

Large systematic effects

Especially for proton v2!

Clearly needs improvements onthe experimental side

Energy dependenceof v2 of protons and pions

Large systematic effects

Especially for proton v2!

Clearly needs improvements onthe experimental side

Page 20: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Christoph Blume WWND 2010, Ocho Rios, Jamaica 20

Critical region

Larger area in T - B plane

Focusing effect

Proximity of critical point might influence isentropictrajectories (nB/s = const.)

Critical region

Larger area in T - B plane

Focusing effect

Proximity of critical point might influence isentropictrajectories (nB/s = const.)

Critical PointTheoretical Predictions

Y. Hatta and T. Ikeda, Phys. Rev. D67, 014028 (2003)

Askawa et al., Phys. Rev. Lett. 101, 122302 (2008)

Page 21: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Critical Pointmt-Spectra of Baryons and Antibaryons

Christoph Blume WWND 2010, Ocho Rios, Jamaica 21

Expectation: B/B ratio should fall with mt

Askawa et al., PRL. 101, 122302 (2008)

Expectation: B/B ratio should fall with mt

Askawa et al., PRL. 101, 122302 (2008)

No significant energydependence of slope aobservedK. Grebieszkov et al., Nucl. Phys. A830 (2009), 547c

Page 22: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Summary

Christoph Blume WWND 2010, Ocho Rios, Jamaica 22

How to probe different regions of the QCD phase diagram ?

Variation of center-of-mass energyGood control parameter to move around in phase diagram

Variation of system sizeChanges only relative contribution of core and pp-like corona (if core-corona ansatz holds)

Change in T only apparent, μB = const.

Search for critical pointFirst results from multiplicity fluctuations negativeNeed for better observables

Multi-dimensional (scale and pt-dependent) fluctuation studies

How to probe different regions of the QCD phase diagram ?

Variation of center-of-mass energyGood control parameter to move around in phase diagram

Variation of system sizeChanges only relative contribution of core and pp-like corona (if core-corona ansatz holds)

Change in T only apparent, μB = const.

Search for critical pointFirst results from multiplicity fluctuations negativeNeed for better observables

Multi-dimensional (scale and pt-dependent) fluctuation studies

Page 23: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

23

Backup

Page 24: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

System Size Dependencep+A Collisions

Christoph Blume WWND 2010, Ocho Rios, Jamaica 24

No clear evidence fordecrease with Npart

Significant decrease visible only for anti-lambda

Data not fully consistent

NA57: F. Antinori et al.,J. Phys. G32 (2006) 427

NA49: T. Šuša et al., Nucl. Phys. A698 (2002) 491c

No clear evidence fordecrease with Npart

Significant decrease visible only for anti-lambda

Data not fully consistent

NA57: F. Antinori et al.,J. Phys. G32 (2006) 427

NA49: T. Šuša et al., Nucl. Phys. A698 (2002) 491c

Page 25: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Critical PointDi-Pion (Sigma) Intermittency

Christoph Blume WWND 2010, Ocho Rios, Jamaica 25

π+π- Pairs above di-pion threshold

Factorial moments F2(M)M: Number of bins in transversemomentum space

Subtract mixed event background ⇒ ΔF2(M)

Search for power law behaviorΔF2(M) (∼ M2) Φ2

Φ2 : critical exponent

Φ2 > 0 for Si+SiCoulomb effects becomean issue for larger systems

π+π- Pairs above di-pion threshold

Factorial moments F2(M)M: Number of bins in transversemomentum space

Subtract mixed event background ⇒ ΔF2(M)

Search for power law behaviorΔF2(M) (∼ M2) Φ2

Φ2 : critical exponent

Φ2 > 0 for Si+SiCoulomb effects becomean issue for larger systems

p+p, C+C, Si+Si at 158A GeV

T. Anticic et al. arXiv 0912.4198

N.G. Antoniou, F.K. Diakonos,and G. Mavromanolakis

Page 26: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Christoph Blume WWND 2010, Ocho Rios, Jamaica 26

Critical Pointpt-Fluctuations

Measure of pt-fluctuations

Energy dependence of pt

No significant variation with sNN for central collisions

Trend reproduced by UrQMD

Measure of pt-fluctuations

Energy dependence of pt

No significant variation with sNN for central collisions

Trend reproduced by UrQMD

Page 27: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Christoph Blume WWND 2010, Ocho Rios, Jamaica 27

Critical Pointpt-Fluctuations

pt-Fluctuations as a function of B pt-Fluctuations as a function of B

NA49 data:Phys. Rev. C79,044904 (2009)

B from stat. model fit:F. Becattini et al.,Phys. Rev. C73,044905 (2006)

Amplitude offluctuations:M. Stephanov et al.Phys. Rev. D60, 114028 (1999)

Width of crit. region:Y. Hatta and T. Ikeda, Phys. Rev. D67, 014028 (2003)

Position ofcrit. point:Z. Fodor and S. KatzJHEP 0404, 050 (2004)

Page 28: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Christoph Blume WWND 2010, Ocho Rios, Jamaica 28

