charged particle therapy, ion range verification, prompt ...2.1 physical rationale for particle...

145
HAL Id: tel-00556628 https://tel.archives-ouvertes.fr/tel-00556628 Submitted on 17 Jan 2011 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Charged particle therapy, ion range verification, prompt radiation Mauro Testa To cite this version: Mauro Testa. Charged particle therapy, ion range verification, prompt radiation. Physics [physics]. Université Claude Bernard - Lyon I, 2010. English. tel-00556628

Upload: others

Post on 01-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

HAL Id: tel-00556628https://tel.archives-ouvertes.fr/tel-00556628

Submitted on 17 Jan 2011

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

Charged particle therapy, ion range verification, promptradiationMauro Testa

To cite this version:Mauro Testa. Charged particle therapy, ion range verification, prompt radiation. Physics [physics].Université Claude Bernard - Lyon I, 2010. English. tel-00556628

Page 2: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

THESE DE L‘UNIVERSITE DE LYON

Délivrée par

L’UNIVERSITE CLAUDE BERNARD LYON 1

ECOLE DOCTORALE PHAST

DIPLOME DE DOCTORAT

Présentée à Lyon le 14 octobre 2010

par

Mauro TESTA

Physical measurements for ion range verification in charged particle therapy

Directeur de thèse : M. Chevallier

Jury : M. M. Chevallier Directeur de thèse M. R. Ferrand M. F. Haas Rapporteur

M. C. Lacasta M. J-M. Moreau Président du jury Mme K. Parodi M. C. Ray M. D. Schardt Rapporteur

Page 3: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy
Page 4: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDE

I

Acknowledgements

ABCDEFCDD DDC DCCDDFEACDADDFCDCCEDD

CBEDD!"FDC#CAD AF DD C D CA FD CB FF D$EDAAD%CEDBCC&D'CAFD!FD(A!)DC*+"C

CB D! AF FF! D CA ACA C FF AD AC D DC ADC CC FDCE ADCC D CFDCEDB AFFCBFDCCDAACEF EFAD C D # ADCC! DD ACA DC BCC CFCE FF C FDCE CFFC CBADD+A*DFFACACACAFDCDCEDF,DCCCB D -CC . D ED FC FD FF FDCC C FDC E $D D %CF CF DC D D D EDB D CB ADFF "A ( "DF! C DA E D C ! FE C FC CB #C, ED FEBCFCEF,DCD//CACCF EFDADFFDE0ADF"C'CAF(+C AFF CBF D FF ACA ADC C D ADCCCCDCEAF DD CEDB CBEFF DC)B D FDCDD FDCDCEDB

ABCDEF -.1 (- C C AF D 'A, 2FDD! 'DF *DA!D 'CAFDCCC. D C CDD 'D*FF%DFED C CC3EC-.1 (-A!EDFCDCDF

CFF CB D C DDC0* EED C$DFCF&(DFF!'FDCC4D!#+F5C*A!"B*DFFCDFBCABCDEFCDFFD D D EA ADC D A DD CDA D D D&AF 2$! DA6F 2!FF"FFCD'CFD4

Page 5: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy
Page 6: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

1

Contents 1 Overview ........................................... ......................................................... 3

1.1 Particle radiation therapy.................................................................................. 3 1.2 Prompt -camera for dose verification and ion range monitoring in particle therapy. ......................................................................................................................... 4 1.3 Outline of the thesis.......................................................................................... 6

2 Radiation therapy: introduction.................... ........................................... 7 2.1 Physical rationale for particle radiation therapy............................................... 8 2.2 Radiobiological rationale for particle radiation therapy................................. 10 2.3 Particle vs conventional radiation therapy: clinical results and cost analysis 12

2.3.1 Clinical results ........................................................................................ 13 2.3.2 Cost analysis ........................................................................................... 15

2.4 Current and future ion therapy centers ........................................................... 16 3 Radiation therapy with ion beams ................... ...................................... 18

3.1 The physics of interaction of ions with matter ............................................... 18 3.1.1 Inverse depth dose profile: stopping of ions in matter ........................... 18 3.1.2 Range scattering ..................................................................................... 20 3.1.3 Lateral scattering .................................................................................... 22 3.1.4 Ion fragmentation: models and fragments .............................................. 23

3.2 The physics of interaction of photons with matter ......................................... 26 3.2.1 Photoelectric effect, Compton scattering, Pair production..................... 26

3.3 The physics of interaction of neutrons with matter ........................................ 30 4 Current and proposed methods for dose verification and monitoring in particle therapy ................................ .......................................................... 32

4.1 PET and TOF-PET ......................................................................................... 32 4.1.1 Ion range verification with PET ............................................................. 36

4.2 Prompt photon radiation ................................................................................. 37 4.2.1 Collimated Prompt Gamma Camera....................................................... 41 4.2.1 Compton Camera.................................................................................... 43

4.3 Interaction Vertex Imaging (IVI) ................................................................... 45 5 Physical measurements of the prompt radiation origi nated from ion fragmentation ...................................... ........................................................... 48

5.1 Properties of scintillation detectors ................................................................ 48 5.1.1 Characteristics of BaF2 – NaI(Tl) – LYSO – BC501 scintillators ......... 50 5.1.2 Pulse shape discrimination (PSD) for BaF2 and BC501 scintillators..... 54 5.1.2.1 PSD test measurements with a 241Am-Be source ................................... 54 5.1.2.2 PSD test measurements with 14 MeV neutrons ..................................... 58

5.2 Measurements of prompt -rays produced from C-ion fragmentation ........... 61 5.2.1 GANIL and GSI single-detector experimental set-up ............................ 61 5.2.1.1 Calculation of detection solid angle and field pf view ........................... 64 5.2.2 GANIL multi-detector experimental set-up ........................................... 66

5.3 Results and discussion.................................................................................... 68 5.3.1 GANIL and GSI single-detector experimental results ........................... 68 5.3.1.1 Time of flight (TOF) spectra analysis .................................................... 68 5.3.1.2 Time of flight (TOF) spectra conditioned by PSD................................. 73 5.3.1.3 Photon and neutron scan profiles............................................................ 77 5.3.1.4 TOF-spectra and prompt photon scan profiles comparisons between measurements and Geant4 Monte Carlo simulations ............................................. 82 5.3.2 GANIL multi-detector preliminary experimental results ....................... 84

Page 7: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

2

5.3.2.1 Time of flight (TOF) spectra analysis .................................................... 84 5.3.2.2 Multi detector prompt photon scan profiles ........................................... 86

5.4 Conclusions and perspectives......................................................................... 88 6 Geant4 Monte Carlo simulations for the design of a multi-detector multi-collimator Prompt Gamma Camera............... ...................................... 92

6.1 Application of Monte Carlo simulation codes in medical physics................. 92 6.1.1 A short overview of the code architecture and physical models used in Geant4……………………………………………………………………………..93

6.2 Simulations of a simplified multi-collimated and multi-detector Prompt Gamma Camera .......................................................................................................... 94

6.2.1 Basic principles of collimator design ..................................................... 94 6.2.2 Description of the simulation set-up....................................................... 95 6.2.3 Basic description of collimator imaging properties................................ 99

6.3 Simulations results and discussion ............................................................... 101 6.3.1 Influence of the collimator design on the detection efficiency ............ 101 6.3.1.1 Influence of the collimator thickness and position on the visibility of the collimator slit-pattern ........................................................................................... 101 6.3.1.2 Influence of the collimator thickness and position on the detection efficiency ............................................................................................................. 104 6.3.1.3 Influence of the collimator tiles and slit dimension on the detection efficiency ............................................................................................................. 108 6.3.2 Influence of the collimator design on the spatial resolution................. 109 6.3.2.1 Influence of the collimator position on the spatial resolution .............. 111 6.3.2.2 Influence of the crystal detector width on the spatial resolution.......... 115 6.3.2.3 Influence of the detection statistics on the spatial resolution ............... 116 6.3.3 Conclusions and perspectives............................................................... 117

7 Summary and outlook................................ ........................................... 121 8 Appendix........................................... ..................................................... 124

8.1 NaI(Tl) calibration for beam intensity monitoring....................................... 124 8.2 Electronics and acquisition set-up ................................................................125

8.2.1 GANIL single-detector experiment...................................................... 125 8.2.2 GSI single-detector experiment ............................................................ 127 8.2.3 GANIL multi-detector experiment ....................................................... 127

Bibliography ....................................... .......................................................... 129

Page 8: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

3

1 Overview

1.1 Particle radiation therapy ABCDE FCA A EDABC B BC FF B FF AAA B B AEA BF F B DE BC ABFDF !EFFBFFABC"!#$!$!%FFFDABC&A'A(ABBFBBDBC(BAAADAACDFFD)BABD EFFBAABA*DBBD +EFFB,-

FBDADEAEBAADAACDFDB'EF"!#BC FF A BA ( D( B FF( BEAEBABCECBEBBBFBEA&D. /BCCF $!!0 )(FAA FA F B EFCBEBBABBAAAEF BEED DA BC A 'FF FF ADFA AA BC AADAA AF (A BC BA B(BE FEBA BCB(BF FBE B D B EB AF( BAB A BC B EA FAB ABBFBFCC(AA12*AABAAE'EDEAFBBCDEBDBAB23456C$!!!

7CBD8!!!!A BBAA 0"9BDFFBBA BB A BA AFA :D DF DA EFABDBFBB%3BAAFFEDEB'EFA)(FAAABBAABBF ;DAC BB FF ADFA F B B BD "!!!A D FAB B B B A :D A AFF *DB EF .5 6C $!!9 < AD; F $!!9 % / F $!!9 F *DB C FB B; 5AFFAC C= -BCBAD 5-7 &EA 5E EB >!! A ( ADAACDFF %3BA 2B$!!0 CADFBBB CF FF BB )B(E $!!0 ( 7B % 7 F5E CFA ( A BC BADB ?D 5E6F 5E @( 7FF ABE BA F DA - 7 A CA BF B*7/*ADFBFFBFAABCFFCBAACBABABB$! "

FBD(3BABCCBFFDA A AFF F BAAF BAA B EB( A B(F :D 56C . - & 6C $!!0 2AA A BFBF ADA B ' F BEB DEBA BAAAA B BA B

Page 9: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

4

B BDF FAB ( FF FB B F A EEB(EABC:DEAEBBAAFBE;BBA'AB BC F B EB( BA AB B EBBE CB F FBA AFF FABE4AB;BCAAABCDFF4CCBEC(BFB3BABCFAAAEBBCBA:DBDFE BAB BC BA 4 CB A D BC CDD :DAFFBBBFBCBAADBAFAFA(F(AC1.&BEA FD(BC AAEA F4 BFFEBE3EE E%BEB E 7BB' 7E DFD4BDBD&D(F$!!0

1.2 Prompt -camera for dose verification and ion range monitoring in particle therapy

AFEBAFAF(BC%3B:DA AB EBB BC F E AFF FFFADBA@B$!!>@BABEAABBEB@*ADFBFFFEBCBABBCADEEBBF*F 00$&DBBABEAF4 " %CBEDFBABAAADABBCAAB((@*ADAA(BEAB?B%FBAEDFBAABAEFBADAA B (A( (FB EB BC BF E F F(@BF$!!C

)(FAA @* EBB AAEA B( AAFF A FCDC(CBABCF(EFAE:DB:DBD BD AAA E CB E BADB BEF @*EABBBFCBCB

CB E DFE B;( BC BE BB B:D CB B EBB A A A AA A BB( (CB BC BAA BC E F EF BC B AFC A BDF FFB D B A EAE F DF B BFBABDA CDBCBD:DABCCEDFAAB3ABCBFFBBEEBBBADBAE'DFCBEEDFCEBBAABDA@*BBDB( FB D( B BABBAFC3F(AEDFB A E BC BBC AB AB3 AF BC DEBD A EBB BDF (DF4FBB

CA'EEBAEADEBCBED3ABDFFBFBB?F$!!8DBC 3$EE'ABBC B4?F B%3BEAA CAFCBEBDBD 5)7/ CF %A $!!99+

Page 10: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

5

?BED +%8F BA E B @?? BFB BE BBA 234 A B ( CB %3BA BBEAEBADBDFCEB*AF $!!C A A BC @* AAEA A AADE DFCEB BC B E E DF A BF F7CEBBDAFEBAFFFBBFF$3+EECB234DFBBAAABAAB (FF B;F3 DF BC EAABA %BDFBE A EFA F EADE BC E BE BBA A CBE E ABBDFBBDF(FDFCBEBBBBAADBB234BAB

?BB( AEB BE BBA 4BDBE E BC CF AEADEA AA EABCBD'EFA3D(BADABCDF4DBAFF4ABCB4A?FACDABCDF EB A EA B ACF D A BC AFEF*AF$!!0FFBA4EDF3BA3D F EFB FFF CB A DE B EBB

A AA BA B B AA BC 'EA ( CBE 5)7/ 5-7 CFA 0"?BED +!"?BED $%8FBEAAB@??BEAE;BAADBCAEADEAAAEBBEBBAFA BF B (A DB 4BD DBF 23@4BAB B :DA EFB B FFB CB ABB3DBAEBG E3BC3CF AEADE DFA3A3AEB@-&2B:DAADAAA F DF BABA B E E3ADDA BCFBBAABBFBAABEAEAFB B AA CB AAAAE BC @-&CBEA BFF 'A( AD A CBE B(ABEDBBEBEBF BBAFFABEFEADFACBEEDF3BEDF3BFFEB'ECBE5)7/9"?BED +%8FFABCFA

7 FA BC AA A A AEDFB AD CBE5>?B%FBBBAAAACFDBCEAEAB CC AF ABFDB (F EDF3B EDF3BFFE @BE 5EE %E -(F BEF BCDBACBBBFFEBAA4BCBA(AAEFFADBABABEABAAF

Page 11: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

6

1.3 Outline of the thesis AA A B A CBFFBA AB (A FBDB BF B ABE AF EAA B AFBFBFBFCB DABC BABEBB(BFFBE B FB C ADAAB B BAA BC B:DA ( BC A BC AAEA CB 'F B A FABA CBE DF A A B FAA BC ABE FF ADFA 7 ( E AA BE BC B BCBBADBA BAE ABBCF BE BB EBB :D (FB%CBDADEEADBBAEBACBBAB3(CBFFDADFACBE@*FA :DA A B BE B B BFFEBE D3E %BEB E 7B B' 7E A% C(ABA 'EAB AFEADEABCBEBBCBE%3BCEBCBE 5)7/ 5-7 CF B B AA CBE BDFBB FA BC BFFE BE EE E AFFAABEBABAB(BD CDD FF FF BC BD :D 7 A' FE5> ?B %FB AEDFB AD A CBE B B AAAA CFDBCEAEABCCAFABFDB(FEDF3BEDF3BFFE@BE5EE%EFBFDABABDFBB4AADEE

Page 12: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

7

2 Radiation therapy: introduction

ABCDCEDFBBEAABBAACCBAEDEE CAF FA AB BAAA BA B CEEA BBAAF FAAF FBABD BAF A FFAFFE AB BA A BD CAF AB AEB ABCD F CABBA C B AEAB AF ACAE BA ABF !"BDF F BA#A F AB ABFABD $%& D AA FA A A CCE FBEDFFEDBABAECBAFAFCEF AEEE'FBABCDFAEABACBAFBAFA A B FCB F F CFFEA A FBB AEDFFAF (AA EAF CBCEA D B A BEEA BEFAFCCEAAEABAAAEDFFAFEFAFAAFA)ABAEFDDABFBAAAAFA BD AFA A B"EA F AA AA BFAABE AEE CBAAF A BACEAA E AABD !"BDFAF*AABD+,'A-."AABD/"BDF*C,0A-.CBADAB AEAB EAB AEABBF CBEED ABA A EF AACAEABAFACFAFBCFEEABAAAC"FAA BF 0BAAB A BB A1AF E'A (AFD0EA ABCD *(0 . FEE BAFA A FA BD DAEAB FCEED "B CF AF B ABA BBCBEF*2A,3.

4AACFFFBABAB!"BDFAEFAAA ( A $&5F AA C AFF *CF. A AA CBCFA BBABCDAAB"67 CAABBAAFEEA8FBB9AAABC*:EABAE$&5&.(AAFA CF BA AAED BA A FCCA AD BA FBA D ACFAED BA EA DA BA B AAFEA F EAF AB FAB CB ABF BACBEAF B CBF AD F BAF A E FA A CFFCC BA ;AABAEAFF BEA BEF CF ABA FCCAEAABABABAACCBAED$$CAFAAE'AACAAEEBA1BAAF*<:B,.

=FABF*AABDB,50A-.AAFAACAEFBCF!"BDFBAAB67 'AFABEEEDABAFBBA BBAFF BF E AABD BACBAFA DBA FA A B BABCD A1A AD BA FEEEEED ACEDA B AB BAA *0>?BAFAB ,5.EAABCDEAABDABFFFEDCFA*<:B,.

( ?B;AB @CBA ABCD *?;@ . ABE B E AABD ABF*AABDB,$A-.BAACEDABBAFE"BFBACEA B"B CF F A1A ACEF A EAB

Page 13: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCCDEFCEDBCDE

8

BA$?FBAABCB$AA56EAFAABD"67 BCAEED EAE D AEEF ABA BF *?B A E $&&. 4AABE ?;@ BEF A AA CABBABEA *?AA$&&5.EEE AAAACEAAEDFAFFEFAEBBAFABEBAFEEBBDBAFABF *( : A E ,B. ;AABAEAFF A F BE CBAAB FEEE?;@ FABC'AABBEEDAFABAAAFAABAEEFAEDFFAF

2.1 Physical rationale for particle radiation therapy (BABABAACDFEEAEBABCDAFA BACBEA E'ACBFBAAB F *B BAA $C).FCBCFAAABBAFAEAAFAACFFF'AABA,"$(AADBF!"BDFB/"BDFFACAEABAFA A FBA FA BAF FFA AC BA CBEAF ACFEEA AABD A DDF FBAABA AB AED F " ABABAAB 67 F E" FA AD ACF AABD F ABABAFBAEDEEAA?B"CA'*?B>:EAA$&.

figure 2-1: Comparison of depth-dose profiles for carbon ions and photons from (Schardt et al. 2010). The inverse depth dose profile of carbon ions compared to photons is favorable to treat deep-seated tumours.

4AA?B"CA'BCBEAAAABDFBBABAABA B EA FAABE ?B"CA' BAF B CBEA ABAAABAFAAFCABCFABAAFEEA4CBA")?B"EA'*4)?E.FF'AABA,", AABCBEAFBAAEA4)?E ABABA A BAEAA BA E?B"CA'BACBAF A FBA CDFE FA F EEA D A BAAEE4DFAF* E4.*0:BFABAE,.

Page 14: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

9

ABABADCEEDDFCB4)?EGACBEAFA AABD F AA B F FAB FBABF ABA'AFFAF CBA ?B BAF CA' AA B ACF*CFFA E. B EABAED A AABD A CBEA A FBAED FA A AEABB AEED DABE A AC*AE. (AA A FABBAFABF AAF DCEED FA CFFA FDFAF F A B' BA AA1EDCBFABDABF

7A B A EABEF A BEAA1AFBAFEEDACEDA (CFFAAFC A EBBACBAD AAEABBFBFBAAFABAAAEEAAEBAF BA B F FAA ADF ADA A ( A FC FFDFAFCAEAFAAB#EABEBAFDFA F F *AABAB A E $&&3. 4AABE AB FEF AAAEE8A9EE8CFFA9AEABDFDFAFBAFFFABFA *2 @A E $&&3. ( FAABAEAFF EDFFA AFCFCBAFBABEAAFFACBEAF CFFA AE *:D A E ,$. (AA CBA CFFAFDFAF F EA FA A BA EA F ABA AFAFA F A B F AA ACBEEDA BE CAFB 'AF A AABE CBEA AFEAABEACEAFFACF*4BAE,$.EED DAF D EEBF AAB FC ACBECB ABAEAAAAAAABEFAFAFCFA A1AF A FBED"B B BAA F CFFAAFCFAFEA*<:B,.)AABAACBEAFFAAAEABDFDFAFFABAABF EFF CAF A1AF F F ECEA C*BAF. B FA AE AAAF FFEEDBAFA A F A *?AB AE ,%.BACBFCCB F BA B' EABE F BA BAED CAFA AAFFDFAABABFBAFABBABBAF*A#AE>?AB ,$. ;AABAEAFF ACBEAAA A AB ABFBABABAEAFAEBAFAFEA

Page 15: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCCDEFCEDBCDE

10

figure 2-2: Superposition of several C-ions Bragg-curves with different energies (red lines) to produce a Spread-Off-Bragg-Peak SOBP (blue line) from (www.gsi.de/forschung/bio/).

