che / met 433

23
1 ChE / MET 433 4 Apr 12

Upload: neorah

Post on 23-Feb-2016

67 views

Category:

Documents


0 download

DESCRIPTION

ChE / MET 433. 4 Apr 12. Feedback Controller Tuning: (General Approaches). Simple criteria; i.e QAD via ZN I, t r , etc e asy, simple, do on existing process multiple solutions Time integral performance criteria ISEintegral square error IAEintegral absolute value error - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: ChE  / MET 433

1

ChE / MET 433

4 Apr 12

Page 2: ChE  / MET 433

Feedback Controller Tuning: (General Approaches)

1) Simple criteria; i.e QAD via ZN I, tr, etc• easy, simple, do on existing process• multiple solutions

2) Time integral performance criteria• ISE integral square error• IAE integral absolute value error• ITAE integral time weighted average error

3) Semi-empirical rules• FOPDT (ZN II)• Cohen-Coon

4) ATV, or Autotuning5) Trial and error6) Rules of thumb

2

Page 3: ChE  / MET 433

• Select the tuning criterion for the control loop.• Apply filtering to the sensor reading• Determine if the control system is fast or slow

responding.– For fast responding, field tune (trail-and-error)– For slow responding, apply ATV-based tuning

Trial and Error (field tuning)*

* J.B. Riggs, & M.N. Karim Chemical and Bio-Process Control, 3rd ed. (2006)

3

• Turn off integral and derivative action.• Make initial estimate of Kc based on process knowledge.• Using setpoint changes, increase Kc until tuning criterion

is met

Time

y s

a b

c

Page 4: ChE  / MET 433

• Decrease Kc by 10%.• Make initial estimate of tI (i.e., tI=5tp).• Reduce tI until offset is eliminated• Check that proper amount of Kc and tI are used.

Time

y s

a

b

c

4

Trial and Error (field tuning)*

* J.B. Riggs, & M.N. Karim Chemical and Bio-Process Control, 3rd ed. (2006)

Page 5: ChE  / MET 433

Kc

tI

5

Kc and tI levels good?

Page 6: ChE  / MET 433

Feedback Controller Tuning: (General Approaches)

1) Simple criteria; i.e QAD via ZN I, tr, etc• easy, simple, do on existing process• multiple solutions

2) Time integral performance criteria• ISE integral square error• IAE integral absolute value error• ITAE integral time weighted average error

3) Semi-empirical rules• FOPDT (ZN II)• Cohen-Coon

4) ATV, or Autotuning5) Trial and error6) Rules of thumb

6

Page 7: ChE  / MET 433

7

Rules of Thumb

• Flow Loops: typically PI controllers; PB ~ 150;• Level Loops: PI for tight control; P for multiple tanks in series;• Pressure Loops: can be fast or slow (like P control by controlling

condenser)• Temperature Loops: typically moderately slow; typically might use PID

controller; PB fairly low (depends on gains); integral time on order of process time constant, with faster process derivative time ~ ¼ the process time constant.

* D.A.Coggan, ed., Fundamentals of Industrial Control, 2nd ed., ISA, NC (2005)

*

smallerbecanIt

min1.0It

** W.L.Luyben, Process Modeling, Simulation and Control for Chemical Engineers, 2nd ed., McGraw-Hill (1990)

**

sec sec

Page 8: ChE  / MET 433

8

Higher Order Process

Page 9: ChE  / MET 433

Feedback Controller Tuning: (General Approaches)

1) Simple criteria; i.e QAD via ZN I, tr, etc• easy, simple, do on existing process• multiple solutions

2) Time integral performance criteria• ISE integral square error• IAE integral absolute value error• ITAE integral time weighted average error

3) Semi-empirical rules• FOPDT (ZN II)• Cohen-Coon

4) ATV, or Autotuning5) Trial and error6) Rules of thumb

9

Page 10: ChE  / MET 433

Feedback Control• Design

Disturbances:• Load• Setpoint

Questions:• Type of controller to use?• How select best adjustable parameters?• Performance criteria?

Guidelines:• Define performance.• Obtain “best” parameters, for• Select controller with “best” performance.

10

DICK tt ,,

Page 11: ChE  / MET 433

Feed Back Control• PID controllersProportional:• Accelerates response• Offset

Integral:• Eliminates offset• Sluggish responses• If increase Kc, more oscillations -> unstable?

Derivative:• “Anticipates” future error• Stabilizing effect• Noise problem

Controller with “best” performance.• P – only if can• PI – eliminate offset• PID – speed up response of sluggish

systems (T, comp, control; multi-capacity systems)

11

Page 12: ChE  / MET 433

Examples:

12

Page 13: ChE  / MET 433

13

Page 14: ChE  / MET 433

14

Page 15: ChE  / MET 433

15

Page 16: ChE  / MET 433

16

Page 17: ChE  / MET 433

17

Controllers:P-Only:

sMcG

sE

)()( tctrKmtm c cKsEsM

)(

P-I Controller:

sK

sEsM

Ic t

11)(

dtteKteKmtmI

cc )()(

t

P-I-D Controller:

ss

KsEsM

DI

c tt

11)(

dt

teddtteteKmtm DI

c)()(1)( t

t

Dt Derivative (rate) time [=] time

Chapter 5 ~ p 183

Page 18: ChE  / MET 433

18

Derivative Action:

P-I-D Controller:

dt

teddtteteKmtm DI

c)()(1)( t

t

t

)(tR

)(tC

A

dttCdslope )(

t

)(tR

)()(tCte

A

dttedslope )(

)(te

)(tC

dt

tCddtteteKmtm DI

c)()(1)( t

t

Page 19: ChE  / MET 433

19

Derivative Action:

Another potential problem: noise

t

)(tR

)()(tCte

A

slope

)(te

)(tC1s

sfilterD

D

tt

2.005.0 small

Page 20: ChE  / MET 433

Derivative action:

PID

• Reduces overshoot• Reduces oscillations• Recommended for slow/sluggish processes (speed up

control)

Advantages:

• Susceptible to noise• Filtering (or averaging PV) introduces delay• 3rd tuning parameter

Disadvantages:

20

Page 21: ChE  / MET 433

PID ControlPID Tuning• Tune for PI• Derivative:• Add in tD • Minimum response time• tD initial = Tu/8• Adjust Kc and tI by same factor (%)• Check response has correct level of integral action

21

PS: Try PID for HE process on Loop Pro Developer

Page 22: ChE  / MET 433

22

Rules of Thumb

• Flow Loops: typically PI controllers; PB ~ 150;• Level Loops: PI for tight control; P for multiple tanks in series;• Pressure Loops: can be fast or slow (like P control by controlling

condenser)• Temperature Loops: typically moderately slow; typically might use PID

controller; PB fairly low (depends on gains); integral time on order of process time constant, with faster process derivative time ~ ¼ the process time constant.

* D.A.Coggan, ed., Fundamentals of Industrial Control, 2nd ed., ISA, NC (2005)

*

smallerbecanIt

min1.0It

** W.L.Luyben, Process Modeling, Simulation and Control for Chemical Engineers, 2nd ed., McGraw-Hill (1990)

**

Page 23: ChE  / MET 433

23

ChE / MET 433