Stronger n-Fluctuations seen in smaller systems

Hypothetic critical point (CP2)at T = 178 MeV and B = 250 MeV

Stronger n-Fluctuations seen in smaller systems

Hypothetic critical point (CP2)at T = 178 MeV and B = 250 MeV

Critical PointSystem Size Dependence of n-Fluctuations

F. Becattini et al.,Phys. Rev. C73,044905 (2006)

Page 29: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

29

System Size DependencedN/dy at Mid-rapidity for Λ, Ξ, and Ω

Transport models

OK for

Slightly below

Too low for

UrQMD: H. Petersen et al. arXiv: 0903.0396

HSD: W. Cassing and E. Bratkovskaya,Phys. Rep. 308, 65 (1999)and private communication

Core Corona model

OK for and

F. Becattini and J. Manninen, Phys. Lett. B673, 19 (2009)

J. Aichelin and K. Werner, arXiv:0810.4465

Transport models

OK for

Slightly below

Too low for

UrQMD: H. Petersen et al. arXiv: 0903.0396

HSD: W. Cassing and E. Bratkovskaya,Phys. Rep. 308, 65 (1999)and private communication

Core Corona model

OK for and

F. Becattini and J. Manninen, Phys. Lett. B673, 19 (2009)

J. Aichelin and K. Werner, arXiv:0810.4465

Christoph Blume WWND 2010, Ocho Rios, Jamaica

Page 30: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Christoph Blume WWND 2010, Ocho Rios, Jamaica 30

Energy DependenceTotal Multiplicities

AGS NA49 RHICCentral A+A collisions

Only total multiplicities (4) shown

Chemical freeze-out

Experimental points in T-B plane

Analysis with statistical modelsBaryons (stopping) B

Strange particles T (+ B)

Phase boundary reached ?

Central A+A collisions

Only total multiplicities (4) shown

Chemical freeze-out

Experimental points in T-B plane

Analysis with statistical modelsBaryons (stopping) B

Strange particles T (+ B)

Phase boundary reached ?

Page 31: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Christoph Blume WWND 2010, Ocho Rios, Jamaica 31

Lattice QCD

General consensus: cross over for B = 0

Critical Temperature Tc

Depends on order parameter

e.g. chiral condensate:

or s-quark susceptibility s

Significant differences between collaborations(Budapest-Wuppertal, Riken-Bielefeld-Columbia “hotQCD”)

Lattice QCD

General consensus: cross over for B = 0

Critical Temperature Tc

Depends on order parameter

e.g. chiral condensate:

or s-quark susceptibility s

Significant differences between collaborations(Budapest-Wuppertal, Riken-Bielefeld-Columbia “hotQCD”)

QCD Phase DiagramPhase Boundary for B = 0

Figs. and table: Budapest-Wuppertal-Group,Y. Aoki et al., arXiv:0903.4155.

ssm

m

s

dusl

,,

2

Page 32: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Christoph Blume WWND 2010, Ocho Rios, Jamaica 32

QCD Phase Diagram

K. Rajagopal, MITCPOD conference 09

Page 33: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Christoph Blume WWND 2010, Ocho Rios, Jamaica 33

Strangeness in Heavy Ion ReactionsStatistical Models

F. Becattini et al., Phys. Rev. C69,024905 (2004)

A. Andronic, P. Braun-Munzinger,and J. Stachel, arXiv: 0812.1186

Assumption:

Multiplicities are determined by statistical weights (chemical equilibrium)

Grand-canonical partition function:

Parameters:

V, T, B, (s)

Allows in general excellent fits to measured multiplicities

Limits of applicability ?

Rare particles and low energies

Assumption:

Multiplicities are determined by statistical weights (chemical equilibrium)

Grand-canonical partition function:

Parameters:

V, T, B, (s)

Allows in general excellent fits to measured multiplicities

Limits of applicability ?

Rare particles and low energies

Page 34: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

34

Energy DependenceK+/π+ and /π--Ratios

Extended statistical model

Higher mass resonances included(up to 3 GeV)

Improved description of pions and thus of the K+/+-ratio

Limiting temperature reachedin SPS energy region

Equilibration due toproximity of phase boundary?

Extended statistical model

Higher mass resonances included(up to 3 GeV)

Improved description of pions and thus of the K+/+-ratio

Limiting temperature reachedin SPS energy region

Equilibration due toproximity of phase boundary?

A. Andronic, P. Braun-Munzinger and J. Stachel, arXiv:0812.1186.

Christoph Blume WWND 2010, Ocho Rios, Jamaica

Page 35: Christoph Blume University of Frankfurt Winter Workshop on Nuclear Dynamics, 2010, Ochos Rios, Jamaica Particle Production at the SPS and the QCD Phase

Energy DependenceK+/π+-Ratio: Comparison to STAR Data

Christoph Blume WWND 2010, Ocho Rios, Jamaica 35

STAR measurements at lower energies

√sNN = 9.2 + 19.6 GeV

Good agreement with NA49 data

STAR measurements at lower energies

√sNN = 9.2 + 19.6 GeV

Good agreement with NA49 data

STAR: L. Kumar et al., SQM2008 arXiv:0812.4099