2.2 Radiobiological rationale for particle radiation therapy A A AAB F AB CBF CF F ABBEEAAFFFAF AAEA?EE7AAAFF*?7.FAAA1,"$FAB!"BDFACBAFAEEAA

isoeffection

raysX

D

DRBE −= 2-1

@B FFA CBEA ABCDA?7 $ A ABAAE F F 3"B A ?B"CA' BA F A FAA ACB BA,"3 A?7ACAFFAABECBAABF=BF?7ACAFFAEAAEGFFEEDABBEABFAFEABBEBABFAF BFA A DCE FEAB FCA A AEE C BAFCFABAF *:2ADBAB $&&&. 4A ACAF A AABD B 67 ACAABCBEAG?7BAFAF67 C"ACAAEAAABAFAFBFEEAB67 *=BFAE,. BA?7 ACAF A CBEA DCA B AAB CBEA A ?7 FDCEEDFAAB67 F*2ADBAB><:B,B.6F?7ACAFABFAFDABBAAEEEAAABABFAFDAEABA?7*:2ADBAB$&&&.

'A EE ?7 ACAAAF CDFE AE F ACEAAA FBACBAFAFAABAAAAAABCDAD"F CBF FA CBF BA ED FABA A?7H$$*EAAE,,.ABABAABACDFEFAC#F A1A ?D BF AD"F A ?7 F A F CB1D EE BAA CE FA AABAF A C"A1EAFADECEAFBACDFEFAFBACBAFAAACCABCBBA,"3?7AFFBACBAFAFAEEAFBAABABDAEABABCDBAA*7EFFFFABAE,%.4AABECDFEAEFAAACBCFABAABCD*4E#>

Page 16: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

11

7EFFFFAB,5.EEDBAAAAAEEEDCEAAAAABCD AABF A BAA CAF C CBAFA A 6BAA?AB'AEAD 6BBD *6?6. ?AB'AEAD *I4. BAB FCEA EAB 1BAE *JEA $&%C. F FA ( F FA ABF AEE FBEFAFBAAF B ABA CBEAF 67 *?E'AED A E $&5&. 'EAA A CF A CBEA AE A AAD (0AEAEABB*A(0@.@*KC.AECDFEAEFFAAFBAAFFEBDEAEEEAFABFBE@" F ABBA B CBB ACABAA F ABF A1EAAAAAFF*:AE$&&&.A<AFAEEF LB4ABABF*<4(. JBF *<ABD. F EEA 6E 7A 0AE FA B'FBBA EEF AEE BAFCFA !"BDF F CCEA EEACEA3JEAFAAFC"A1EAFA*4E#><:B$&&B.AFABAAECDFEAEF FCBADABAAEDAAAFEFABAAFJ;FEAEAFBBA'FFAAAFA *7EFFFFAB>4E#,5.EAABBFCBCFA EAA FF BA # B A AEF A AABFFADAFABAFFECBCABAFFAACF*?AAAE,&.

figure 2-3: Up: homogenous biological effective dose distribution (green line) and inhomogeneous physical dose distribution (blue line) obtain by superposition of different C-ion Bragg-peak curves. Down: C-ion RBE as function of the penetration depth in water. The flat biological effective dose distribution is obtained by multiplying the physical dose by the RBE; from (www.gsi.de/forschung/bio/).

(ACAAEDBACDFEAEFCAAEEFAFAEEAD E4AEEDEDABAEFAABABBA EA *0 :BFAB > 4E# ,. F F BE F'AFCAEED A ECEA BB AEF BA CCEA FA A ?7

Page 17: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCCDEFCEDBCDE

12

ACAAAF BA CEA ABABA A CDFE FA FB DBAFEA1AAAFBABCBAAFEEFA EE A B EA FCB F F CFFEA A BEBF*FAAACCABCBBA,"3.

2.3 Particle vs conventional radiation therapy: clinical results and cost analysis AEBABCDBAAEAEAB$AFAABEA 'EE EE A AB AEEF EA #AB FA E A A AFBB BE FFAF F F CBE AEA A AEA FA ACFA A ABA AEF A BB CBF;AABAEAFF A EF D DABF E CBBAFF F AA A AABB A FA A BA EA FCB F F CFFEA AABBEFBBAF

A F A AAB FCBA A B FBB AED FFAF F ECEDAABABAFBABAABBFAEABA( FD A FA A ABA AEF F EA AB EBAB EAFEA ABA BB AEFFC A BA@BBAFAAB(AFD"0EA ABCD*(0 .FEC"FA EA B A FA FAFA EEAB CBAF FA1A F AA A CCB A BD EDBFFAEB*2A,3.(AB(0 EDAAABEFCAABBAEFFCEEDEAE"EAEEBF *06@. AA A B EAA F BA B A ABA(ABEFDFAFE'A ABCDABD*M.ABAFBAFAEABAEABBFBAEDAAE@"BBDB3CNBACA*0'AAE$&&&.0BABAAEDABBE(0 CCBO4EA"BDFAAAAECA*2AE,%. F E ABAF F ABE CB *CB-0 .(A4EA"BCCBABAFAFDEBDAAEAABAEFCAFBADEEDBCEDD06@ F A BD BAF B A CAF ABABA A BECCBAF A FAEA A EAF F DBA CBEA AFBFAAB EBAAED FFAFFAA AB *?BAE>2A,&. (AEDAE ACA FBAAFEE EDFAEC FCA B FA FB A B EA AA F EAB ABA F C F BAB (AA BAAABAE AFFA BAEFFAFEEAADFBA$",AF*?BAE,&.ABABECBAEFAAAFABEAFAFFFFEEABA$FCEFFEEA@DAB'A*EABKBAE$&&5. AAEE AEAAF A @DAB'A FDFA BA BACBAFAA D . A6(;@ AEABB A B B EEF BA ABAAF BAA FAB BD F A BA A A.BAE"AAABABAAABB

Page 18: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

13

AEA A AA FA F'AEAE B AAB CF B BEDE#ABA

figure 2-4: Comparison of treatment plans for large tumour volumes in the base of the skull. Left: plan for carbon ions, two fields of irradiation. Right: plan for IMRT nine fields of irradiation. The irradiation with C-ions results in a substantial reduction of the integral dose to normal tissue and better spare of critical structures. Picture from (Durante & Loeffler 2009).

2F AF B"BEABCDAAACCBEAF FFEECA1AFEEAFAFABDBD(BA,"BFCBAFAAACBFAAABAACEFBEBABAF'EEB@"F(0 (AAEDBBAEFB@"FCBAAFAFAAADABAFA(0 BBAEFAAFCABBABAACFACBEAFCBACFFEBADFBA,"$(FEFEABEAFFACEAAFABFBAFEFFFEBAA ABE FA A BE FFAF A FCB BE FBBAF*JBA>6AEAB,&.0BAABBBCBFABEDAAACFFAAEEDEEAABAFAAFA(FFCBEDBABCBFFAABCBEAFBA A1CCA BAF F A FA B @"F FA F B EE ABAAF A AACABBA AAF ABE"BF AD"BD E EBAD E F DA CABE A AAAEAB ( ABCD@AAB*=FAE,%.

2.3.1 Clinical results FEBADAABACCAFAAABAACBFFABEAAAACBEEFAFABEAEBABCDACBDBEFA"EBEFFAEBFBACBEBBAACBCABBFABAAEAABF' B"A BE"FFA CEF F ACAA ABAFAABAFFAFAFDABDDCAF*JBA>6AEAB,&.0BAABABAAABEFABEFFAABF EAB BF' AAEC FA AB AB BAA CBBBCBAACABCD*;AFABAE,&.

Page 19: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCCDEFCEDBCDE

14

0FACAFBAA@"FFB*CCBAEDB.AAAEACBFCAAEECFA("((BEF)AABEAFBF@"FFABBAFFAFAAFEDAFADCAFBFBAABDBAFCFAAEB FA FAF AA CB ABCD EA ,"$ FF CBF EE BAFEF B AE B ABCD CF @"BAAFCABBA;(4<4(

Indication End point Results Photons

Results Ions NIRS

Results Ions GSI

Nasopharynx carcinoma

(advanced state) 5 year survival 40 - 50 % 63 %

Chordoma Local control rate 30 - 50 % 65 % 70 %

Chondrosarcoma Local control rate 33 % 88 % 89 %

Glioblastoma Average survival time 12 month 16 month

Choroid melanoma 5 year survival 95 % 96 %

preservation of eyesight

Paranasal sinuses Tumours Local control rate 21 % 63 %

Pancreatic carcinoma

Average survival time

6.5 month 7.8 month

Liver tumours 5 year survival 23 % 100 %

Salivary gland tumours Local control rate 24 - 28 % 61 % 77.5 %

Soft-tissue carcinoma 5 year survival 31 - 75 % 52 - 83 %

Table 2-1 Comparison of clinical results for conventional radiation therapy with photons and C-ion treatments performed at NIRS and GSI. C-ions are superior to photons for all the end points under consideration; from (www.gsi.de/forschung/bio/).

A;(4A@"FBACBEBEDAAAFBFAAA'F'EEFAEEABCBFAAFFFAFCAEAFFAF BAE AB AFCAEED B FEE DCAF F AE B F BAA AD * F A E ,5. A BAFEF EE BEF <4( A F @" ABCD F ABD AAA B E"BA ABAA"BA BFBF F'EE FA BF ADF BF *4E#"7BAB > F ,5. AAED A =BAAABPA E4P BA#A A BAEAA B ABCD BAABFAAABAFDAA4BAEAFFCFAAF B ABCD F CB C ABCD FAAEA$AACBABABAEABAAF@"FFAA

Page 20: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

15

0BA AABEED A EA E FBA BA EEACB CB @"F AB FABA B ABCDCBEA ABCD F FCABB (0 B AF BEA B DCAF CBEB EBAE A B BFBF AFAAF'EE*JBA>6AEAB,&.;AABAEAFFACBFBAFEFA AFCAEED @"F AA B EBAB AB CAF ADFECFFEDACBA B#AEE BEFC (0 CB ABCDEFDFAAE FFAFA A EE CAF CAE FCE BE BAEABD

2.3.2 Cost analysis A AA A F"AA B CBEA ABCD F FEE ;EA FAB F A AAB A FF AEABB AAEABD A1AF BA FA D EAB EE A *JBA >6AEAB,&. ABBAEABBAFAAAAFFCBEAABCDFFBA"CBEAEBAEDCABBABFBAEAED FFAFFA BAB *EEF"KAF A E ,%. ?AFAF ABBAFAABAAEF BFAE'AFE CBA AABA A BAEA C ABF F B F A BAAED ( BA ," CBA ABA FF B ABA ABBAAFBAF2ADFABACBBABCDBAFEEDBAACAFAAABAFABBAA=BAAABAEAFF ACAB BAEBED ACEDA AABCD BAAF4EB BAFEF A AA A B AA FD A F"AAAAFFBABCDBF'EEFAB*KF'AEAE,5.(FCBEBFAAEFFBABCDEBAACAFAF"EAFFFAAAFACABCDAAAB@"FABAFFEAAFBCAFFFCBABEBAEAFF FAABA FA AAF ( F AABAEAFF CFFEA AABE#A FEF EE B DCAF FA A AAA A F AAAAFF CBEA ABCD F FEE FBA ABABA A1A BABFAA FAAFFBDFCCBFADAFEDA1A*EEF"KAFAE,%.(FDFABAFAAAFEEFFBBACBEAABCD AAB *CCBAED $ EEF AB. EE ABAFA A BAED F BAFE A ABAF EBA ABE CAF 0BAABAFAFFAAAAFAEEACAFAFBABABCD ED =BA BBAFC $$ EEF AB CAB DAB *33 AFAFQDAB.ED53EEFABBAFCABBABCD*$CCAFQDAB.*AEAB.

Page 21: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCCDEFCEDBCDE

16

figure 2-5: Comparative average costs for different cancer treatments. Proton and carbon ion therapies are slightly more expensive than the average cost of cancer treatment in France but nevertheless cheaper than regularly employed chemotherapy treatments; adapted from (www.etoile.org).

2.4 Current and future ion therapy centers ABFCBCFEFCBFCAEEDAABFABCDBAB FCABB AC FA FB AF ' $&BC *2EF > ABF$&BC. AA EAB A BF CAF AF BAF ABF ABABAACBFBA$%B"FDBDEB6BAA?AB'AEAD6BBD 6?6 *I4. * F A E $&%. A A A $&F A BFAB BAAF 7BCA ABA CABBA CBF B AFDBDEB A <F2ABAB (FA ICCFE *4AA. *2 @ A E $&&3. EA A ABED $&CF A ABB @DEB 6BBD*I4. AA A BF EE"FA AAB FA CB B AB ABCD*4FABF ,. 6?6 B $&5 $&&, , CAF ABA BAAAA"FB$&5$&&,B3CAFABABEF@B4;AF*CACF. ($&&$A AFEEAFCBABCDEAF A BE A 6 6 IABFD0AE @AAB *[email protected] I4FA ABA $BCAFAAA BAA F FABA A BF FCE"FA AAB B CBEA ABCD ( AFADAB=BAA0ADDEBFFEEAA@ABAA6FFA ;A CBA C30A-CBF B EB B BAAEAAFADABEBFA)BFD,0A-CBFDB"DEBFABABAEFAEDAEFAA@ABAAEBPBCAD)BFD*@E).*2 @AE$&&3.0DAFBAABCDBAFEEFA EAB CDFF AEABB E'A A AAD (0AE AEABB*A(0@. @ *KC.ABA $&&B A BFCAF BAA@"FA<AFAEEFLB4ABABF*<4(.JBF*<ABD.ABF7BCACAFBAA@"F $&&5)AFA A

Comparative average cost for different cancer treat ments

2 500 € 6 400 €

24 000 € 25 000 €

30 000 €

40 000 €

50 000 €

0

10 000 €

20 000 €

30 000 €

40 000 €

50 000 €

Conventional RT

IMRT Average cost for cancer

treatment in France

One year chemotherapy

with Herceptin

Proton therapy

Carbon ion therapy

One year chemotherapy

with Nexavar

Page 22: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

17

AAEEA EE BAFEF A BCAF @BCAF<4(FAABEFCE"FAABCDABAFAAACBCFABEA A AAD AFA A EAF F A B CB BAAF A BF A CAA AD *KC. ABA FA ,$BA,BCAFAAABAACBFC@"F(7BCAAAAD( ABCD@AAB*A( .AAAEAB*<ABD.FBAA@"BAAF;AAB,&

A EBEA ABCD @CABA <BC *E @)<. FED BF AABCAF BAA BAABEA AAE ACABACBCFACBEAABCDAABFBABFBAABACB *CACF. 3 CB ABCD AABF 3 @" EAF BABBAED CABE ABE :AAC BAB A CBCFA CBABCD AABF F A BAB BAB AFA AB F BABFAFAABECAFBAEAFAEEEEFEACBEAFF B 'ADCBF ( F A AB AEA ED 7BCABAAECBBAABFBAACFAFB0BB *<ABD.:AE *<ABD. E *(ED. *E><:B,5. 0BAAB =BA A E ABA B BABCD 7 )(67 FBBAEDABEEAAEFCFAAEEBFFBAFAAFBACAB6DDADAB,$=BABBAAABAFABAABEEA@AJ7FBBAEDACFAAF@A

4AABACBEAABCD$&5BC$CAFAAABAA CBF B & CAF BAAA ABCD ABBA CBEAF AAAB CBAFA EE A B "ABCD ABAFCABBABCDCBBBF(AABFFAAABACE CBFAAAACDFE FAEADAAEEAAAAFFEABFEEAABFE'AAABBACBEAAEEFFAA AAF BA CB EBAD A ABA AE *< :B,.;AABAEAFFAFFFFAAFFABABCDFFEE*?BAAE,$.AAAAEAB( ABCD=ED*A( .FABEFBACEAAFAACCEAA)"FFAAABF*AABABAE,B.

Page 23: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEFA

18

3 Radiation therapy with ion beams

3.1 The physics of interaction of ions with matter

3.1.1 Inverse depth dose profile: stopping of ions in matter ABCDEF EA AB CB DDA ADEA AB EED DC F E FAAC CFEEF AE DC ACA AB D A C DB B ! D A " CDBA#EA$B%E%BABAAB$AED EA A# AD E%BEF F%%EE&E BA%FAAB B$AB A#%CADECB % BE$ BAED EDDB%%#FB%%%FAEFCCEC&A EDB E ACA EEDA 'D%% %E( A E A CA " E &BA %FAEFCCEC&AFB)&%%FAE)AE$%FE#E)#**%FAD%B '* +( '*%F +( ACA E DBE B AD%B )#',B+!(

( )

−−−−−=−

21ln

2ln

4 222

2

24 δββπ

t

e

e

pt

Z

C

I

vm

vm

ZZe

dx

dE

3-1

DBEEF%FAEFFBACA-FE%EEBEFD)ABABBBAACFE$%#BBFBA %FA E FB%% B EE.BE A# EDECB BA ACFE$%# %% B E# FAAFE A /DBE E$B%E A FEA %E CA-FE% E AE %BAA B D&EFACA$%FEE%BAABB$%FE#BA%FAB%FA E)D B CA-FE%E EC%E B CA-FE%E BA D%%# AECC EA %FA B B B%% BA %FA FB )EE.0&$ADBEFB)1%&AAE)#AC%BFECEF)#BCA-FE%FE$FBAE&EFB2EBFFDFABBCA-FE%FBADEAC%B#EE.BEBAF)EBECAF &E BA %FA & E $%FEE FAB $B%DFCBAB)%%FAA)EB%$%FEEBCFECCA-FE%$%FE#EFAE))#CEAEFB%AD%BACAEDBE3-2'*BA2B345/$B+!(

( )3/21251−−−= pZ

peff eZZ β 3-2

,AAEDBEE%%&BA#%EFAB&EFABE CBAEF% A# 5 ABF2 &$A %FAEFCCEC&AACDABCEADFEEFE$FBAEB FAE) E DBE 3-2 B B% BF B A# ABAB)%DAE E%FA F%%EE )F FCBAB)% 6 A B%%A B 6

Page 24: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

CAB

19

%FA )EE A# E F CACA# E FBE E EA%BAEEFBFAEDBE

B1ED A#% AB FAACE *ABCB2 '*AB 37%B+8(EABFBBCA-FE%$%FE#

03/2 vZv pp ≈ 3-3

&A E *A $%FE# E $B%D CA-FE% $%FE#FAAC #CEFB%%# B$AB $%FE# )D %FA DAB% B E B,AE% ,A DBE E FB ) B E$%FE#B&EF B1EDA#% ECADFC%#CA-FE%FBABEEFAB&EEFABEFBAB&EEDA

,A E AE)%&2D%BEF F%%EE&E BA FADF%E)EFAE)DEEEFB%#A#%BEBCCECAF B $A# CBAEF% CB '%B & 9( E FFBE A#% E F%# FB%% DF%BA CCE C&A $B%DBAACABB%EEEDAAEABCDEFEA'$B%DACABA&)FBDB%%EEAEBFB%(

figure 3-1: Electronic (full lines) and nuclear (dashed lines) energy-loss per unit path length dE/dx for ions of therapeutic interest in water. dE/dx values are calculated with SRIM code (Ziegler 2004).

B% A#% E B D %FAEF B DF%BA CCEC&AFB)EAF%#%E2C#EFB%EBBA#CE)# EE.EABEBE EBEB% ED,ABCBAB%%%)BE&EBCBAEF%%DFCEEBE%EFBB)A)ABAEB%&EBE#FB)FB%FD%B&EAD%BACAEDBE

Page 25: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEFA

20

[ ] [ ]

××

××= −−

g

cmcmF

m

keV

dx

dEGyD

329 1

106.1ρµ

3-4

DBEB)A)EFB%FD%BE:AB#;:#<=2>B ! "ACAB%A#%CBAEF%

B%CB%AB$%%EBED)#BE&EEEEB%A#!FB)FB%FD%B)#EABEB%A#%BACAEDBE8

( ) −

ABC

D=0 1

0E

dEdx

dEER

3-5

,A B$# FBA E EAB% & E DBE 8 ACA B $A#F%BCCA1EBEBCA-FAB#BCBAEF%EFEBA $A# %E% FBA B AB$% B% E B ABE %E EDA && B FCBAE )& CA-F AB E &BA A E ABCDEFEAFB)BABE&EBCFEEFA#FB%&EB BFA$E '&A$ BD)ABE

BEFD)ACBAEF%(BAACABαCBAEF%&BCBE&BA&C%BBDFEEACFEEFA#

figure 3-2: Projected mean range for ions of therapeutic interest calculated in water with SRIM code (Ziegler 2004).

3.1.2 Range scattering 5 E FB ) E EDA ABE )& CCE C&A B *ABCB2 B B AE $AB% DAD FB AE BFA DA E E FE &E A#% $B%D &EF FB )FB%FD%B&EDBE)DEAB%E#BEEFB%%DFDBEA#

Page 26: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

CAB

21

% BAD E B$AB $B%D FFDA E %BA D)A F%%EE %&E& CAF E C E 2& B AB A A#AB%EB E E ACE)% A %BAA*ABCB2BDA AB E)B &E ACF FB%FD%BE )B B$AB A#% BE%CBAEF%BACAEEDAABAB%EEFAB&E CABE C E B E$BAEB% AD%E E *ABCB2 %BAA&E B B%%A E A EA EEEB% A# B E BACAEEDA8

A$AABAB%ECB%BCA-FE%CA *ABCB2 & E EDA E %BAA B FBA) *ABCB2B BAE B B C E &BA )FBD A EA E CFE ABAB%EBCCA1EB%#$BAEB E$A DBA A CBAEF%B'?FBAB%(BEEFB%%DFDBE$E%)EBA# EABFE )& EFE CBAEF% B %FA A ED BA BE ACE)% A AB AB%E B # BACACAEB%ABE)&%FABEB AABB CABE C B$EA E 1E)E B BAA&A *ABCB2 &E BCAEB%B%%E$B1BC%A%BE$ABAB%EEEDBDB)D@BABACAB%#@A E'ABAE ( F%EEFB% CABFEF &$A CAE% *ABCB2 E)ABABE%#DE#EEECABEDAE)DAE AB-FAE EE)B E. '?FBA B% ("DF%BAABBE B &E%% ) EFD E 1 CBABABC B% B BECAB E%DF *ABCB2 CAE% & CB2 ABF ABE)FABDB%%#B%%A&E EFABECBAEF%A#D EAEAABBE AB ,EB%%# E FB ) FF%D B F ABAB%EABC#BCC%EFBEEB%&B#B%%ABAFCBAB)%&E DB$EB)% D ECAE )B A BFF%ABA%E$A##'ABAE(A$A AFBE)B%E$A##DE%EF)#%EFEAABEBEBA$%DEFB)$B$BBD&EBAC*ABCB2ADFD)AA#C%BEEEEFB AA $AB%% EAABEBE E B B EA CBAEF% %DF CA%B#A'BC)A3:7AB+++(

Page 27: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEFA

22

figure 3-3: Comparison of measured Bragg curves of proton and C-ions having the same mean range. The measurements are performed in water with an ionization chamber and are normalized to the same peak height, from (Schardt et al. 2007)

3.1.3 Lateral scattering BACBAEF%CBE ADBED1CAEF%# EABFE&EBA%FA)DB%D%EC%%BEFF%%EE&EBADF%EBEEFB% ACEE D%EC% EABFE )& E B BADF%E AD% E B %BAB% CAB E )B F%# FB%% %BAB%FBAEBD%BAEAE)DEDFECBAEF%BABEF2B)A)A&EACFEFEEAFEFB)EACABAD%A $AB% E%# CA)B)% %FE )# B%% B% B E E &%%

BCCA1EB&EB:BDEBBC&EBBBA$EBEσθE$)#CEAEFB%AD%BCAC)#'0E%B+D8(BACAEDBE!

ABBC

D+=

radradp L

x

L

dZ

pc

MeV10log

9

11

1.14

βσθ 3-6

&AFEDCBAEF% EF2B)A)AB%&' ABEBE % ED %%& B BD%BACAB EEFAB B CBAEF% A# FAB D F A B EBA DBE! EDA&CAB FCBAE %BAB%FBAEAEAECFEABCDEFEA*BFBA)BB$EAE&%E%%BAB%FBAE'E(&E%BD%BACABCA EB$AB A E %BAA B%% %BAB%%FEB$#E CABE AD B EF2 B)A)A E B CBAEFD%BA B$BB B$#E E FCBAE CA EF # B%%& B BA BCCABF EE$ADFDABBDAAECA$EEAE)DEEBABAB'?FBAB%(%BAB%)BFBAEEB%F%EEFB%A%$BFAAB DDA EF%$EFEE#ABBAE2'F5G( AEEE EAFEBCEE EAABEBECA %BAB%CABE)BAEEEDEBFB&EFBF5GFB)BCCABF

Page 28: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

CAB

23

figure 3-4: Lateral scattering in water for ions of therapeutic interest calculated with SRIM code (Ziegler 2004). The small lateral deflection of carbon and heavier ions allow a closer approach to organs at risk (OAR) compared to proton beams.

3.1.4 Ion fragmentation: models and fragments 0EA#ECABEBEF2B)A)A%#EABF&EBADF%E('%FABEFEABFEBFAE)ECA$EDCBABABC)D # 1CAEF B &%% A DF%BA AF EABFE AD%E ECA-FE%BABADF%EABBEB%ABFEFAFEHGFAE)CA)B)E%E#ABEDAEDF%BAABBEBEEB%FB$AB&EA#AB&B)DD'71B% +ID( E EA# AEHG EBE%#E$)# AEFB%FA FE $A%BCCEDF%EF AB B %&AAE HGAE D FAE)DE A ABFEFBE %E2 CE%BEFF%%EEA DEABFE '?FBAB%(5$AB%DAD$E% CB%%BE ABFEB# AD% E FC% EEABE )CA-FE% B BA DF%E CA FB %# BA ABBE ECE)% ,A B2 FC% & E B DF%BA ABFEEDF)#%FABEFEABFEBAB%CE)%)DB%&B#%EE)%E A# AB E D E CBAEF% ABC# 5EEB%%# DF%EFABFE %BE CE CADFE BA B% CE)% B E EAE D E BAABC# )D #JA ABA D ) FC%%#EAA%$BACABFEFB%CDAC

0B$#E DF%BA ABFE B# ) F%BEE BFFAE $B%D ECBFCBABA)& AB-FAE &F%%EEDF%ECFBAAEEDEABEF%BKFAB%F%%EECAECAB%F%%EEB $BAED D%) AF EDF CAF B% B EB A )BAAEACAF' AC!(,AAEFB%ABCAECAB%F%%EE&A)BCBAEF%%A$AB%DF%BAADABFEB # FB)&%% FAE))# B)ABEB)%BE% B B & C

Page 29: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEFA

24

CAF 'F%E$EAB B% +D+( EA C DF% BA B)AB E $A%BCCEABFE.'LEA)B%%M(CAABBACADF&EEN&E%DALCFBAMDF%BA%#%E%#BF'0OA+I8( B F C 'P ! ( 1FEBE A# E EA)B%% BAB E A%B )# $BCABE 'B)%BE( DF% EE CAC C A EB EC% ABF ':4G( BA B% CE)% E EF C )D # BA $AB% AA BED ABAA B 1FEBE AD DF% $BCABE 'Q/AAEB B% ( ABA& A# 1FE CADF B%% )%& DF% CBABEA%%#EECACRAB#EB%%&'%%BDA+!(

4EFB ABBE DE A BCC%EFBE E CBAEF% ABC# &ACAA$AB##BABS*S*A2%#AFBABFAEBE!DD)B"&EF&BDAAB'S%BFAB%++(?EE%BADE&ACAAB05 BFE%E# '?FB%% B% ++!(:5"S BFE%E#'*ABDB% (B??I #FAAB:? '?FBAB% ++!( A EBACFEABEFF%DEFB)AB&AFABBEA%$BABEABC#&EEA#E)B'?FBAB%(K

E "DF%BAABFEFBDB %CAEBA#)BCBAEF%BB)DE%DC %&AEC AB &EF )F A B A ECAB &EEFABE CABE C B F%BA%# CEF E EDA 8&E EFABE CABE C CB2 ABF ABE)F ABDB%%# B%%A BE%# )FBD EEEE %D1 CAEBA# E ,ABBE AB FB AE D@ A E B D B B$AB 8 @ CAEBA# E DE%E. E B #CEFB%DDAEAABEBEDADF%BAABBE'0BAB%!(5EEB%%#BB%AB#FAE)ECA$EDCBABABC*ABCB2 & E EDA 8 BA EFABE%# )AB )# A#AB%E

EE FBA# A EAAA CA-FE% %E2 AB $ &EB)DB$%FE#B CAEBA#E?EF#BA %EA BCAEBA#E#B$EAB%%AABBCADFBBE%)#*ABCB2F%BA%#$EE)%EEDA8

EEE BD%BA EAE)DE AB BA BE%# AE )#ABFE 2EBEF B A&BA EAF )D DF )ABA B %BAB%CABCAEBA#EFBD)#D%EC% D%)FBAE':D.ABA1 B% I(:AB%%# %&A B AB )ABAEAE)DE'0BA!(

Page 30: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

CAB

25

figure 3-5: Measured Bragg-curves for C-ions of different energies stopping in water. The measurements are performed with an ionization chamber in water; from (Schardt et al. 2010).

AB% B$#E DF%BA ABBE BA ACE)% A AEABE EAE)DE) E %EDEB% B AB$AB%EE CFEB%%# E *ABCB2 AE "$A% A E ABBE E E%%&EE B BFFCB)% %EE CFEB%%#& DE BFE$)B %E$A# # B$E CA-FE% ABBE )A AE CBE'ABAE(,DAAACEAEEAB%E2 B FB ) DE%E. A ()C (* AB EAE &E CEA EEABC# 'A/( B E &E%% ) FAE) EA BE% E 1 FBCA BAABFBCEACBE'BE%#CAB0E(BAFDAA%# CAC A &'+,(C (),(* AB $AEEFBE&E EABFE$A1 EBE '( FED ' FBCA ( B &%% B CAC RAB#AEAB%%#)BEAFEB$)CA$)FAA%B&E CAEBA# ECB) ACA)B 'E B% !( B E)B'/BB%I(

,EB%%# DAE B CBAEF% EAABEBE B FEAB)% BD DA BACADF &E B $A# )AB BD%BA CFAD '/ B B% +( BB%D#FB)1C%EACAEBA#AB$AEEFBEEF#BADFAA%B&EECB'BB%(EFDEB$)ABE B)D A% DA A AE2 %B F BEDF FBA# FBFA 'ABBE B% !( /$ D E &BCE D B DA C )B %E$A# #':FB%2 !(&E FBCA )B B %EE)% DA ?$CAAB:#&BBDABA??&E.A%B'?FEAB%(BBE%%%EE)%I:#DACAAB:#&BEBA EEAABEBEB:?:AB#':D.ABA1B%I(

Page 31: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEFA

26

3.2 The physics of interaction of photons with matter 5%DB%BAD)ACE)%ABFEFBEBA2&ARAB#E BA %# A B-A #C C%B# B ECAB A% E ABEBEBDAK C%FAEF B)ACE C FBAE B CBEACADFE '7%% +I+( 5%% CAF %B CBAEB% A FC%ABARAB#CA#%FAA#)B$EDACEBAEABBEFB%%#EAABFBACBAEF%FAE)ECA$ED CBABABC CBAEFD%BA CJ %BF2 FBA B2ECE)% B# E%BEF F%%EE&EBEF%FAFBABFAEEFABDB%%#%&&FBACBAEF%E2EABFE1C%BE&BEDB%EBE$ BDA RAB# B BA (BACABE EBAB FBA CBAEF% D DF B%%A FA FE ACAF E B)$ A%BE$ E%BEF %FA F%%EE FAFEB((BB)BCEABEA#BECBADB EF2 BA )D %# BDB E EE# )FBD C EAEBCCBAEA%#ABAFBAADBEEEFBB%D)B'S++(

3.2.1 Photoelectric effect, Compton scattering, Pai r production A BB E$%$ B)ACE B C )# B BEF%FA&ED)D-FE%FAABA#DE%FAEE$)#%%&E1CAE

be EhE −= ν 3-7

&A!- E BEF)EE A# %FA. E A# EFECB! A# C%FA?EFB A%FAFBB)A)BCBB%FA$DC%FAEFFB%&B# FFDA )D %FA &E DF%D B)A)E AFE%D '=BF2 +D8( AA E%# )D EA%% %FA%FB F% DF%D BAA D)-F )CEE. BDA%%%FABEEC%FAEABFEB%FABBEE.B)A)AB&EB$BFBF#EE)D%%E$BFBF#EDEF2%#E%%ADABAAB%FAAA%%B'5DAFBFB&EF%BDAAEE.BEAABEBE$FB#(BFBCDA A $AB% A %FA A ED AA AAFBABFAEEFTAB#CB#B%)ABAEFBEE B 5DA %FA B# D)ED A FBABFAEEF TAB# EFBAA#E B&B# BEF 1FEBE A# '=BF2 +D8( EDA ! &&B%CFAFEADB&BABBDFEEFECA# FB D E FB)F%BA%# B C%FAEF FA FE 'A FDA$( E B1ED E C B -DDA#2F2%FAAE%%B1EBBA2&B7SB)ACE =D )%& CE FA FE ACABEFB%%# EF 7S %FA BA %A B$BE%B)% A C%FAEFF*%&A#FAFEAEFBBEEC&1%FA%%A#EABFC%FAFA

Page 32: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

CAB

27

FE $BAE &E C A# BCCA1EB%# B ./B0 &E% CFBEFD)AUAB$AEDBAEBU B8C&A B EC%E B EAUBAEB%BA B$DA A C%FAEF B)ACE B%% FB $ A B$#%%E2DC%FAEFFFB)%FBAEAEA

figure 3-6: Total, photoelectric, Compton and pair production cross section for photons interacting with tungsten (left) and water (right). Data from XCOM photon cross section (Berger et al. 1998)

CDE FAE B% FB%% EFA FBAE E CAEBEABFEFBEARAB#AE$AB%E ECAB EABFE FBE E ED%E2 BAEB% E A#ABA2'0/ =3 DEB+I(B EFB)EEDA!&AEFB&BA CFAFE'A%E(ACAB-AFAE)DEB%CFAFE

figure 3-7: Kinematics of Compton scattering

Page 33: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEFA

28

5CEF E EDA D C FBAEFFDA A %FA E BAFE%EABAABDF%DBAFDA%FABA)D)DECA#EE&EACF)EEA#E%BA FB ) EA B %FA FB ) FEA B EB%%# A5CC%#E A# B D FA$BE # A )# EFECB%FABA&FB)BE%%&EA%BEFAE)E DEA#BFBAEB% A) %FABCBE #)%E E 2F EDAD&)BE 'S++(K

( )θγνν

cos11'

−+= h

h 3-8

( )( )θγ

θγνννcos11

cos1'

−+−=−= hhhT 3-9

( ) 1tan1

21cos

22 ++−=

φγθ 3-10

( )2

tan1cotθγφ += 3-11

&A 1./C BC E BA# %FA '8 ( AB% CFBAEFAFECD)A%FAB$BE%B)% E B)A)A B AA EFAB %EBA%# &E U &E% E

FAB &E EFAB E C A# 'BCCA1EB%# %E2 .ν( BFF%%EE A# E FBA B E ABAA B %FABFFAEDBEIB+A%BE$BDAECB%EEFBAC'DBE(BFB)AEDAIBA#CE%FB$ABABFEA#ABAAE2EEFA#%FAEFAB&EEFABEC A# B &%% B A F# A A&BA FBAE B E$B%DRAB#A#'7%%+I+(

figure 3-8: Differential Compton cross-section per unit angle for the number of photons scattered in the direction . Figure from (Davisson & R. D. Evans 1952)

CA# EFECEABABCB# ) B)A) AD FBE A AE E E B

Page 34: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

CAB

29

1BC%F$AEA#EBBE$%$ABABEBC EB%FACEACBEA ECAF%FAEFFBA EFABEF%FABCEAFBAA#CCEFBACBB A# B 1F E 1F A# E BA )& 2EEFA#%FABCEA*FBDCEA&E%%D)D%#BEE%B BA %&E & E B)A)E ED & BEE%BEC BA AB%%# CADF B FBA# CADF CBEA CADFEFAFE')%D%EEEDA!(EFABABCE%#&EEFABEA#B)$A%BEFEFFDAEE%DF%DFAFECADEBBA%EBA%#CB&EBEFD)A EABFE ED C%% B)$ A% CBEA FABE FAFEE%%EFAB&EA#%E2%'/(

,A B2 FC%&&E%%E B AACAF1EA C EABFE &E BAK FBAE GB#%E FBAEB AEC% CADFE EA FA FE BA B%&B# %EE)% &FCBAC%FAEFB)ACE CFBAEBCBEACADFEFBAEEFBAEC)#A%FAEF%BEFB%%EE&E%GB#%EFBAEB%FB%%FAFBAEEFBAE C )# B B B &% ) CAF FBAE EFBABFAE.)#BFBA#EABAAEDBBA EA 1FE A EE. B %# EAFE C E FB'S ++( AEC% CADFE E B CBEA CADFE 1FC B EABFEFFDAEE%%FAEBDF%DDAAEF CBAEF% BCCBAK CEA FAB %FA B AEEB%%FAAFE%EA%AAEC%CADFEB#)&FFDAB &EF A% A CBEA CADFE D '0 / = 3 DEB+I( 5CBEAFAFEFB%BDBAFBABACBAEF%&%%B)$A%B%CBEACADFEFAFEFB%BU'UV(ABBFBAUFABFFDAAEC%CADFE

,EB%%# & B E% C EABF &E BA B# A BEEABFE CAF 'C%FAEF B)ACE C FBAE B CBEACADFE(B#FFDAB#EABFE%#CAFFBB2C%BF)DEB#EABFEB%%B#FFDAA%BE$CA)B)E%E#BF#C EABFE E CACAEB% FA FE A B CAF CA)B)E%E# B EABFE E CACAEB% D FA FE1CA)# B% BDBE FA FE ')%BF2 %E E EDA !( BACAEDBE

pairComptonicphotoelctrtot κστµ ++= 3-12

FB%FD%B B% C FA FE A FCD DF B&BA B)ACE FEFE FB ) AE )# EC%# BE EE$EDB%FEFE A BE$%$BFFAE&EBF% EFCD

Page 35: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEFA

30

3.3 The physics of interaction of neutrons with matter "DA B$ FBA B AA FB DA %FABEFEABFE&E%FABDF%E AB$ABA&EFEBA#%FBEAFBACBAEF%BEACAEFECB%BEABFEEADAAF&EDF%EABFEBADFABAA E FCBAE )FBD A AB E AF "DA DF &EE N F DF%D )A B# EABFE CAF FBBCCBEFAB%BAEBE%#C#CBFDABA)A$ ) $A# CABE CBAEF% 'S ++( A%BE$ CA)B)E%EE $BAED#CDAEABFEFBABBEFB%%#&EDAA#BEDF%BACAFBDAB#DAFB)%EE%%&EK

E /%BEFFBAEADF%E5'(5KEECAEFECB%FBEA#%ADAEAEEABFEFBA#ABEBEEFED)#AFE%DF%E&EFB$CEF2DCFB)%BD A# A DA F%%EE 5 BF FBAE E DA%A#BEA)#ABA%&&%&AA# &E% E EAFE E FB EFE ABA E#A )FBD DA FB % DC B%% E A# E B E%F%%EE,AB$EADF%E%#BCBAEB%A#ABAECE)%B B1ED CE)% AFE% A# !#'" A B DF%D &E BEFD)A5 2F2 )# B DA&E A#!) E E$ )# DBE'7%%+I+(

( ) nR EA

AE

2max1

4

+= 3-13

/CFEB%%# B %& DA A# %BEF FBAE ) $A#CA)B)% B A$ )AE %& DA AB%DE%E)AED '8 B A CABDA(&E B)A)AED)ABEA#CABFEB2C%BF

EE %BEF FBAE5'J(5W5'J(*K E A# DA EDEFE%# E DF%D FB ) % E B 1FE B&EFB#%BA FB# )# RAB# A A A ABEBE$ EEEF%DE$BCABEBADA%BEEEFBDAD%EC%EFBEAAAE%BEFABFEFFDADADB$ DEFE A# 1FE DF%D DDB%%# AA A A ,EB%%# E A# BA &A FB B2 C%BF A$A#EDAAE'/X(

EEE GBEBE$ DA FBCDA V'U5(YRV'U5V(K E E ABFE BDA E FBCDA )# B B)A)E DF%D B A%B DA1F A# AD ABEBE$ EE AB% FA FEADAFBCDABCCA1EB%#B&AE$%FE# DA AA DA B)ACE E A CA)B)% B %&AE B CE % A B# B% ) ABCB2DCAECDCCF#

Page 36: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

CAB

31

E$ FA DF%BA ABFE DF B 'C( '( '( 'Z( 'C( '('Z('EE(KE2EABFEBDAEFBCDA)#BB)A)EDF%DBFBACBAEF%BAE5AABEBE$FBCDA ABFE FA FE B%% B $ AA )FBD EFE DA A# E DDB%%# $A# %& B%% DF ABFE DB$BCEE$[$B%D'EAF)&EAB%A#ABFBBCADF()AEFB%%#CE)%'7%%+I+(

B%CA)B)E%E#ABDAEABFEBAEEB%%#E$)#DEE$EDB%FAFEBACAEDBE

captureradiativeinhelasticelastictot σσσσσ +++= 3-14

&AH%BEFHE%BEFHABEBE$BHFBCDAE FAFE A DADAEABFECAFFAE)B)$

Page 37: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABACCDECFEFAEFFCACFCFDEAEACDAE

32

4 Current and proposed methods for dose verificatio n and monitoring in particle therapy

ABCDEAFCCA ACCAEC CACAFCABAFAAECCC CD CD CC ACB A BAC D CADDCAACDCCCFAC D A F A DCA CA A A A CD DCD ACDCE DC F C C C A FAD CABCA FACBCFABCCADABDCACAACCDCE C ACDCE D AC CAAA!""#CCCACBDCFABAC$% &'(&)FCCDDCDCFAACDCEC"*)CD"") DBCACACCFCACCEDABCFACCDC C C CA A ADA FCBDACABCA DACC +CBCCC,**- &CACEFCDADC..AACDCCEAFAAFACCFAC,*/DBAA "0/C DAA ACCDCAA ACB C )CA1 C "02" C AC CFDC'(&)AAA"*)CD"")ADEAFACBCACFC",)DACC,**3 'EACFCECCDDCD4CCB5DFF$%C

4.1 PET and TOF-PET $ABAC$% AACDFA CD AB CABDCA AC %BCAD C "00, ABAACDCAA"!6CD"")CAFADCAACCDDFACACDCEEC$%CDECA()CACCDAADCCCDCCECEECDCDF AC CB CD DEA C $CAD C ,**2 DFFACCCACD

7A 5C $% C AC8D C 9: CACD C 8D D CBDADCCC4A8DCDEADACD AC A CD $% C4 AFAD ;ACCCDFACA;C3*DCFACAACDCFAC%BCADC,**3

&AC FF5 $% C ED A CFA AACDCCAC$%CA A;ACDDFA;CCDABBA

Page 38: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

EA

33

ACC(9' $CADC ,**2 CD CDD FA)5DEAFCC'(&)FCCBDCA:CADC,*"* 5CCACEADCDBFFA CC F AB DEDC FD AC BBFCCEAFAA5ED"!6A6FF5 F5AB BACCAACCECCCD CFFAACBB AFAC A 5C D CB DA CDACC CAC A5B C C F BCFAA5EDACDCABAFFCA CD AACDC CD CBB (AEA 5ACCBB D BAC C DEA C F ACBFACCFACFD$CADC,**2

ACDFFACCF$%CBBACDCACFBA35"7A)5AACDCACAF FBA35" CC<=5CE FADA;F ACBB5CCCDCD DAFAA"*)CD"")CECCACBCACA",)56ACAACAD5DAECD<=5CEAFCAFFBA35" AADCF A1 FACBC C C; F AACDCE FAD C D F ACA A ACB $CAD C,**, 7AAAADDCECFCABEC C FA F ACA CA C C F CABAAAB ADFCA AC/EA CFCAACEAFCDACCCA)5CCD;DABACDDCEA9 FAA $CAD C ,**, D C 3* BAAFACAD)5CADEACFFED9+ACF,*** CCCDACCF$%CBBCDCA AC <=CE DDFACBC>C,**495"5?FA",)CDC-**495"5?FAA%BCADC,**3 FC ECCA,5?ADAFCBDACACDCEACACEDEC$%CBB

Page 39: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABACCDECFEFAEFFCACFCFDEAEACDAE

34

figure 4-1: Measured autoactivation of thick PMMA targets by means of 260 MeV/u carbon ions (top) and 140 MeV protons (bottom). The solid lines show the depth profiles of the measured + activity. For comparison the depth-dose profile of the primary beam is shown as dotted line. Figure from (Parodi 2004).

& 5C $% FA )5 C C D A FAABCC33*CACCDAD"00@C9:CD C AE C ECC FA 4C CAC :CAD C,*"* A CE AACD DA AAC CC CA F DEAD D ' AC A CED EC CAB CAD <=5CE DA C()CAAD CD AC C CD F A F AACDCCDDFBA35,CFAEDDACCADCD;D$%CBACD5BAEDDC4CCE C F DEC CD CD CCCD C D $CAD ,**3 FA ; AACDC FAC ACDAC C AFA ; C C A5AC) FA FAAEBC F CCC CB CD C F BFCDEC CD CD CD D C AC C C CACD CA8 $% AB 4 DED C 9:AD ABC;ACB EAFBFDCD DBDEC CBA C CBF CCCAFAC:CADC,*"*

Page 40: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

EA

35

figure 4-2: Dose distribution (top) versus + activity distribution predicted from the treatment plan (middle) and measured (bottom) after a skull base tumour irradiation at GSI. The planned dose distribution is superimposed onto the CT image where the brain stem as organ at risk is highlighted. By comparison with the prediction it is shown that the C-ions stop before the brain stem. Adapted from (P. Crespo et al. 2006).

&;ACCDCD CF ADACDCADECB5CDDBAB CAFAD$)AC,**@ ADACFCFC5F5FB 67 $% CA CB ABCDEA DFABE 4CCEEAFCFCDD)5ACCACCFABC,** FD C CFC; 7D'( B A DFABE 675$% CB D CECC E DAB A F ACAACDC C D DAC DCC AB CDF67CDACFBCACADB E F AB AED (AEA 67 FACDCCDACADFCBCAFCCCAFAD5CB BAC /EA CB ABA DA CDAFDCAACDCAEDCCDED AA D C C EA &DDC A BC DD $% AC DCD A FACBCACBCDAB AACDCCD;ADD<=CEAACFAACBFAABCDEA$%CBB

Page 41: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABACCDECFEFAEFFCACFCFDEAEACDAE

36

4.1.1 Ion range verification with PET AE CACBAC C D C ACB EAFC CFAC4CDDDFA$%AB(A DC C DEC AED CAD CDACCD$%CBCAACC9:CACD"002DCDCCFCACCAACBCFAB $CAD ,**3 DEC A D CCACFAACAE)'FDACDCA54ECC B (+AEAC,*** CC AFAEAAD %BCAD C ,*** )4 BA AC F AACBCD;DBACCAAC AACDC FD AC5CAC AC CC D A A FA F AC C CAAABCCA$CAD,**3

CCF$%CBFA,*!CACDC9:CACD,**?D A5AC ) A5;A FA - F $CAD ,**3 ! C EBC FAD C C CCC CB CD FA C C ACCCCACD7ACF1ECDC AC AA CF CAB CD CAF F CACCACCCCCEDDCAACDCFDCDAFA C AED C F ACB DEC A C4AAD$CAD,**3

(AA7DACAFADCFA4CCEDCACF5C$%DDACBDECCDCDCD AC C AEC C B C CD CDCCCD2"C ACDC9:CACD 7DAC,*"* 7A C C C ACB DFFA F F- CA C EACCDADCD$%CBCEECCAD;;ADECCA $% CBCCB ADCCEACDAACBCEAB8DECCAC 0*G F C /EA A AB ED C FFFDEFACBDECCCCBABBCABAACDCECCDC ;C FBA 35? CA AAD AF F AAD <=CE DA C C C DA AB A FD FE F $% CAC FBA 35?C AAD C C F C C EA CD A ACB $% CB CE AAAB8DFBA35?C1AFECCAFCDDB ACB DFFA & C CACD CD $% DACD CECCFABAACBEAFC

Page 42: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

EA

37

figure 4-3: Profiles of reconstructed +-activity distribution taken in a beam direction crossing the isocenter field of view of the PET camera. The different activity distributions are drawn for range variations of ±6 energy steps (ES) corresponding to projected range variation in water of ±6 mm. The ±0 ES curve differs from the reference distribution only by statistical fluctuations during the simulation. The region where the range difference is expected is marked as an ellipse. In (a) it is shown a case of a patient in which the over and lower ranges have been correctly recognized while in (b) it is shown an example of patient in which the majority of the evaluators failed to detect the differences in ranges ; figure adapted from (Fiedler et al. 2010).

4.2 Prompt photon radiation $A H5AC FA ;D FACB ADD A DAB CFCCCAB"020 AFACAFAD/FAC"0@, CC;DFA EACA7A;CDAECCD C ACA F A H5AC FACA FCE AD C CC DA C F F CAC FD F CACFBCAD CA #C ,**" (AEA C EAC ACCA ABCC5ACCECCC $9&& DC5DAEDFADABACDCFC C C CA AACDCD CC F A CC C "002 F C CA F A CD A H5AC CACADB5AH5ACAA)AC,*** $9&&CDFCCABFH5ACDFA5CAB F C AEC AAC

DCFDABCCACADCC5EE ECE 4 DA AC A ACDA /A )CA AC /) ID C ,**" 4 CD CA F H5AC A D "*J @. CD "'H , AC C F A H5AC AACDAACAADAECCDCCCAFCADDDACAACACDDAB+CCC,***

Page 43: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABACCDECFEFAEFFCACFCFDEAEACDAE

38

figure 4-4: Example of the time course of the coincidence rate acquired by the in-beam PET camera during the application of an entire treatment field to a patient at GSI. The rectangular pulses, better visible in the enlarged view on the right-hand side, indicate the beam extractions from the synchrotron. The coincidence rate during beam extraction is about one order of magnitude higher than during the beam pauses due to the high amount of prompt -rays emitted within the spill time course; figure from (Parodi et al. 2005).

DCFCABDCA ACCCACDDDCE 5ABFDDEAAAAFAD$%'AAH5AC AA E C C CACD C A FA C DC F B5ED <=5A BAC ECD BCDDABAC$CADC,**! DDCCA FBA353 DACC4AD ACACDAB C ;AC C ADA F CBD BA C DAB CC D B C F B H5AC A DDAB C ;AC DF AD FCDBC7AACC9:CACDCAFF FCDEADAAFC,DACFD?C$CADC,**! CAADDADACDCADFCDBCABADDABCA;AC%BCADC,**3 DAACDCADFBA353A1F5DCCC ABCD AD BC 3*GCDCAC;DFAAADDCD5AC D AC CD C DAC ACD ADEACAC$CADC,**!

Page 44: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

EA

39

figure 4-5: Comparison of the depth-dose distribution at proton energies of 100, 150 and 200 MeV, measured by ionization chamber (IC) and right-angled prompt- -rays with the prompt gamma scanner (PGS). The correlation between the prompt gamma distribution and the Bragg-peak is within 1-2 mm for the first curves with proton energy of 100 MeV; figure from (Min et al. 2006).

(A AC AF ;ADACD C CAFAH5ACDDAAACDACBA(C,**- CD)5AC%CC,**2 &CF$% CDC CA FACBCFACACCDCABAACDCAACBDDFACBCACCCBC,5?FAACBB5CACAACACADABCECCABA15CAB A F C CAC ) CAAA C A CA F D A ACD FAACA CD DCA CA AC D AB ECCFACDDACDACBB5CCACEAFDAC(CCCACF"5,FAAC"**(#CAADFBA35!

;FA(C)5CCAFADABAC 9&/. FC )C7AC ,**@@?(#K "?)-= BBC$((&CABDCF;ACDFBDD;CACCACDCDCC FBA 35- AAC A CD ACBB5CCCDEFA)5CABCCDACADAB CA FACBC % C C ,**2 (AEA DACACDCBADACDCCDFFB67 AACCACAFA;AC5CDCEDFADBCFAAD ( C & DD ; CACBAC FCA F CACA AC A BFC AD 8 F DB CAC % C C ,**0 CB C CD 5DA5CACDCFAABCDEADACBAB

Page 45: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABACCDECFEFAEFFCACFCFDEAEACDAE

40

figure 4-6: Upper part: detection rates as a function of the longitudinal position of target, obtained for two different time of flight (TOF) selections: prompt -rays (square symbols) and neutrons (round symbols). Bottom image: scaled photograph of the irradiated PMMA sample; figure from (E. Testa et al. 2008)

)B C AAC D C C FAH5ACCCDEAFCACCDFFCFDDEADABA AACDCC A ACD$F C C FAA CD ( )CA C AD A F CACADDCAAH5ACADDDAB A AACDC $F $A )CBCA C ,**0 C DAAFADCAFAH5ACACBCDADD A CD A C ) A $F $A()C,**0 &BDCCCFD CACA H5AC AC DDABA AACDC C ABAAC C FD DEAD ACD5 ACBB5C :6$ DDACDCACAFAC1ACCCAH5AC CA ACCABCD ACAC A FC ;AC A D :8 C CAC AACDCB C.CCD C CDCDDACAACBDABCC:8C,**0 DCAFCACAABCDDC FC F A BCC C C C F CACA8B ACACB5

Page 46: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

EA

41

4.2.1 Collimated Prompt Gamma Camera

figure 4-7: Artistic scheme of the multi-collimated multi-detector prompt gamma camera. The hodoscope tags the ions in time and space coordinates. The collimator allows selecting only the photons emerging orthogonally to the beam. A series of stacked thin detectors are aligned to each collimator slit and provide snapshots of the longitudinal photon profile.

&CACDD * ACBEAFC$% CAFAD DAB C AC C C F CA C4A AC DCD A CC BC /EAACBFDCEFCAFECACDDEA7DAC,*"* CDC D CADFACCC;D1C,**! BDACCECCDACBDEC DAB C AC CD ABCDEA 7A CA A BA AD DE C DE CD CD ABCC CAC DD ;B D F A H5AC CAD CCCDCFACAFACBCABCDEA FAC C D DEAD CD ACBB5C A(AEACCACDD*AAC A BCC CD ACA C C DACDFAA(C,**- CD)5%CC,**2

(AFCFACCA5CCD4 ACBB5C AEDD CDD 5 C C B A ABBABC CDA C D FBA 35@ F 674 DAC A FA C CABCBAD ACDC C D A C C FAA DBCAD DA CA C C C A F DAC F CBD C AADB CA C CD CDDFBA35@:C5CCBCCDAEA A BDC ACBF DC F CC A CC CED 5CA CD 5DA 5 DD

Page 47: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABACCDECFEFAEFFCACFCFDEAEACDAE

42

DCCA!CCACDCDCBDCAFFADCED

AB F CDAAC E A4A A DC ? D CABAC AFA BDC ACB C AFAC ACEA F C A4AD CD C AEDDCEDCDDFBA35@&BC CDAAEDDD 4 1ACCA ACE ACB FADA A C ACC C FA )5 A4A FAA AC ECC FA A CE CABA CACCAB&AC1A C F CD AED BCFA67CACF5DCDCFCFC5AA67CADDDC;CA/EACCCCFAA EC D FA CA AC C DDEDCCBFAC$CAFF"*2)5KCD "*"*AKCA CD AC $AC ,**2 CD C ;D CAD CB BCCBDCDFCBFA&CC,**2 A DCD 8 C ,**- D F D CAAA B DED A CACA CD CACA FA)%&5.:CC7ACAB8C,**"

.FACACBB4C1ADFFCC EA A BCC CAC CC F BB C C ACB AF CC A F ADAF A ; CADCD DAC C CCCCDDABCCAACDCACDDCCAC

Page 48: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

EA

43

4.2.1 Compton Camera

figure 4-8: Artistic scheme of a TOF-Compton camera setup. The hodoscope tags the ions in time and space coordinates. The Compton camera constituted by 2 scatter detectors and 1 absorber detector detects the prompt -rays emitted subsequently to the nuclear fragmentation processes induced in the patient body; figure from (M.-H. Richard et al. 2010).

) CAC CADEAD A BA FA CD ABCDEA AAEABC ? ABF ACBB5CDABCCDAACAC&B 1FAC CACA AD C CDECCB F) CAC EA C CD BCC5CAC C AD * C ACD FF F CA ADA FCBD D AC F AFAC5B CABCACAC5ACBCACEABC,**0

ACDC ) CAC F CA DA CD CAA DA CD CA AA DA DEADD FACC C BCC CA A C ,**? CD DCCBB(AC,**, 4CDC5A7AC H5AC DAB C ) CAB FA CA DA CDD CAD CAD D CAA DA$AEDD A CA C CAD D DA A ADABFACAFDDAB CD AC DA AA CB D AC1AF BH5ACCC CAFAAADABC

7A CA AC CC A A BCC AB AC EA ACD CD A AB F EAC (# D DFF ECB C CA D DA B FACAFACFADCDABAC

Page 49: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABACCDECFEFAEFFCACFCFDEAEACDAE

44

CADAC EBCD5CCBCDACCAAFDAFBH5AC(5'CADC,*"* FBAC F D AAD FBA 352 ABCF 5 A F CCD BA ) CAC D F C D C CACDDD * CD CBBB F CD CADC7ACECH5ACDABC)CABABCAADC ABCADA C CADA CDC AC CAA 4C35"35!CA

( )

−−=

01

21

111cos

EEcmeθ 4-1

( )

−−=

12

22

111cos

EEcmeθ 4-2

110 EEE +∆= 4-3

221 EEE +∆= 4-4

( ) ( ) ( )3221

3221

rrrr

rrrr

−⋅−−⋅−=2cosθ 4-5

CD CA CAB CB FA CD D CADACDCA ABECFA AC FACADA DCDCAAAECDCA AC EA A DA L CD L CA AB DD CA DA D F4C 35" 35! CCC EC F FE 4C CDFECAC4CLL CDC4C35"CD35,DCCAACDB D CDA F A CAAADCAAAAA

6 DAD AA C AC1AFDABCCCA BE A F AAD CD AC1AAEDDD/EAAADABCCCCFFDEACACCBEDCCAFDCACCABFCD AC F DCA CA DA :F AB DDECAAFACA CABAADH5AC(AEAAACBAEAFCFACCDDACCADAC5

EBCFFECACACACABCD A5DA DC CEC CC A CD

Page 50: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

EA

45

DFFCACECDCAAABA(5'CAD,**0 CAFDCDEC()CACCAEDCBDFADBFC)CACCDABACCDAB5A A4A (5' CAD C ,*"* D CABFBACADABABFCFABCEAAB C AC /EA D BC D CD C C F :. DA DCC C ,**! CCAAF)CACAAABDEDACACACDDCECFFACDA ADA F CBD CAD D CAB CACADCE

4.3 Interaction Vertex Imaging (IVI)

figure 4-9: Artistic scheme of the interaction vertex imaging (IVI) system. The hodoscope tags the ions in time and space coordinates. In single-track vertexing, the vertex is reconstructed as the intersection of the particle trajectory and the beam direction provided by the hodoscope. In multi-track vertexing, the vertex is reconstructed by the intersection of 2 or more particle trajectories arising from the same fragmentation point.

& DADFCA FACDAACABCDACBEAFC CA CD DF CA A FAACCAACDDABCFACBC$% AFAA BCC D5;C F CA FACB CD CD )ABCCCAC &CACE 4CD DFABCABDCAABB FACCABACD CA AC B CD CAB AADAEBCCCACABACD%&FDC'A4,*"*

Page 51: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABACCDECFEFAEFFCACFCFDEAEACDAE

46

4 CD AC EA; CBB # ACA EA; DFC A F;D CAB CA ;AF#FBA350CDCD AA F AC1A F ABBCA CA ;ACCDCAAD(Dauvergne et al. 2009)DDCFA$%CDABCCCBB4FFACBC CA ;D AACD ACB CD C FABBCABDCAD AAACD D CCDECCBF#CADCDADBCCCECDDFA;CCFADC"*MACDACCADC-;"*5!5"A5"FA",)C0!(#KACC,*"* CD!;"*535"A5"FA",)C,**(#K98A5(CA;C,**2 ECCAC ,5? ADA F CBD BA C N!;"*5@ A5H 5" A5"CAD ABC C DA ( C C ,*"* CDAFAC#CCCACE4

EA;AACDDFFA4CDCACABFACFACBCEA;FA C CD B5ACEA;B CA AC1A CD CA F F AC ;CD DA CD EA; AADC AF CDAAEDD D AFA C C E ABBCA A FACBC EA; O " C C AAD /EA AA 4 ACD ACA FACBC CB ACA C DAAEDDDAAAC FADD CC AF DCD CAC CABF ACA :D ABB CB F CA CFF FCAF CDCB FACADDCA CA CDCDCCAAADDDBACACAADEA;ACDACBCBACDFACAACCDCDA(AEAFACADDCACAC AB CD AFA E CAB AA CA C F D> C FD A CBCA CAC C CAB AEC CB CD CBCA ACBBB AFAC BA AB CA C FACADCB (AEACBCAFCADAC C ACD FF B C CD CC A F AAD EA; 7A C A ( )CA C CAAABAFAD'A4,*"*

&DCACFAEA;AACCD5ACEA;BCDAAFEFACFACBCEA; A A CA CA D P" AC C 4CDADCACCACEA; D DFD A F CA AC1A

Page 52: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

EA

47

ACD CA FF AC ;CDDACFBA350D5ACEA;BCDAAEDDDACACBDCCFAACBACDD FA BDA CFCAFACBCACCDBCABACC A F ;A CA AA B AFAD A BA C 9&/.FC'A4,*"*

Page 53: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

48

5 Physical measurements of the prompt radiation originated from ion fragmentation

ABCAD EFBBE F EDBD EABDE FB D EB C AD F AD FBEEB D BA D BECB F BCBD F EDBBECD D EB C F DDB BBE BD F FBADDCDBDFDEDEDEBDDFDBFEDBCDFADFBEEBD A ABCAD F DCD CE FB DA BCB FC FBEADBD !"#$%CEDB"#$BDDFEFD&CFBDBBD F EADB F A FD A F B DCDBECDFBCECDDBADBD

5.1 Properties of scintillation detectors #EDBD E F BE FB A ABB FD CE DDBBD ABBFF BEDBD FEFB BCADEDE 'BCADEDE EEC FD BD DEAD BBDBEEFBDBAAEC EDBDBED(BDED A F BDE BD F B FF D )FEDFDCDCDDADFBDBB FD F *FD EC BD BAD E CEF B BFAC FEDBDFDEBDEDDEEBCFEF EBD FD EDEB BDB ECD DABDEDEDDFDEDBBD)FABD&CADBEDBABBFB B B FF EDE EDD ED D CED BBD BDBDE D CED BBD B BBDAD FF FADDBEBBDEDDF F EB D D FAC B F EBEDBD !+% #EDB ABB B CCB EB B BDE BDDBDE

,BDEEDBBBABEFEBDEACDEDBDDDEDD DDD CEC )F A DCF BC B BEBAFBDBDEDBDFBABDC EFB BE ED D EDB F EDE BAABEDDABEBCFDBDFFEF F -./ FD01 D !# " 2..3% #EDBDF D F EACD B A BDD AB F BDEED F BDE AEC )F EB ED B DBEB F BD BECB BA D F AEC BD EEC FB BDD B 4AECB B 5EBC F AECB DBC CADEDE D F ABB BDE EDB EBD C D ABDFEB A FC D F EDBD E F

Page 54: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

49

BCDACEBBDBACDAEACDD&CBDCD

DBDE EDB EBD ACBEB BB FB EB 6B!)% !)% 7B58!% F B BF AD 79#,!7C9#,:;% BEB DD BB ABB 5B<2 5=, (Van Eijk

2001))FBBDBDBDEEBBDEEDBDFBDCFFFDBDFFBAEDCAADBFEDBFBFBAFFFFCC!)B:-% FEFCDDCD)FABFACBEDBAABBBDDFBBFFBDBDB F AD B A CADC BD D EDBABB !> * >?A B 2..@% )F CADEDE E EECD DDBDEEDBBBEEDFAEBDFEFFADBBE;CEDE FAEDBDFFBD-.A BDFFEDE B F AD A B FBD -.A BD AABBBBBBFC!#"2..3%

Scintillator Density [g/cm 3] Decay time [ns]

Light yield [Nph/keV]

E/E(662 keV) (% FWHM)

NaI(Tl) 3.67 230 41 5.6

BaF2 4.89 0.7 fast

620 slow

2 fast

8.2 slow 10

LYSO (Lu1.8Y0.2SiO5:Ce)

7.1 41 33 7-9

LaBr3:Ce 5.3 35 61 2.9

BC501 0.87 3.2 14 -

Table 5-1: Comparison of scintillator properties. Values adapted from (P. Crespo et al. 2007).

DD FBFBDEBDDBDEEDB FBACDCEDE FA DEDB FD F DD BE D F D F EDB B EACDEDDDDC FBEBDEE DBDBADB B CD FB DB F BACD EDBD FCE BE F BA D EB FB BE )F AAEBA ECEFBFBB5!5-C:-%5DFBFFCCCDDF!%FEE D !A% BEED &CBD :- BCA FB FDDDB DA F BD D C &CDEFDDBEDD FEAECBD FBF DEDBE)F &CDEFD DBED BD D FB C F DCADEDE ABD FCF FDD BD FB CED #DE B FFDD CE B FF D E AEC A

Page 55: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

50

&CDEFDBBEFBEBDFFFCED

dx

dEkB

dx

dEA

dx

dL

+=

1 5-1

D&CBD:- B FBCEDBDEDEBDCD BBBABD F DBD D A D BEE CD BD D5DACBFADBBBBDBCBBCCDEBDCDDFBCBCDEDFEDBABB BEBDD!7-CC/%

D)B:- FDCAEDBDFDEFAFDBD BACD DA B D B EDB D &CBD :2!7AEB-CC8%

SQE

ESQNN

gapheph β

== − 5-2

E D FDCA FABEDFBCE D FDBED E AF F BDB D D BDE BDEDCE BD BD B BBA FEF DEB F BB D&CCEDFABEDFB;AAF E28!1BDBF2..-%#FBD0BDEDEFFBCADEDEED !7%BDG F&CBDCAEDE F7 FEDE FDADDEB7E

5.1.1 Characteristics of BaF 2 – NaI(Tl) – LYSO – BC501 scintillators D F C E FB D C; 5B<2 6B!)% 79#, 5:.- )F ABD EFBBEE B D )B :- BD F EEADDBD)B:2 6B!)% 5B<2BD79#,!7C-A9.2#,:;%B EAAD A HE AB FF I AD F 5:.-J#BD=BD B B &C BDE EDB BECB C DCDED

Scintillator Dimensions

NaI(Tl) 2 inches Cylindrical Ø 5 cm thickness: 5 cm

NaI(Tl) 3 inches Cylindrical Ø 7.5 cm thickness: 7.5 cm

BaF2 Hexagonal Ø 9 cm thickness: 14 cm

BC501 ®Saint-Gobain Crystal Cylindrical Ø 5 cm thickness: 15 cm

LYSO pixel 4x48x22 mm

LYSO medium 3x50x40 mm

LYSO large 5x50x40 mm

Table 5-2: Dimensions of the detectors used in this work for and neutron measurements.

D C :- B F EBBD D EB F C EEBBDF -83BD @.BBECE6B!)%FB

Page 56: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

51

FDCDBDFCFBFBABACA!<*K%F@@21HBAF-83CEDEABADFFBCFEFEBDCDDFBCBDFBBD)B:-BD EABBCBC)B:- BFDCDCD F 5B<2 E F C 79#, E D DCD)FABDCFACAFEDBBDBDDAB ECD F FAC C !")% < B ED EBD ADD FB <*K -:L B @@2 1 EBD CD FD F 79#,E EBB F -83 BD BD F D AD [email protected]@@21HB)FBAEAD BDE 6B!)%BD5B<2F FABF FFD AF CE CD B BD C F EDB CA BB ADD 5:.- B &C D I BDE EDBDD DCD ED BD F EDE HED DBBFD D C:-FADDCECBFFBD FEE BD B B F -83 BD @.CE

figure 5-1: Calibration energy spectra for NaI(Tl) 3 inches, BaF2, LYSO medium and BC501 detectors with 137Cs and 60Co radioactive sources at the same time.

,D F ABD EFBBEE F 5B<2 BD 79#, EDB FDDB BBE E C 22@'B BD -3@7C ACDD 5B<2 F 22@'B BBE DBD EFBD !*FB M>?-CA/% BD FEFBBEE D F CN

Page 57: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

52

DBDBEBDFDEBDFBC:8

PbPoRnRa MeVMeVMeV 21411.6:21859.5:22287.4:226 → → → ααα

PbPoBiPb MeV 21083.7:214214214 →→→−− αββ

79#,BCCABEDBFEFEDBDFBBE-3@7CFEFBDBCBEECDBA-3@7CBEBD-3@KCC@@LFAF:C31EB!<DB-CC@%)FBEBFB8HBEBEB8.31 2.21BDAA1BEDC:2

figure 5-2: Decay scheme of 176Lu from (Firestone et al. 1996).

)CEC EDDEF:C31EBBDF2C.1B!2.2OAA1%EBDDDFBECDDECADFFBC:8

figure 5-3: Background spectra due to the internal radioactivity of BaF2 and LYSO scintillators. For the BaF2

detector the 226Ra measured activity is about 350 Bq. For LYSO, 176Lu measured activity is about 40 Bq/g.

)F ED EDE 5B<2 BD 5:.- EDB FB D ACBF=BD/DBE!DB2..8%ADDEDE

Page 58: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

53

BAFDBDDC:/ABEDF ACBD E D D F D EFB )F E A BEECBCE FEDBFBBDADDBBEFDEBAED:P-./FDBBDFEBBDFD F ED F D F EDB E F FDEDEDEFF5B<2 FBD5:.-E 5B<2EDEBFEDBDDFFDDBDA.--.1BDBFDEBDFEDEBQ@1CFDEBBCEDEED,DFFFBD 1DFD 5:.-EDEEBDDBFFDEBFFDDDE CEF IABB F EB D F AD DBED [email protected]

figure 5-4: Intrinsic efficiency of BaF2 (left) and BC501 (right) detectors to monoenergetic pencil beams of photons obtained by Geant4 simulations. The measured detection efficiency of BaF2 (left) for a 24 kBq 60Co radioactive source placed at 10 cm (60Co Meas.) has been compared to the source detection efficiency (60Co Sim.) obtained by simulation.

) BB F =BD/ ACBD F ED EDE B 2/ 5& @.BBE CEBABCF F5B<2EBDEAB FEDE BD ACBD )F CE B BE B -. EA A FD 5B<2 EDB B FD C D F E BD F@. B A D F ACBD B BD E CE FD FD-2:1DDEDDFDDAFBD-..1 D F EDB B BD F DDE D F EDEDEDFEDEFF)F BBAEEDFABC ED EDE /L B EAB F F EACBDEDE83LBDCDDBADBDC:/

Page 59: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

54

5.1.2 Pulse shape discrimination (PSD) for BaF 2 and BC501 scintillators )F BE B C FB EADBD !"#$% D F BE FBDABDBCFBEDBEDFBEDBEBDF C FB F DB FEF DB F E KEB"#$ BEBFEDBDE !*DBB-C3-%BFCF FB B D B AEDCED E BE DEBD!AABBD B -C@8% BD AAD D D CD !RD M*BA-C3:%6F DFDBF"#$BBDEBDDBDEEDB

DDE BFEDBFEFFBBBDBBDDFEB EADD !+% B BA !)% <8 5B<2 BD B BDE&CEDB B"#$D BBDEADDBAFEBDBFEFBCBDBEEDFEEDA F DBEDBBDEFDF B C:: FF DDBBD !DCD%EA EDB B FEF FB D EBD A BD F DCBD DB EAB DD BBD ! FD% DFD DCE DB B BDD B E B F F A F FF 7B) BE CE ACEBD FEFECBABBB

)AFBCCBA"#$;FEDBDFEFBEABD!*B-CC:%DFEDAFFBDDBFEDBDBFDDBBDFABFEFFDBDBEFBD!ED%DBFDBEDBEDFFEDB!5BDBSB-CCA%)FABDBBE F AF FB &C EB EDE ACEEBD CCBDBDEBEDBD BEFBECBEDBD ABB )F D C B F A B BFCF CDBEFD B D !T 8.. 1% EFB EABDAF!6ABDB2..2%EDDBDFBDDBFEDBBDCBDFBEFBDBDBDBB ED !G$% AC )F DE F AF EBD BCD AEB EDBD F DB EFBCD FEDBDBBBADD FA DDF BE F D F DB B C F D F ABBDB)F EDD BA FEB5B<2 DD FCB C:: F DBDBF !:.D%BDB D!:.. D% B !=CDB 2../% B H DB B BA F BABACDEFBFB DF HB EB FEFB DB F F B BD F EFB DB FDB FB !)FDFEBBDCDDB DFEF DFBADBD " "#)FDE DFBFDBEFBEBDCBDF2$"#$EBDFFBC::D BEFDB FBACDEFBDBFF$ DB BDCDDBED BBDBDFD" "BDFEFDEBFH

Page 60: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

55

DBED D F BD F BE EBD CD EDD FB FBABACDEFB DB F DB FEFBDBFFBDEBFFBHFBD DCD DB DBC EDBD EBD D F DBDBEFDA"#$FF5:.-EDB!5BDBSB-CCA%DF EB C B F BA CBD !8.. D% C F DE F F !8: D% DBA B BD B B E)F D F 2$ "#$ ECA D F BA DBD DCEB "%"& ' %& BD FC F DCDD B B F HDBEDD)FEFEBDDBDBDB 5B<2 BD 5:.- E B D BEED F C CD D FBCBDFEF CDC B F"#$ ABDE BEFEDB

figure 5-5: Scheme of Pulse Shape Discrimination (PSD) principle. Left: (black) and neutron (red) signals integrated over different gates. Right: scheme of two dimensional PSD spectra showing the relative position of (black) and neutron (red) lines according to the specific choice of integration gates. Q-S represents the charge (Q) of the signal integrated over the short gate (S), the other notations follow accordingly.

DFCBBBF5B<2EBFBBEC22@'BACFEFEBFCFBEFBDNBDUDBD)FA DDB BBEEBDDCF FCF"#$BDBEBDBDF2$"#$ECADDFBC:@ F D !% EDD U BD H $ NDBED B DB 5 DD FD BD EDDBEDEBDDDCFDE FEB BFDDBED

Page 61: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

56

DADEDBDDAEBDEBBAFE)FDDEECEAAFDBEDDDBBCAE;FFD DBE D B BDA EBD F E FB BD EDDBEEDDCCBDBFE BDAFDBDEBEFE)FFEFBEEDAABFAEBBD<CFA BBBBDB DB2$"#$EBFFDBEFBF$DB FFFFDBDDFBE FFB !F BDDFEFB DB F F BD D B E% )F FDBCN DBEDCEBDFEF BDF U BD H D F F B C :@ FD BD DECA5B<2DDBBBEDFEFABDBDD F BE FEF EDC F ECA )F C N B BB FD D C :8 EC FC DCF A F EDCEDFUEBBDBCFBECDBDBCF-/@1HBA/.>AC!*FBM>?-CA/%

figure 5-6: PSD applied to the internal radioactivity of BaF2 scintillator. Left: 2D PSD spectrum in which signals arising by photon and alpha are clearly distinguishable as two separate sets of points. Right: internal background radioactivity energy spectra (black curve) in which a selection is operated on signals arising from - decay and interactions (blue curve) and from decay interaction (red curve).

5.1.2.1 PSD test measurements with a 241Am-Be source DBF"#$DCDBAABEADBD5B<2BD 5:.- EDB A ABCAD FB D A F B-@. 5& 2/-A5 CE )F 2/-A5 B BBE CE D FEFDCDFDC-.1!7EF-C38%BCEFCF!N D%BD!H D%DCEBBED2/-ADBDBCBNABDCA F B ABB CDD F D BED FEF B FCEDDCDBDHBADCEBEBD;

Page 62: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

57

( )

nBeBe

n

nBe

MeVCCnC

CBe

NpAm

+→+

+++

+→+→→+

+→

89

8

12*12*12

*139

237241

3

4.44 ;

γ

αα

γα

α

)F BED E ED BED B D D B EAB D F N D != M 1BD IBD -C3:% F D BABD F BDEFD BED *F 2/-A B NCE BDCDBC3.DCD-.@NBEDBBD!7-CC/%

figure 5-7: Energy spectra of a “low activity” (160 MBq) Am-Be source obtained with BaF2 detector. As reported in the inset, the measurements have been performed with three different configurations: no shielding (red curve), 10 cm lead shielding (dark blue curve), 10 cm lead and 40 cm paraffin shielding (light blue curve).

D C:3 FDBDDEB F 2/-A5ABCF5B<2

EEBDDEFECAEAFAFU

CEC BD F C NB C F DDB BBE 5B<2

DDC:@D F2/[email protected]&BBDCDE-./DCD0A D/4FEF BD DBEECDFEDEDEBDBD FBAABDCBFE8:. 5& DDB BE F 5B<2 E )F D EDCD A F2/-A5FECADFHBB///1EDDF -2V E B BD F D .:-- 1 HEB B B 8C8 1!B M >F<BF 2../% D D F D C :3 D F F DCD EDCD F D ECA BDBABCADFBDAFB-.EABFDBD/.EABBDFDDDFCEBDF5B<2E)F BBD B C C F DCD FB EC F

Page 63: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

58

CB EB CBED F F ABCAD A F BFD D 6F D DE B EDB 2/-A5 DCDECAB D F BC !"B2..8% ECBEFF DEDB F BFDADB E DCD FHBAFECA

figure 5-8: 2D PSD spectrum of Am-Be source obtained with BC501 detector. Two different aligned sets of points corresponding to neutron and interactions are clearly distinguishable.

)F ABD B C F F 2/-A5 CE B D DCDDBED D F 2$ "#$ EB )F CD C CDBEFB F5B<2 ABD EBC F BB ADD FAD DB ADDB BBE 6F EB AD D C FBBDB DB A 5B<2 B C DCD DB F BDCDBABDAC5! D%C5BED!BDB2..@%DDCDD:1 DBE EBD B FABDBED D F CD BD BCA BA FEF DB A &CDEFCFFDAD

,D F EDB DCD DEBD C BFB F5:.- E B D D C :A 5:.- D D DDBBBE BD F F BECD DB D BEE DD F ED EDE DCD -. 1 FF 5:.-EDBFBD5B<2!=CDBB2..:%D DF2$"#$ECA C :3 BD F 5:.- BD DEDD DCD !C% BD H !D% B EB DCFB BDDF"#$ABDE5:.-

5.1.2.2 PSD test measurements with 14 MeV neutrons DCFBF"#$DCDBAABEADBD 5B<2 BD 5:.- EDB B ABCAD FB DAF-/1DCDB#,$B'6W=B6B2@XB

Page 64: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

59

DCDCDB!'BDMD2..A%BBBBF7BB"F&CCECB!7"% AD<BD!<BDE%

DDEDCD-/1DEDCEFCFFDCEBCDBED

nHH 32 +→+ α

)F ABACA DCD C FEF EC DB B E2-.A D0EB A D /4 F F NBE CE D F BEDFB B DE D 8: 1 FEF EBDD DB F EB A FCDB5F5B<2BD5:.-EBEFFDBBC-.EAAFDCDCEDD

figure 5-9: 2D PSD spectra for 14 MeV neutrons obtained with BaF2 detector. Left: background measurement performed with the neutron beam switched off and corresponding to the internal radioactivity of BaF2 scintillator (analogous to figure 5-6 left). Right: neutron measurement with beam turned on. Two different aligned sets of points corresponding to and massive particle interactions are distinguishable.

D F B C :C FD F BECD 2$ "#$ ECA 5B<2BE&CFFDCDBAEF)FHBDNDBEDBCFDDBBBE5B<2 DFFECAAFDDDC:@EBCFFFBBF")BBCBBBBDDFEFBDBDDFBE&C DB D F F B C :C FD F 2$ "#$ EBBE&CCDDCDBBDEBDDEFBBBDEBDHDBED EAB BECD EB A F H BDD D FDCDCE F CDBCDBFCBACDEBDBEDDFBFABCA!T-A8% BBD EB F B ED&CD CED FD FCF !D DH%BED

Page 65: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

60

figure 5-10: neutron interaction cross sections on 19F atoms. In the inset ‘Inelastic’ stays for inelastic scattering mainly leading to (n,n) reactions. Figure obtained from http://wwwndc.jaea.go.jp/

)F BDB DCD DBED A EB D B B DDE BEBDBBDDCDCDDBEDC E D D F H BD N DE D BB DCDFBBDDD DDHBDNBE)F D FEBF2$"#$ECADFFC:CDFEF DCDABF CE B D BD F NBE 6F BECB EB FB BD D BDBD F D BED DCDCDD5B<2,DBB DCDDBEDEEDDCDBABDCFFFBDDBCA!RB% BDCDEBBCDBDBBCAD5B<2EDB FEBDFCEDCD E ED D C BDB EBD DE D C :-. DCD -/ 1 F CA -C< E ED BD N CED DBA !D N% BD !D DN% D ABDC FF FBD F CA BEDEEDBDDCED DBA!D % !D % !D % !D D%)F DBDFDFBFABDDCDYDBCDCCBBNDDF2$"#$ECA)C DC:C BEFBDD2...D F DBB F FNEFBDF )F EC F DBC B BED BD DCED C FFFFCCF DB#ABAFBDDDCDDDBDBF5B<2DB DBAFBABBDBDBDBB5:.- CFDBBDBEFADD"#$&CB<DBEBDEDECFBDHEADBD F 5B<2 &C B B FD EAB "#$ABDE FB EBD BEF F 5:.- D F BA ADBEDDBDDC:--

Page 66: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

61

FBDCFBDCDDBEDF5:.-EDBABDEEC FCF BE BD DBE EBD DCD FDDCE F &C EDB )F AB DH EADBD BECBED B FD D C :-- F DCD BD FD DB EBD EBEADBDDFCD1

figure 5-11: 2D PSD spectra for 14 MeV neutrons obtained with BC501 detector. Two different aligned sets of points corresponding to and neutron interactions are clearly distinguishable.

5.2 Measurements of prompt -rays produced from C-ion fragmentation )F AD A C C BC A BABCAD CE A D BADBD FB D A B=67 EED F 3810C -8@O D !B )B B 2..A% BBADD D ED /2 F ABD C F AD B FADBD F EBD D F DCDB A FDBDF5BBD!C/@%)FBECFBAD B EAB EDB ED F A B AFDBFBAED FBDBDADFBDDDFDEDDBECB BEFDEDB FB D A ),< ABCAD BD EE DCDEFBDC DBBADCDEBDFFDBDDCABCADFFDD BD DEFD BEEB <DB A B ADBADFBACECDFABDEDBDDFD B CC ACEAB BD ACE ABAAB EBAB FEF C DB B EDEB BD FEF BDDCDCC

5.2.1 GANIL and GSI single-detector experimental s et-up ) D AD F ABCAD A FDCE CD -2D BADBD FB D A B =67 BD=#BE

Page 67: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

62

D F AD A F C: 10C -2D B =67 DBE A F BECCA BA D E F B ECE AFAFBEB!:KA,2%D!" Z[-20EA8%B!:.:.:.AA8%=# FFDD 2C210CBD8.:10C ABBBB!-2\2:\2.EA8%DC:-2BFDFEFAFADBCDFADFBBEDBBFEFECAABD FBAB ) EC; F5B<2 BDF 5:.- EDB FEF FB BB D D D )B :2 )F5B<2 EDB B EFD ED A D BD FFEDEFDED FF5:.-BCFFDCDED EDE F BECB CB DB B A DCD EADD EB F F D BD BE D F C BBBF 5:.- D ED &CB DCDFDDEBDFCFCFBEADBD

=67 D EABD ABB ! B BD BBD% E A F 5B<2 BD 5:.- E )F B D AFEABDFFDEADDF5B<2E BDF DCD EADD 5:.- EDB DB FE F BDD FFD BCED DD D F" B B 2AA FE B D &CBD ABB !")<BZ[280EA8% BD B @AA FE B CD &CBD ABB !# C']// Z[.20EA8% * DB B F DCDE F BCA D F FD CD BD BDCBD BBD B ABEDEB"B!2EABA(:EADF%BDBECEBB!8.\8.\8.EA8%

=# BDBEABBCFF5B<2BD5:.-E FEFBEBEBDDDC:-86FBDBDBBBD EAB B B FD F B EAB D F ADF 8.: 10C D D F ABD DE D F ADAB=# BFBEABBCFEFB E -.AABD/AAF2C210CBD8.:10CAD)F BDB BBD EAB B F C FFF FA FD DB F DCD DCE BECD B BD D A B CF D F EFB ED AD DED F =# AD F BDE D F B BD FE FB B DEB A - A -8 A D F AD F 8.:10CD

Page 68: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

63

figure 5-12: Diagram of the GANIL (left) and GSI (right) experimental set-up. At GSI an additional paraffin collimator was added when the lead collimator slit was reduced to 4 mm in the experiment with 305 MeV/u C-ions. The distance between target and detectors was 1m for the experiment with 292 MeV/u C-ions (Pb-collimator slit: 10mm) and 1.3 m in the experiment with 305 MeV/u C-ions.

)F ABD DE D =67 BD =# AD B AECABCADFFBACECBBABFBDFEFECADBDED.DBE CDBDEBDEFD&CCDFABCADFADBDFABEFDDFBBDFFDEDFEDB)FDABDB)A ACDAC !)%=67 FFBAC!BACE-DA.D% FEEDFF&CDE!K<%DB!CBB%ECCBDB)FBDB B F F 5B<2 5:.- ED B FD DCD D BD DD BE&CD A )F EFE BD F BDB A F E FD F ECD B B ADA F DCA D FEF B B DB D FB BEDDDB)FBADDBADF6B!)%Y8DEFD E D D )B :2 !D FD D C :-2% BE B BBBDEAFB DBDBECDDBDBF BA DD C DB DDD B D BD EABD)F 6B!)% E B EBB F B <BBB EC B FF DD!D%)FBADDBBC-D!-.CD0% D A F E ECDD B F BD C BD BA

Page 69: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

64

E D EDB B F ##=# DEFD F B EDDCCA BEDABC!EABEDE-.% F),<DBB FD BE EDB DED F BA $CD F EBD DBED F DD B B &C B BC !B -.: D0% BBD DD DFBEEDB !FEDEBEFE EABD D BD EDEDE ED A% )FEDBBCABCFDBDCADFDFB < F AD F E BC !A BD DCD% B A F EDDDB 6 EDE BD B 1BBBBE&CDA)FDBEDEFABEBDDFD

figure 5-13: Picture of GSI experimental set-up. From left to right are visible: the beam line exit window in front of the water filled flasks (target), the lead collimator (gray) with additional lead-bricks shielding (blue and yellow), the superimposed BaF2 and BC501 detectors. Two thin plastic trigger-scintillators (not present in this picture) were place between the vacuum window and the water target. The additional paraffin shielding between the detectors and the collimator is not showed in this picture.

5.2.1.1 Calculation of detection solid angle and f ield of view )F ADBD F BD BD F E DBFB D C C F FF D B ABD EBC FDE BD D BEECD F EBD FD F EABBD BD BDCBD EED BD F E EDE < FBDFEDBDBDFFBDBCBABD D B ACBD FEF F D BEECD FFBD E BCD F F EAB )F BEDF=BD/ACBDABCDD!7<CF2.-.%

)F ADB C B CE D B ACBD D FEF B DBCE EB A FD !F F BA D ECA AFDEBCDBADEBD%BEF"BB

Page 70: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

65

)FED FEF DCEB EDFDBDADAFEFFDECE DB

)( ∞

∞−

≈= FWHMdzzPL

() BD ACBD BD D F B ED BFDFEFFBDABBDBBDBDC:-/D BEE () BD DABBD F ECA F EFDADD ABACABC)F EBDBCA&CBDF<*K()BDBCBD)B:8FDADBC

figure 5-14: Simulated detection probability for GANIL and GSI experimental set-up (20 cm long Pb collimator, geometry shown in Fig. 1-12). The origin of the axial position corresponds to the center of the collimator slit. Figure adapted from (Le Foulher 2010).

)FEDBD*DB

πγ

γ 4

Ldz

dN

N

Emit

Detd

−=Ω

E%+FBDCAEFD EA+)FDBDAFDBD FED )FBC* FDADBEDCBDBD)B:8

Page 71: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

66

Collimator slit aperture [mm]

Field of view L [mm] d [sr]

GANIL 95 MeV/u 2 4.1 4.33 x 10-4 GSI 292 MeV/u 10 22 1.07 x 10-3 GSI 305 MeV/u 4 6.4 4.54 x 10-4

Table 5-3: Values of field of view and detection solid angle obtained by Geant4 simulation. Table adapted from (Le Foulher 2010).

5.2.2 GANIL multi-detector experimental set-up ADBADFBACEABBDACECFBDEDAB=67F3:10C-8DCDDBECE " B !:. :. :. AA8% EBD D A C :-: FDBCFADABFDDDFCBBBFEFBEFBFA C79#,E!DD)B :2; $ADD F E C D F H BD DCDABCAD% FB D BE BD BEF FA B BD FD BEB F CDD B !$DAJ Z[-3 0EA8% ACEABDFDBFBAED,DF F B BB FDB F BA ED B D YDED79#, E B BD FD B B EAB #DE D DE FEABBFBFFDADFDBFBAED BEF79#,EDBCEDFFDAD F D BD EAB 6F FEABBDEFDWEBX!EBDADE F DFCD D% EBD B BE BD BB FD EDD D A F A D )F FDADD ECDABDFDEFB

#DEFDBDEBAAA!FDEBDEBFA AA B % BD F D BF B E-: AA D 79#, E BAD B F D BF B F BA A )F B BEF 79#,E BEAEBDFFDDCEFCDBF FB B BBD BE D B A ED B AD BD F BAED )F B FF D E BDE B DFBEF BD A D F E BBDAD B FD DC :-@ D F B FAC C !")% BA !^ 2 EA% EA F C AAE BD BAAE F C EDDE F79#, EB F ") D BEF F A EABE E BBDAD F EFE CD 79#, EB FD ADD !B D D )B:2% FB D AB DBFEFBFACBEDBCABCCD BBBADD FBECBACE C ADBBDABECDBCCCAADDDED.

Page 72: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

67

figure 5-15: Diagram of GANIL multi-detector experiment.

7 F DE AD B =67 F BA DD BAD B 6B!)% E F ECDD B B DB FBA DD BD DDD B D )F BA DD BBBDBC-D!-.CD0% DFDEDFAD E B C B F BA A BA EED D BBED EA DEB D F AD F DE F DB ),< ABCAD B F EED FF&CDE!K<%DB!CBB%)FBDBBFED B FD DCD BD F 79#, EDB D BDDD BE&CD A D F DD BD D BB BDB BBDCDACBCDFEF79#,EDBFBE&CDD

figure 5-16: Technical drawing of LYSO detectors arrangement. In the GANIL multi-detector experiment only two LYSO detectors were constituted by pixilated crystals.

Page 73: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

68

5.3 Results and discussion

5.3.1 GANIL and GSI single-detector experimental r esults

5.3.1.1 Time of flight spectra analysis DC:-3BDC:-ABFDFAFEBF5B<2EBDB=67BD=#E)FADEDBBFB FD FAEBEDFAFDFDFFBDDEDDFDDDFEAFBD21BD/1ABDF),<EBDFBDCECE

figure 5-17: Time of flight spectra for BaF2 detector for the GANIL experiment with 12C ions of 95 MeV/u. The origin of the time scale corresponds to the time when the C-ions hit the target. Red and blue spectra are obtained by selecting the events which deposit in the detector more than 2MeVpe and 4MeVpe respectively. Spectra are obtained with the collimated detector looking at a target penetration depth of 16 mm. The bin width is 0.1 ns.

D C :-3 B FB A FD B EB DB B 2 D )FCEC FB F A FD B B C DCDDCE

Page 74: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

69

BBDFEFFEBFAFD)FDCDDCE CEC BAD D A B D F D BBBF6FEBDBBBFBFBABDCDCDDCEBBD CE D F EAB BD D F ADB EB BFFBBDDBBDBEFDEDADF),<EB)FFDFF FFFFDCAEFDFEFFBEBBFBFEB)FBDF FDDEC FEADDB-.2.DFFFBDFDB:-.D

figure 5-18: Time of flight spectra for BaF2 detector for the GSI experiment with 12C ions of 305 MeV/u. The origin of the time scale corresponds to the time when the C-ions hit the target. Red and blue spectra are obtained by selecting the events which deposit in the detector more than 2 MeVpe and 4 MeVpe respectively. Spectra are obtained with the collimated detector looking at a target penetration depth of 170 mm. The bin width is 0.1 ns.

DC:-AFAFDBBBBC/D)FABDDEDF),<EBBDB=#BD=67FBE&CECDDBEFBDBBDFCDAB=#)FABDC

Page 75: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

70

F A BA A BD F BA DD &C D DD F F BE EDB BD D ED D FDDBB21DFEDEBEBFAFDBDFDCDDCECECBDFCBFAFDBCFBDCDCEDBDFDDBF)FD=#EB FEDCECFFEBCFDBD B 8.:10C E-A. AA EAB E2- AA B C:10C BD FBBBADBDB E:.LDB8.:10CBDDE-.LDBC:10C

BBADDDED. BDBDBBBDEABBBD D F B EAB F AD B =# F D B 8.:10C)FDCDEFBDBBBDFDDF),<EBFD D C :-C EBD D F F BDB BBD FDCDDCECECBD FCB FAFDBFEF F EBDBDFCBBD6F FABFBFADBDBFCDDFDFBDAFFBDBBBDFDABDEBC DFDDBDB ACDFAD FE FBBDFDD DEBD F B A FD DB DCDDCEBECDCFFFBDFBECFBDAABDBDDC:-C

figure 5-19: Time of flight spectra for BaF2 detector for the GSI experiment with 12C ions of 305 MeV/u with (red curve) and without (black curve) additional paraffin shielding. Both spectra are obtained by selecting the events which deposit more than 2MeVpe in the detector. The origin of the time scale corresponds to the time when the C-ions hit the target. Spectra are obtained with the collimated detector looking at a target penetration depth of 150 mm. The bin width is 0.1 ns.

D F B C :2. FD B ADDB ECA FD D F 5B<2 E B B CDED F ),< FD FE B DB B D E F 5BB D F AD B=67 F C: 10C -2D BB FD D C :-3 B FB

Page 76: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

71

AFDB2DFBDBEDDCCDCDFB C A FBD @ 1 )F D EBBD F D),<ECABDBBFDD),<EB BDCD

γADBBECEFBEDFDDB2 1 A F DBBECD B EBD DE FB B ACD BC - D ! B C :-3% FB D BEF F F5B<2EDB)FEABDFFD),<ECADFFBC:2. BDBDDFCACC!DEDF%FB6B!)%E!B)BB2..C%FFB5B<2FBBACDFEF/:AFBD6B!)%!*FBM>?-CA/%

figure 5-20: Left: Two-dimensional spectrum of the energy deposited in the BaF2 detector as function of TOF. The spectrum was obtained at GANIL with 95 MeV/u 12C-ions with the collimated detector looking at a target penetration depth of 16 mm. The origin of the time scale corresponds to the time when the C-ions hit the target. The energy axis is calibrated for photons. Right: Two-dimensional spectrum of the energy deposited in a NaI(Tl) detector as function of TOF obtained at GANIL with 75 MeV/u 13C-ions. Spectrum adapted from (E. Testa et al. 2009).

DC:2-FDBADDBD),<ECABDFF 5:.- E D B B D E F 5BB D F =67ADFC:10C -2D)FAFDBBDB: DADB F D),< ECA EBC F B EABDFBBDEABDDF5:.-EDF@. EA FE BBD EAB FB BD BD DF EDD E:EABFEFEADCEDFABFD B 1 CE CD F BAD EBD BD DECA C :2- )F EBD BCA FB F BACD AFD E F 5:.- EDB ED F DAFDCEDBDFDDBFBDADF F 5:.- E BB ADD F BBD EABB A DB B A DCD EADD D ),<ECABDF BEEBEDBD F5:.-EEC ED CDEAB B 6F D A DCDEADDECEDCFBDFECAC:2-BDABBDBCD F"#$EFD&C D D FDBBBF

Page 77: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

72

figure 5-21: Two-dimensional spectrum of the energy deposited in the BC501 detector as function of TOF. The spectrum was obtained at GANIL with 95 MeV/u 12C-ions and the paraffin-collimated detector looking at a target penetration depth of 16 mm. The origin of the time scale is arbitrarily set. The energy axis is calibrated for photons.

DC:22FDBADDBD),<ECABDFF 5B<2 E D B B D E F 5BB D F =#ADF2C210C -2DFCFFBE&CBE ACEF FBD D F D),< ECA BD B =67 BD D DC:2. FBBF!-.AA%FBEABCDFADBFDEBDFAFDBBE:D,DF EDB D F D),< EB BD B =# F B EAB F / AA C D F AD F 8.:10C -2D BDEDDFEBDC:-A FAFDBFB DB C F BE&C BE D B BABD F F E BD F F B E A FD DB D D F EAB BCK DFECADDC:22 ADBDCDDCE BBD FEF E B F A FD EADD BDFEF EDC F B BECD D D D FEB FB ED FD D B 2 1 A F DBBECDB

Page 78: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

73

figure 5-22: Two-dimensional spectrum of the energy deposited in the BaF2 detector as function of TOF. The spectrum was obtained at GSI with 292 MeV/u 12C-ions and the collimated detector looking at a target penetration depth of 150 mm. The origin of the time scale is arbitrarily set. The energy axis is calibrated for photons.

5.3.1.2 Time of flight (TOF) spectra analysis cond itioned by pulse shape discrimination (PSD) BB ADD D F C BBBF B A B BDB F A FEBEBDA DCED F DABDBCF BE FEF EDC BEF D F ),< EB *F"#$ DCDBDFDEF5:.-EDBECEBDCF D F F AD A B =67 BD =# C._F E F BA ED F F E BE FDBD DCD FA B F EFB BE CE CD DBADBD

DC:28BA2$"#$EBBDB=67BD=#BD F 5:.- EDB BB B F C F ABCAD ED . F "#$ 5:.- BDCFD DCD BD FD DBED D D FCD1,DFEDB DBCB DABDECBDAF"#$EFD&CB5B<2EFFFFDDBBBE BD F B FF !D N% E ED AB B EBEADBD D FD BD DCD DBED A B FBBBDDED.

Page 79: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

74

figure 5-23: 2D PSD obtained with BC501 detector for the experiment performed at GANIL with 95 MeV/u 12C-ions (left) and at GSI with 305 MeV/u 12C-ions (right). For both spectra the collimated BC501 detector was looking inside the ion path. The energy axes are calibrated for photons. Two different aligned sets of points corresponding to and neutron interactions are clearly distinguishable.

)FCBC:2/!B %FF5B<2),<EBDDCDB ED; D D F B DBDE !FD D% BDEF5BBD!FED%DEDB FBC:2/ !E % F F ),< EB BD F F 5:.- E BD E F 5BB DD D F DBC F EBE;FD!FED%BDDCD!FDD%DC:2/BBDEEBFDFBFAFDBBDB2D!=67%BDB8/D!=#%EABBFDFEABEDECDF DBF D F EDEC FB FABFDFB BEF F E B BD FCF F EAB FCCDDBDDBED

D C :2/B B B CD D D : BD 2. D ECBFBCDEDEADDFBDCFBDFC!EBCBDED BQ21%CEBDFECAFDDEC C:-3*BC F EADD D D : BD -. D FD EB FCF !DH% BED D FBEAB)ADBEDEEDAFFF;DCECDD:DBD-.DDF5:.-),<ECAAF=67AD !C:2/%F FEBBEFDBBBD!BDDB%EAB B=# FFEBEFDB BEAB F),<EB AB F5B<2BD5:.-E!C:2/EBD% FACBDCDDECA D D C :2: !7 <CF 2.-.% F FB F DED DCD CE F BADBD 8-.10C -2D D BB B FEF B A &CBFDB F BA ED ABDDEDED-:.1)F EDFADB=#DC:2/E FAFDBBE/D

Page 80: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

75

FFABACAFDEADDBEBECD)FCABDFB B F DBED EECD D F D A FD BBDFABACAFCEC!ECD%CCEEDCD F C D FB B E ' ,--. EDD BDE D FF FBD --. 1 5C B D D C :2: FBACD DCD F DE D FF FBD -.. 1 D BADBDEC.FBADBDDCDDD C BC E F D F FE DCED B CDADB!=CDBB2..A%)FEBDEDECFBD F EB =# ),<EB F CEC D D : BD -: D DC:2/EABDCFDEBFCF!DH%BEDDFBEAB

figure 5-24: Left: TOF-spectra for the GANIL (95 MeV/u 12C ion beam) experiment. Right: TOF-spectra for the GSI experiment (305 MeV/u 12C ion beam). The spectra were obtained for detector focussing on a given target penetration depths (Pos=0 corresponds to the target entrance, and the origin of the time scale corresponds to the time of ion impact on the target). The energy selection is performed on the photon equivalent energy of the detected count.

AD BE C :2/B F ED EADD D D -. BD2.D BEA AFD FBFB EBCEDCDFCF!D H%BEDDFBFADBEB)FBACECDDFFD),<ECAC:2/CDD BDCB C F BB ED EDE F 5:.- E!:EADBA% FEDDCECD=#),<EBD D 2: BD /:D FD D C :2/E ADB D FBDBEFDDFBDBBBDDDFE

Page 81: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

76

!C:-C%BDFEBDBDBBCACFDEBBFBFEB

figure 5-25: Simulated neutron energy spectra at their emission points. Neutrons are produced by the fragmentation of 310 MeV/u 12C-ions stopping in a water target. A selection is performed over the quasi-orthogonal neutrons emerging at angles between 85 and 95 degree with respect to the ion direction (red curve) and over the neutrons emitted at forward angle (blue curve). Figure adapted from (Le Foulher 2010).

DC:2/DEBDDEFBFAFDBBDBBC2:D B FBD FB D F 5B<2 ),<ECA )F ABD C F ACD F5:.-EDBBDFFDEABD FEFBDABEBCBBDBEEBCDBBDADCDDB FDCDEADDF),<ECAEAB!C:2/%ABFBBDF=#ABCAD!C:2/%DD DAFDBDF=#5:.-ECA!C:2/%)F C F BEBEECACB BEFBDBDBACEFFDEDEDEF5:.-EEABFBF5B<2E!C:/%6F BFDDC:2@ FAFDBEAD5:.-),<EBFDFEBECAACBFCDDFEFFEDBBDDFDBD

BB ADD F 5B<2 ),<ECA FD D C :2/E !=#% BF AB F D D D C :2/B !=67% BFCF FBE B D FCD A B =# )F B DD DF A FD B BD F FD CD DCE DCDDBED D F B EAB !BD A : -: D% BB DEAB FB D C :2/B )F BBD C F B DCDCEDBCDBADBDFEFACEFFFB8.:10CFBDBC:10C)FADEDFABBDFFCA!BEB BECD FD 2: /. D% EBD BD F

Page 82: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

77

AEBADDFADBEBFEFBB=#FBDB=67

figure 5-26: Sum up of all the TOF spectra obtained with the collimated BC501 detector looking inside the ion path (GSI experiment with 12C ions of 305 MeV/u) at eight different axial positions from 25 mm to 180 mm. The sum-up of the spectra allows the identification of the prompt photon peak. The origin of the time scale corresponds to the time when the C-ions hit the target. The bin width is 0.1 ns and the energy selection is performed on the photon equivalent energy of the detected count.

5.3.1.3 Photon and neutron scan profiles )F CAB C F ),<EB BDB D D F CBBBFBFEBDFDDFED)FAFDEBD D D C :23 ! D% B BD DBD FECDEF5B<2EDBDFAFDBF),<EB ! C :-3% B BC DCDB D; D .EDFBDBDE BDF5BBDABBBF D )F A DBD DB B -: D ED D F AFDB)FEBDDFBEDC:23 BD DBD F ECD E F 5B<2 EDB FD),<ECAADDB BFDDFF21BEFDAFBEBDFDBBECDBDFEB FEBDBD DBDFAFDEADD F),<ECA!D%BEBEBDDFDBFBDFFDCED)F DEB FHBB FDFDBFEBDBCBDDEBFBADBDEEDBD FD AD ACE FD F D D EB ,D FEDB F EBD BD DBD F D ),<ECA!BED%EABBDFCDEBDBD)FADB FBCD AFED FAHBEADDF),<ECABDFDEBDEBFFDBDFDCDFD5B<2E Indeed it has to be nFBF DBBECD B ABC D F D EB B D A; A FBD C.L F - CA 5B<2 E D

Page 83: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

78

BECD FEF&CBB&CBDBFDC FEFDCDEBBFFDCDBDBAABBECD

figure 5-27: Longitudinal scan profile obtained for GANIL experiment with 95 MeV/u 12C-ions. The origin of the longitudinal axis corresponds to the target entrance position. The prompt gamma yield obtained by TOF selection (red points) is strongly correlated to the ion path in the target, whereas the counting rate profile without TOF selection (black points) is almost flat. The calculated Bragg-peak position is given by the dashed vertical line.The error bars corresponding to statistical errors are hidden in the dot symbols and the energy selection is performed on the photon equivalent energy of the detected count.

)F EBD D D C :2A BD DBD FECDEF5B<2EDBDFAFDBF),<EB!C:-ABDC:22%BBCDCDBDF=# AD F 2C2 10C BD 8.: 10C -2D "D .EDBBDFBDBDE BDF5BBDAB B BF D BB D F =67 AD F ADBD DB B -: D ED D F A FD B BD BFDDFF21BEFDAFBEBDFDBBECDBBD BEBEBDDFEBDFDBFBDFFDCEDEBBBEBC 2 !EDB BE% D E F 5BB D B B D D A F =67 BE ,D BB FEAHBDFADF2C210CBD ABDC FF FBD F 8.: 10C D )F C F BEAB BC !E -. BD / AA% FEF B B BEDBDBDBD)B:8

Page 84: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

79

figure 5-28: Longitudinal prompt photon scan profile obtained for GSI experiment with 292 MeV/u 12C-ions (left) and 305 MeV/u 12C-ions (right). The calculated Bragg-peak position is given by the dashed vertical line. The error bars correspond to the statistical errors only and the energy selection is performed on the photon equivalent energy of the detected count.

figure 5-29: GANIL and GSI prompt photon profiles normalized over the detection solid angle and field of view presented in Table 5-3. The energy selection is performed on the photon equivalent energy of the detected count.

)EABFEAHB=67BD=#AD &C DAB F EBD D D C :23 BD C:2AFEBCEDBDBDD )B :8 )F DAB EBD B D C :2C < BAFDDFF21 BDBDFDBF DBAD BD ECDB DEDEBD D CD BDBDCD BF DF E-\-.3FD0!D\A\AA% < EABD FBECDECDBFDD FADBCBDBBCE-2\-.3FD0!D\A\AA%

Page 85: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

80

BB E D ED . D F =67 AD F C: 10C-2DDBFDCDEBDBDADDDFAFD DC:8.FDFAFDEBD BD DD D F " B B 2AA FE B D&CBD ABB !")<B Z[ 280EA8% BD B @AA FE B CD&CBD ABB !# C ']// Z[.20EA8% EB DEBFFAFDEDDFBDDBABBEBAFDED BD@BD-2AADEEBDFFDFFCD&CBDABBBD)FBACEFDEBDFDD-.BD-2AAF FD&CBDB DFBBDFFDBDDCEEFDBDCDDEDBDFFDEBDDFB A FD ED FEF EBD EAB F F EBECB5BBDABBBBFD BBEEBBDFF DCDBDDBDCDDDFE FC"B)FADBFDBBBCDFEF EBD BEF F B EAB C BD FB EBD AB BCE-2AA

figure 5-30: Prompt photon profiles for PMMA target with different inserts: the rectangles indicate the longitudinal position of the bone equivalent (green) and lung equivalent (red) inserts. It is observed a variation of counting rates vs the material density and the differences on the ion range induced by the inhomogeneities can be detected. The calculated Bragg-peak position is given by the dashed vertical lines. The inset on the right shows an illustration of the target with the different material inserts. The energy selection is performed on the photon equivalent energy of the detected count.

DC:8-FDFAFDEBDADBF DCDE D BCA D F FD CD FBFD CD BD BDCBD D F B B E D F

Page 86: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

81

FBDADBECB FEBDBDBBDBECEBB !8.\8.\8.EA8%FFB FBDFFD D FAFDBDBDBFBECD!EDBBE%CE-2/ EAB E F-/:BD-:/ F CB ECE "B BD F AB EDEB " B !2 EA BA ( : EA DF%)F BC B BD A C :8- F D D ED D FAFDBBDBDCDBD-.AADBEEEBDBCAFB BBDBDBA FEDBDAFDED D F D BD B F 5BB C EABBFFEDBBECDFFECE"B!:.:.:.AA8%DFABACACEDFEDBBEDFABED!2EABA%BDFECEBB!8.EA%BC2.L

figure 5-31: Prompt photon profiles for different target volumes. The signal to background ratio decreases when the target volume increases due to the higher probability of photon scattering. The inset on the right shows an illustration of the different targets.

BBADD BDDFFDFEAFDEBDDEBFDBBECDBD BD)B:/F B B ED FD FEF D FF FBD 2 1BD / 1 E B BD DEB EDB BE 2/ L BD83L6F F B BC FBDDEDB ACEDACFDBDDEBFCDEBDDFDABBDFABCADFBEEC

Page 87: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

82

Contrast factors

No E Selection Counts ×10 -7

E > 2 MeVpe Counts ×10 -7

E > 4 MeVpe Counts ×10 -7

IN 6.11 3.78 1.35 OUT 3.96 1.70 0.64

Cylinder 2 cm

Contrast factor 1.54 2.22 2.11 IN 5.86 3.13 1.21

OUT 4.03 1.68 0.63 Cube 5 cm Contrast factor 1.45 1.86 1.92

IN 4.61 2.43 1.00 OUT 3.71 1.58 0.59 Cube 30 cm

Contrast factor 1.24 1.54 1.69

Table 5-4: Achievable contrast factors on the photon scan profiles for different target size as function of the energy selection applied on the photon counts. Photons counts have detected at a longitudinal position of 10 mm (IN) and at the background level (OUT).

5.3.1.4 TOF-spectra and prompt photon scan profile comparisons between measurements and Geant4 Monte Carlo simulations DBBFFADBABCADDB =BD/DBACBDFBDADFCDCEFABCADBDABDEFAB=BD/EFABCBBAHBEBCDDCEBBADEBD)FBBFACBDEBDCDD(Le Foulher 2010)

)F ADB C BD D F EB =# AD B F ABFEDCD F ADB EB !B B CD B BACA% !B B 2..:% CE D F ACBD D BEB B D BEECD F DCDE F DDAD D EBDBBD

D C :82 D F EABD D ABC BD ACB),<EBFADAB=#F8.:10C-2D)F&CBB DB BC F ABC ECA B CE FACBD BFCF B B EBDE D F BACD FE DB FEF AB BC D ABDC =BD/ D D F ACB ),< EB D D C :82 BDABBD BE ! E-2% FB D B B F E FD )FCECBDFCBFAFDB D:BD-:D FBDABC EB D FBD "#$ B C FD EBCF!D %DFBEAB!ED.% DFEDB BC F ACBD E DCD DBED F 5B<2 E D F AABEF D F DBC F BBD EAD FCECBDCDC)FEDCECBDD2:BD/. D BD FEF FB D D D ABC ),<EB B C FDCDFADBEBB EDDFACBD),<ECAFCABDD/.BD3.DFCFBD FBAFFACBCECEABABCAD FBDDCD DFEDAABDCFDEBDDFBDDFBEDBDDFBACA

Page 88: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

83

figure 5-32: Comparison between TOF spectra obtained from GSI measurements with 305 MeV/u 12C-ions (as in figure 5-18) and Geant4 v9.1 simulation. In the hadronic physics list the Binary Cascade model (BC) was used. The origin of the time scale corresponds to the time when the C-ions hit the target. In the simulated TOF spectrum a normalisation factor (~12) has been applied to all the detected photons. Figure adapted from (Le Foulher 2010).

DC:88BEABFABCAFDEBDF=67 BD =# AD F F ACB EBD BD CDF &CBDCA AECB DBAE !G$% A FBD F FBDEDBED D F G$ A F DCEC E B B DDADCED FEFBDBEDFBEFFFCFFEDBED D F BA AECB DBAE ,D EBD AB FAFBE BADBDECBDCECDA F FB D ED )F G$ ACBD E F DBAEBB F BED F D F DBAEB B E DCE BEBBDACEEBDBBEBBFDBB!#FB2..A%)FBEBDBADABFDFDBDCEBDBEDDDFDFFEBDF B F BA F EB BDB F <C EAD EBDA B BD D BEECD D =BD/; !% B EBD D FBBD EB B D F *BD A !% EBDD B 810C F BEB ACBADBD !% FFE F DCE F <A BC BD !% F FD BBDEFBDD )F BABDB DEB; F EDDCCABDEBAABBEBDBDB FFFDFD !7<CFB2.-.%

Page 89: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

84

figure 5-33: Comparison between Geant4 (v.9.3) simulated and measured (as in figure 5-27 and figure 5-28) photon scan profiles obtained for GANIL and GSI experiments. In the hadronic physics list the Quantum Molecular Dynamic model (QMD) and the Fermi break-up de-excitation model were used. The calculated Bragg-peak position is given by the dashed vertical line. In the inset of the figure (left) are reported the simulated and measured profiles normalised to the maximum photon yield. The error bars correspond to the statistical errors only. Figure adapted from (Le Foulher 2010).

)FEABDFFDEBDDDC:88FFBACBD A F =BD/ C8 F G$ BD <A BCAABFEDABAABBBDBEDBDBE E: )F D B BF AAD EAB FACBDDDC:82BDAF=BD/C-BD5AF BBBADD FFDBABBBE E-2 FB D FB F BE D CED D FACBDFDDADFEB!BE%F=67ADBBDDFFDEBDFEFBBD BCCB F DBD F E ECD CD F A FD BD B EB D C :82 F A FD B D FACB),<EB BBDDCFBAFDCEC DCE F B BE BD BBD EB D FDDAD BD D C :88 F DFBDEAD F A FDED B F D F D BD BD A DB F DFDEBDB&CCEFACBD)FBC FFF D F D D F B F C F F ABCBD ACB B DAB F ABACA FD 6F CF AD F A FBDD F FBDEDBED D =BD/ B FF B DB ABD BBB B CBACBDE

5.3.2 GANIL multi-detector preliminary experimenta l results

5.3.2.1 Time of flight (TOF) spectra analysis DC:8/BFDFAFEBDF79#,EC D F ACE AD A B =67 F 3: 10C-8DDBECBFEBEDF79#,ACAEFB

Page 90: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

85

BDBDFFEDBBE!C:-:%)FADEBBBDBDDEDDFDDD F E A FBD 2 1 BD / 1 !FD &CBD D% A BD F ),< EB D F BD C ECE )F A DCFD BC F 79#, ),<EBEAB 5B<2 ),<EB D D C :-3 BD C :-A FBE BD F B CEC E F A FD B [email protected]#,EDBBEDEDEEBBECDBBD

figure 5-34: Time of flight spectra for one of the LYSO (medium) detectors employed in the GANIL experiment with 13C ions of 75 MeV/u. Red and blue spectra are obtained by selecting the events which deposit in the detector more than 2MeVpe and 4MeVpe respectively. Spectra are obtained with the collimated detector looking at a target penetration depth of 10 mm. The origin of the time scale is arbitrarily set. The bin width is 0.2 ns.

6F BEBDDAFD),<ECADC:8: BDDEDB21 AFDBBECDB EAB B F E D A FD FEF A FBD21D F79#,EBEECD 8.L FDDB

Page 91: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

86

<=67BD=#),<EBD D C:-3BDC:-A FBA BC B E :L BD 2L )F BD DEB BC DABDCDFDBBECDBBEFFFABCA 79#, E EAB 5B<2 F A FBD C:L - CAEDBECD

figure 5-35: Two-dimensional spectrum of the energy deposited in one of the LYSO (medium) detectors as function of TOF. The spectrum was obtained at GANIL with 75 MeV/u 13C-ions and the collimated detector looking at a target penetration depth of 10 mm. The origin of the time scale is arbitrarily set. The energy axis is calibrated for photons.

5.3.2.2 Multi-detector prompt photon scan profiles )FADBAFDEBDDDC:8@ BD DBD F ECD E F 79#, EDB DFAFDB),<EB!C:8/%BBCDCDBD)F"BBBDBDDBEFFCBEEBBCEBDFDDBDBDFD FDCDBD B B EB D AB D . ED FBDBDE

EBEBDDFDBFBDFFDCEDBDBEBBBBBEBC2!EDBBE%DEF5BBDBEFEBDABCADEDFD79#, E FEF B D F BE F C 79#,EDB EDB BE E/AFDDED!C:8@%BD3:FBDDEDBQ21DFEAFD !EBD D FD% )F BC FB EAB F EDBBE BEF F F D 5B<2 BD D ED . FEF E-:FDDEDBD2.FBDDEDBQ21)FDEBFEDBBEF79#,EEAB5B<2EDB CFACEFDBBECDBBDFF AB 79#, EDB FEF FB BB D D F C

Page 92: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

87

BBBF D F EB F D D ED A D F DBDB FB AD F ADACA EB FD D FEDBD BED EADB !<$% FF FEF B B FADBCA..1FD&CBDD

6F D C :8@ F BB EDB BE F BE79#, E BC E2 F D D ED BD BC E8 F BDDEDBQ21!DFD%)FEBDFEDBBEF79#,EDBAFDEEDCBDFBECE C WFD EBX F AC ED FDEBD ADE FDFCDDBBADD F B ADB C BD A CF EDBD BC F&CBDEBDFEBBBCDEDFEFEDBDDABCDD!DBD2.-.%

figure 5-36: Prompt photon scan profiles for the multi-detector experiment performed at GANIL with 75 MeV/u 13C-ions. Position 0 corresponds to the target entrance. The calculated Bragg-peak position is given by the dashed vertical line.

FCF F EDB BE BA EDBD BEF F C BE79#,E FBCEFDDBDCFDBD B D D F EE EDB )F B C FDDEDE D EDEDEC FD EBCABD FD EB B FEF D D F DCA DFCD E C ED BD A ABD D DBEEBBBEFEFD&CCBAFEFEFB EBE ED F FD F EDBE D F FCBD ") FB D CE E ABDE BDFEB FBFBDDFEDBBEFBEBDBEFCEDFECAAFBFDEBBBDEB6F B BEEB EDB BE E2 B BD D FADBADFCBDEEABD FEDCCEFDEB

Page 93: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

88

ED ABF DE D F EBD BD F F B5B<2 E BD F BE 79#, EDB B D F ),< EDFEFFBABDBFDEBDEBFFDBDFDDC:83 FABDBBECDB FEF EBD BEF F F AB 79#, E EAB FB5B<2 EDBB DABBDAFDEDD F),< EB BD CE EBD EB D BD )FDDBEAABEFFF5B<2EF BFDDC:23 FD),<ED BEBDEABBDF CDEB D BD B BD 6F F C AF CDBB BEF B EDB BE BDBEEB BB CD D BB EDB BE D E.8 BCDDC:83FBFBBCDFEFECBDBBCAD F28AA D C :8@BBCB BEDFEBDC:83

figure 5-37: Scan profile for the multi-detector experiment performed at GANIL with 75 MeV/u 13C-ions obtained with no selection on the TOF spectra. The calculated Bragg-peak position is given by the dashed vertical line.

5.4 Conclusions and perspectives )FABF&CADDFABCHBBBBBCDBC-2AABDBEBDEDFDBDBF5BB5BDFCFD AFDEDBBBAD EFD&C C BA DBDADDD B FD D C :2C B A FD D FF 21 BDBDFDBF DFAD BDECDBDED EBD D CD BD BD CD BF DF -\-.3FD0!D\A\AA%5BDFEBC EDBBDBABBDBADBDDFEF3\-.AEBDDB&CBDB-=BBCACCA-2.EA8 D8CE BEF 8AA ! >?A B 2...% F B D BB -A\-.3

Page 94: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

89

EBD D E EED F BADD BC CBD B D )B :: F F D 5B<2 E B C D FDADBEDCBDBDBFDFF21 BC3HECDFDBD8HECDCFDBFF=67EBDFDDC :23 F C BD BC 2. HECD FD BD 3 HECDCFDBFF=#EBDF8.:1DFDDC:2ACAD B CDA CD D D F CAC CA D B CDBABDABFDCAFDDBEB CAC E D A EDEB B BE EFD&C BC C.L F FB B F ` -.L FABACA F D BD DCB !7AB B 2../% D BEE FC ABD FB F B EAB BAAB EBAB C B ABDEBDFABDEFEFFB FF FBD B F CEE AB D E * AD FBFDBBECDBABCDFDEBBDA;AFBDC:LF-CA5B<2EDBECD FEF&CBB&CBDBFDC FEFDCDEBBFFDCDBDBAABBECD

Measured counting rates [counts/ion]

Estimated photon Counts/Slice

Inside ion path 4×10-7 7.2 GANIL 95 MeV/u 12C-ions Outside ion path 1.5×10-7 2.7

Inside ion path 1.1×10-6 19.7 GSI 305 MeV/u 12C-ions Outside ion path 4×10-7 7.2

Table 5-5: Estimated photon counts per tumour slice based on measured counting rates with a single BaF2 detector and a 2MeV energy threshold applied over detected photons. The estimation is performed for a typical clinical case in which 1 GyE dose is delivered to a 120 cm3 tumour volume (M. Krämer et al. 2000).

)F EADBD D A FD BD BECD BBD ABFAFDFABDEFBBEECADBCBD B F C C DCD FD )F BC BECBABDE DE A DEBD CE F F FDABB!B)BB2..C%BDBADBADBCFBEACEBBDBDFEFB<CFA ),< EFD&C B ADBD F EBD F A FDCEDBDFABDBFFBDFCDBDFFDBDDCDEDCD D),<EBBCF F"#$EFD&CBDCDEDB5:.-

FCF C FF DCD ED EDE 5:.- EDB F BEE BBD EABD DB B A DCDEADD EB F F D BD D CEF EBD B CD)F BDCDEBC._EBDDEDCCDABD D BD EBD K F D A FB

Page 95: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDBABEFDAFDFEDAEDABEFFE

90

DCDECDA DABDBBA BBD CFABDDBDBDFC

)FDBDFEBDDFADADBB ABB EBD F A FD CED F F BD F B D CD BD BD DCEE F FF BD D D D F " B EDBDFFDEBD)FADBFDBBBCDFEFEBDBEFFBEABCBDFBEBDABBCE-2AA)FDBDFDCDEFBCA D F A FD B FB FD CD BDBDCBDDFBBEDB FFBDACABDF B B DEBD D F ABC DB BECD B DBECB FEBDBDBBDBECEBB!8.\8.\8.EA8% F FB EAB F BBD F CB ECE "B !: \ : \ : EA8% F B D F A FD BDBECD FD !EDB BE% CE BC 2. L F BDD ED D FD F A FBD 2 1 )F EDECFB BBDBDBA FEDBDAFDEDDF D BD B F 5BB B&CB D BDEBD

*ADBFBFEBDDAFDEBDBDD BD ABDBD F FF D EB D FB FB FD FB F D BA ACEC !C EDDCC% D EC ),< ABCAD F CDBDEDEDDEBBYEDDCCDCEC!FEFAEBBD F C DED F BA AECEC% F ABD&CAD),<ABDEBDFABDDD FDEBBCCECFCCBDFBF BA B F A CD ),< A !E-2 D% )FC CEFD&CABBEBFBEEDFCADFBC- D BD B DEFD B E BBB FB B BBECDEBCE-.AD0EBCDDFB!"B 2..A% #CEF B E !FE% EC AB EDBD !EFDBEFB2..A%DFEBAD!'B2..@%BDFCEFFEBECDDBCBB

)FADBCFFACECFBFDFBBEBEBDDF DBFBDFFDCED BEF F BE 79#, E F B D AFDDBBFEDDF),<EBBCE@AFFFBDFBECBEFDFBAADBEDDFF 5B<2 EDB )F B BD DEB BC B BE E8 D FEDB BE F FD EBD BD F B D 79#,EDB EAB F D 5B<2 E 6F F BD D FEDBBEDFDBDBF5BBFBEBDBEF CED F E CA AF B F DEB

Page 96: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

FBD

91

BBDEBBDF DB FFBECBADBC F EDB BE BEF F BE 79#, E !E2% ABD FBAFDBBDFFD5B<2EDB

6FB FDABDADFB DDB EAB D EDEB BD EDD F BAAB EBAB FC AB FEFABCDBEABEFD FBD F ),< EFD&C 6F F C B EAB EECD D D D D F BD C D DE BED FBD FAB DBDFCAD FBD)FBDFEBFADBADAFF ACE C F AEB BD C F B B E FED !DE BDE A AA% BD ABDBF!E-:AA%D79#,EBADB F DBFBFBAA)FB BEF79#,E BEAEBDFFDDCEFCDBF FBBBBDBEDBA ED B AD BD F BA B 6F F DBDBEABABAABEBABFBEABEDCFBEFBBCDBCE-2AABDEDBFBAA F D FD DCE F C D BF D F D EFBB AEB EDCBD F EAB BD BE EB ABEB C BD F EDBD D F ABD DEDBDB

Page 97: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEACBFBCFDDDD

92

6 Geant4 Monte Carlo simulations for the design of a multi-detector multi-collimator Prompt Gamma Camera

AAAABCDEFDBCACABDDCC ACE AEFC BCE CB FEC FECEEC D ACFEC AF CB EECFFACECDCAFCBCBECAFDBAEB AFD!CC A F C B ACFECA AE CEDCFCA D B EECA A" D A B AACEECACBDBBBACCABCACACA

6.1 Application of Monte Carlo simulation codes in medical physics

EACFECACACCEBACAAEACEE D DECCA#BACEECA CE CC BCB B E A $% &$E %B' (Bielajew et al. 1994) $($)*$&C $ )AA *D ACA $EA' (Baro et al. 1995)*B FECFA ACFEC A EC" +),- (Battistoni et al. 2007).(/ (Waters et al. 2007). 0#% (Niita et al. 2006) %0$)10#(Gudowska et al. 2004)BCBCBCECCEBECCAC BBE BC CCA 2ACA ACDCEE D BDCEDCECC.CEEAD$#%$#EC"%C%$# &0CA E 3443' E #$ &5 E 344' CECCCACBFECCFC

EEBEEAFACCEFEBACABA &$ #"C' (Agostinelli et al. 2003) D CA DE!CCEC CBACAEECBBEAECAB!CACB F BA E !ACE E C B CEB C CE AF B ACE CACFCA D 67CCF BFC A D 80 93CA C CFA CAAFEC"CEA D $# CC ECCA &ABCB E 344:' CC. E. AF FE DC CA !CBADCBBCDE;CBCECCADCBABCECDACCC&ABCBE3494'ECCDBACAEADECCCCBBAD&)BE3494'C ABBBACCAD!CE2"AFEFCBC43<DBCECECBFCDBCDFEECBBED!CF&+=0'

Page 98: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

93

6.1.1 A short overview of the code architecture and physical models used in Geant4

CA 77 > C AD A FE DE!CEBCF EC B CEC ECC D BACA AAAAFAA#C!E.BAAACAEFE. DFEA. C;CA CEC D AA CA!A B EA A B CDC ! D B A CAADBCCAAAFA.CCBFCDFACCDD AA EEC BC ECCEC CE CE..CE. &ACEEC E 3448' #B FA BA CEC CEECBEFDADCDDABACEA. DC ??AACC@@ EA B B CDC ACFE AAA &CC A E 9BB9' # E BBCDCEACCADBACAAAACACECB C CAC CE . EC BACA BCBACA#BEAA1BEABCEECBC CA EA C B CACFC D ACEA C DFE EA + EC BCCCA. AE BACA EA CEE C #BEC &$'BACA CACC CCAC BAB)$&)$'BACAFACFECA.B%$" BCB ACA AABEF CBCEC AAA DEAACABBBECDD.ACCFCDBA%EECCADBECBACAD &C E 3494' >FACDC F BC D EC B E$BACAEAAACA$CAAFDDCCCACDFACFEC FAA CE ACFECA D CE BECCA. B A CCE BC A B AEC D B ACBCBACAEAAE.BCACABA D B AF A B AC ACFE ACECDC AF CBCB EC AF D BA E B A F D !CC (BEAA. D EAA. C B.D CA D CA C CE B. 2C A DFFEFE1CA&D1'BAFCECAEAACE89BECDEACBD B.BCE !AC ECE ECC AF D B BC BACA D . CB CFEACCA D B CAAC D CC. DF C &)+FEB3494'

Page 99: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEACBFBCFDDDD

94

6.2 Simulations of a simplified multi-collimated and multi-detector Prompt Gamma Camera

6.2.1 Basic principles of collimator design FECE CC. ACEEC BCACDDFAC D $#BA. A. EA EE ACCEEC A A(Anger 1964). CA FA C A C DCCAA CCB BFCEA & D CBFCEA'ACEEDAFADFEAACBCAC!ABB!AAFCECCAD$#A>FACDCAE C C CAC BCFFA EE ACCB ACEBFCAACB%$#2BECCAABCEF"DCFECABCBFBC>C.CBECCACBCEBC CCCAF!EA& A' C 31 CA C B A D ACCB 81CA C B A D %$# #B A CAA FA C CEFECC988/& AG9"H'.I:& AB89GE844"H'.938& A 9EB "H' 9G+ & A E99 "H' BCFF E B BA CB BC C D CC CA BFA FFC C C AACECDCFBCAACCAD A#BDBA CE B CA E EEC C B CCAF> B A DCF I9 CA CEEFA AEC D BC ADEECABCBE CAEAACDCBD BC DFAC&%B344I'CBEEECACCEAB CB ACE BE FA C CC AEE A AFB A BBCEACCDCCACEECACBBEACFACCECCDC CA B B D CA CA AEE B B AC; D B 1CC EECA AFCB BEABCB C D B D FA CA AFB A EFABFAFEEEBBAC;DB#BD.ACD B CA D DCF I9. CA CDC CEECACCDCCCEECAEEEBEEECA CB BEA B EEE B B CFE B D1C B EECAC B AB D B BEA BDB!E.CFEAFFBCEBCFFAFEEA 444 4444 #BA EECA B A E FA CFECCFADFCAB>C2FACBECEECACDCCEECACCDBCDB>.BAACAEAECEECCACACAFCCACCBBAEECABCB BD E. D !E. %$# AFCBA B FBECBCBADEEEBEAEECA

Page 100: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

95

figure 6-1: Diagram of different types of collimators used for gamma camera in nuclear medicine. Figure from (Bushberg et al. 2003).

6.2.2 Description of the simulation set-up + F FECEEC FEC BA EEEAECEECACACCACEEFACDCFI3BCFADBCABECFCEACCDB2"BCB CA DCCC. CEC" C B A D ACE CE EEE C ECFCE ACC C B A AC AEC DFF CA CA #BD. C B AA. EEEAECEECA. EEEBE EECA CEE AFDDCC ! BECFCEACCDB2"(BEAA.CFA.BB C AAFCA B AC C A CEACECCECA!ECEC"FEDB A CACA D B DFA C B !CE E D BECFCEAFAECCEC"CEDCE(U. Weber & G. Kraft 1999)CBCCAECDFFCB CA CA C FFCE D "A CCFEBAECFCEACCCBEDECD B !CE CBCCA F B CA D BC ACCAECCE*BCACAAECCBDCEEFFCEDCBED#BCAEACBA CAC C B F AFF CC B B C DDA. A E CF C AC 39. BA FEC B CDC B AA ACC D B BCB BD C CCE E CB B AACE !CE CBCCAFBCA

Page 101: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEACBFBCFDDDD

96

figure 6-2: Diagram of the multi-collimator and multi-detector simulation set-up. FS and FD represent respectively the source and detection field of view including the source and detection penumbra marked as gray and pink shadowed area.

AADDCFI8.ACECDCAFCBCB ECAFDBA E B A F D !CCAFCBACFECAECBBFECEECBA"D)J%*AAEC.CAAAABCDEFDBD B C AC A B DDCC ACE AEFCBCECBFDAACAF"C CE EE B CE A A C DCF I3(BEAAABACEACAB "CFCAECA B CC D B A F CACC #BCCF CA B EC AF D BA B A" DACCEEA BA F KI4 EE. C E CC. B #*+CACCCBA"FFABACFAEBLK944"EFCACACA#BEECFADBCBACBCBMCEAEEDB EAAACEBAC#BDBAFA=&MN:.ON9B3EP8'AEECCE#BEECBABAC!AACEBEBFBEECBACAC94E4#BBC"AADBEECCEA AEA BA C AE CB CEECEE FA &A BA ABCDEEFFDEE DEEFFDEE' #B

Page 102: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

97

ACCEECAEFABCCACBCBBCDDCC C AEFC A )J%* A B BA +CEE. AC BFCE C A EA B AC; D ACFE AF. FAED34EBEBCBBAACFE

figure 6-3: Screenshot of the graphical representation of the simulation detection set-up. From left to right are shown the isotropic linear source of photons (green), the multi-collimator (purple) and the stack of LYSO detectors (red).

#B C CDD FA C CCE FECC CC F AA B D BCC CC . BCE D CCE B B CA CAE " &DC! B CCA C C BBFCE ' CE !A E99 "H. C F A B AAFCA!ECACFCABCBB94HAADBAFACDCFI0 C CABACFEAFD AFCQACAD!CCFCBCCD894HPF 93CA DFEE A C (Le Foulher 2010) #B BCACACAAC"AHD93I98HD9I*(Polf, Peterson, McCleskey et al. 2009) EE CACE #BCA AFBA DCCB B!CE DC C B CAD DCFIBCB BA BD FA C F ACFEC A D B CACFCDB ACBECBAFACCAABCCEA C (Le Foulher 2010). C B B AFD AFCD!CCCABCDBCBDBBCDFACCFACFEC BAFDBF ACEC&894HPF'AA>FACDC

#BCAFFDAFBCAFDACA B BA E CC CA AC #B CAB FCAACCBFECAE&AA

Page 103: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEACBFBCFDDDD

98

CDCFI3'CADACCEEE"AFACDFECC#BCAEEAFACDFECECCADACBBECBCCDAEAEA

figure 6-4: Energy spectrum (black line) obtained by Geant4 simulations of prompt -rays emitted in 4 steradians and produced from the fragmentation of 310 MeV/u 12C-ions fully stopped in a water target (Geant4 9.2 with the binary cascade model). The red line represents the exponential fit of the simulated data. Figure adapted from (Le Foulher 2010).

#B)J%*CDDCCBAACCB844"HCBA BA CDE CAC D CDD AE BC"AAA ACFECB CCDCEDBACEEE BBC" CAC D B AE &$' BCC B D B D CBAFAACDCFI3#BAFEADBAACFECACDCFIECBBDDCCAACBB D 4E H &CE F B A DBEC AA ACA' C AECBE CAA D $ RGHF B CADCFCAA ACA%CEE C DCFIE.B AEA A B DDCCCA EFE CB BCBABCEBAAEAABBDDCCDBACBBAFACDCFIBCBBACD3EHEEBACFECABCBDEEAEAAA8BCBCBAADC! E A ! B BC" B AE B BCB CA CA CDDCC BD C FE D A CA BA B BC"AAACE A (BEAA A CCAC ECCC F B CECCC D )J%* AEA &BCB CA " C F C BAACFECA'FA AC BD DD BA CDDCC"FCAF)FAEA C AC E99 A EE B ACFECA A C BDEECCCBAEBC"AADEEDACCA &EBFB ACEE A C BCA "' D B !CE

Page 104: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

99

AFEA C CB B FEC !C AB C B CFABBACFECAAB

figure 6-5: Simulated detection efficiency for a single LYSO detector with different thicknesses (E). Circle points represent the efficiency for monochromatic photons and star symbols the efficiency for the photon with the energy spectrum presented in figure 6-4 with a median energy of 2.5 MeV. In all the simulation the width of the LYSO crystal was fixed to 3 mm (D) and a pencil beam of photons hit the center of the face oriented toward the source as represented in figure 6-2. The notation used to indicate the geometrical dimensions follows the one introduced in figure 6-2.

6.2.3 Basic description of collimator imaging prope rties # ACA D ACFECA B D CB B ACDC C DCACC B CDEF D B EEC CEA B DDCC ACE AEFC C CAE AAF B B EEC E EA > E CCCBACEAEFCDB.FCAAEAB>ECCCBFDFA

DBEECDDCCA

[ ][ ]r

r r

)$(

ocated ina source ltted from counts emiNumber of

located in a source ected fromcounts detNumber of = 6-1

BECABCAACCCAEFCCA

CamR∝$ S ( )DetCollCam RRfuR ,= 6-2

BE CABEAEFCDBCDFC"CCFBEECAEFCBCCACACEAEFCDB ACCEECA EA C B CE A CBCBBA EEABBCCBEECEE.BAFDCED C &A CEEFA C DCF I3' AA ACC D BEEC AEFC TEE (Gunter 2004) CEE CEE CAEE"CCAC.DCAE.BC!EAC;

Page 105: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEACBFBCFDDDD

100

DBABCBA3E+EECBAEC.CBADFFECAECEEC.CBCBDACE)J%*AEBD.CBCAA.BFFCI3F

SColl FR ≈∝$ 6-3

CA BD AAF B CA B DDCC C BEECAEFCAE.BAEFCCECD B DDCC CA A C FA CFCCE B BDDCC E CA CD B EEC A A B EEACBABAEC!CABFACBE+%

#BCA DD F . C D B A D CEEEC. CA EE F D E EECA (BEAA. D ACFECEDCFCABCBCEEACCEACB ! B E! ECABC B DDCC ACEAEFCBAABCFFC.FA."CFEBAFDCEDC+%FEABDCEDC(BEAACBACBEEBFFCAAADFDBAACCECDBACACBEECDFBCCCBB*EBAACBFBBEECCBFCCF

DCAACADACFECBADCBE"D)J%*EEC CE CDCC ACE AEFC B B CC CACBBACCEE#BDFEE"CFBCEDDEECECDECACACFECACBCB B )J%* BA A C AE ?CEAB@ AEEA A" AC AC A A C DCF I3 #BCA EADCFC EE A EE "C C F B B AAE"&AC D B CBFC A' B )J%*AEAEBFBBAAFEAACBCA"

Page 106: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

101

6.3 Simulations results and discussion EBFB AB C BCFAB BC DDCCACEAEFCDCCACEEECEEA ECC C D F ACFEC AFEA AC BEACABCDEFDBCCEADBEECAA"DAAEBDDCCACEAEFC

6.3.1 Influence of the collimator design on the det ection efficiency

6.3.1.1 Influence of the collimator thickness and p osition on the visibility of the collimator slit-pattern

*DBDCAABCBBA"CFCBACD CA B ACC D B EEC CB A B BAF. B AA. C B A D E ECCE A. B CABCCCDBCBEECCAED%CBC CA FAFEE CCEC; FC B CCC. AEAAF B B EEC E EA C CB BCA A"C BDCFACFECCB &ADCFI3'BECAFBEECD N9&EECEACCBBAF' D!D"&EECBAC'#BAFEADBA ACFECA D 3E BC" &' FA EEC A CDCF II D B CDD EEC ACCA B A B BEECCAEBAFCCBBAECCAEC B BA C 4E 4E ECFCEACC &E" EC D DCF II' B AC B CACC & EC D DCF II' B EEC AEC A EECACE #BCAA B. . C BCA DCFC F KE4< D BBA4E74EEACBCAAECFCEACC#BCCKE4<DBACCDDB DCA CBFC EEC AECA CB AFB F EECAF&0N9'BEECAEC CAEECACE BCAACACCDBA BA.CB BEECE BAFAC.BC!E C DDD BEEC CEABABCBCECDCABC B C B EEC CA BC" FB AFEA F ECEBCB BA* BBB. A C CAAB C DCF II. CD D AEC B BA C4E74EBCBCEEBB&F'C B B CACFC D BC C ACC &E" EC' CA FFC &FKI' C AA BFEDU49:

Page 107: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEACBFBCFDDDD

102

figure 6-6: Photons detection (black lines) and emission (red lines) positions obtained with a 25 cm thick collimator placed toward the linear photon source (top), at the central point between the linear photon source and the LYSO detection block (center) and toward the LYSO detection block (bottom). On the left part of the figure a selection is made over the photons detected between -0.5 mm and + 0.5 mm (black line) and their corresponding emission position is given by the red curve. On the right part of the figure a selection is made over the photons emitted between -0.5 mm and +

Page 108: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

103

0.5 mm (red line) and their corresponding detection position is given by the black curve. The notation used to indicate the geometrical dimensions follow the one introduced in figure 6-2. For all the simulation S=T=1 mm. The origin of the zaxis corresponds to the central longitudinal position of the camera.

ACCAABCDCFI:.!CB DBAFEBEEC.BECDCCDB>AECACEEAABCDCDBEBAFE&ADCFI:'#BDB FE CA B C B A B !AD EC BE&ADCFI:'.CBAB#!ADCEEEBAFE &A DCF I:' #BC C CA DF D B EE FECBCBDFBE&D#!A'BAFE&D !A' BCB ACE AACE D B CACCEC D AEC B ACE D DCF IID B C ACE DCFIIEEABDCFIIDCABCCDDCFIICBCACEAACEC.AB D CAA. B AEC CACCEC FEE AA CCFBCACAC

figure 6-7: Diagram showing the purely geometrical source field of view (FS) and detector field of view (FD) as function of the collimator position (a: Source, H0; b: Center, H=B=(X-L)/2; c: Detector, B0). The symbols used to indicate the geometrical dimensions follow the notation introduced in figure 6-2. For all the simulations X=100 cm.

#BD.AA DDCFIIDCFI: BDCFCBBEECCAECBAFBECABEAADDBCACCECDBAEC.FEE.BAEC CACCEC CA CCC; CD B FA D > BEA AB!E # C !E A F CE EFEC. C DCFC B AECA CEA B 9 C &!N9' CBCBBEECCAEEECBABAFBCB A CA D 9 &'. CE BC"AA D E4 &' CA

Page 109: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEACBFBCFDDDD

104

FFCACADBCCDDABCDAFDCEAD C CEFC BC FA &!N3 . A DCF I3' #BCA EACEDCFCBAACFE BAFEAA CDCF IGB C CA EE CACE B A D AECCACCEC CECBBCBCAACFA(BEAAEECBC"AADFE4CEEEFEBDEECCEC.BDCAECCBBECDBAFDCEADCCEEFCEBCACE EECA BD BC CDEF B BCE DDCC ACEAEFCCEECACCCEDFBCBCAB

figure 6-8: Photons emission (black lines) and detection (red lines) positions obtained with a 50 cm thick collimator placed at the central point between the linear photon source and the LYSO detection block (FD=FS=2 mm). On the left part of the figure a selection is made over the photons detected between -0.5 mm and + 0.5 mm (black line) and their corresponding emission position is given by the red curve. On the right part of the figure a selection is made over the photons emitted between -0.5 mm and + 0.5 mm (red line) and their corresponding detection position is given by the black curve. The notation used to indicate the geometrical dimensions follow the one introduced in figure 6-2. The same number of photons is emitted as in the simulations of figure 6-6.

6.3.1.2 Influence of the collimator thickness and p osition on the detection efficiency

B CCE D B AAAA D B DA CA A B EEC BC"AA BCB. C. BA ECDEFBEDDCCDB

E DFE C D EEEBE EEC DDCC FA CCEFECC(Gunter 2004)!EDFEEEAECEECCAC

( )22

4

$TSL

S

+∝ 6-4

Page 110: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

105

B. C. F AA B DDCC $ BCEADCACDCFI3$FFCICACFCC CECA B CA CEC B DDCC B BEEC BC"AA B CECB #BCA ECBACDC BACFECA AFEA C DCF IB. B B C DDCC CAEADFCDBEECBC"AADBAB!#BFADBCADCFCBFFCDBDDCCAACECEB CA D B EEC BC"AA F%&' B AFEA D BACFECA DEE BCA !AAC A A D B DC D B ACBE

figure 6-9: Detection efficiency as function of the collimator thickness (L). Three series of simulations are plotted according to the position of the collimator with respect to the linear source of photons. The blue dots represent a collimator position next to the photon source (H=0), the red dots represent a collimator position next to the LYSO detectors (B=0) and the black dots represent a collimator position in between the photon source and the LYSO detectors (H=B=(X-L)/2). The dash line represents the fit of the data presented in the plot according to the fit equation reported in the inset. The notation used to indicate the geometrical dimensions follows the one introduced in figure 6-2. For all the simulations X=100 cm, S=T=1 mm.

EA D DCF IB C A B B EEC ACC BA CCDEF B EE DDCC #BCA BCAC CA BCBECB CDCFI94BBDDCCCAEADFCDBACCADAEEECBC"AAA+EEBAACFECAAFEABACACEAE3<CBBBCAEEE.C BB AF BE. BEE DDCC CAE B B DCFCA B B CA E CB BAF B A #BCA BC !EC BCE ACCA CF A D FFC I8 FECCADBDDCCDBCAC BEECBAFFBAFFCADBAFDCEDC#BDCAEBEABF+1FA"CFDBEFCDBDDCC

Page 111: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEACBFBCFDDDD

106

figure 6-10: Histogram of detection efficiency as function of the collimator position for different collimator depths. Collimator position Source, Center and Detector follows the same notation introduced in figure 6-9. For all the simulations X=100 cm, S=1mm, T=1mm.

*AACE !EC C BA D DDCC D EECACCAEBBAFBEAD ACECDC CEE DBCB. C ECB B EC;CEFEC A C AC E399. B C DDCC ACCEBFDBCAECE(BAF DCE D C #BD B !AAC D B CDDCCCADEE

2 $

X

YFF D

DSD

×=Ω×Ω= 6-5

B ACE B AF DCE D C AA C DCF I99 J CA B BCB BCB. A EC.CADC!E

Page 112: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

107

figure 6-11: Diagram showing the purely field of view for source toward detector plane (FD) and detector toward source plane (FS) as function of the collimator position (a: Source, H0; b: Center, H=B=(X-L)/2; c: Detector, B0). FS and FD arise respectively from the angles DS and SD. The symbols used to indicate the geometrical dimensions follow the notation introduced in figure 6-2.

D.ACCAABBABFAACDCFI93.BFD B C AEC E( B AF DCE D C CCACEEA B EEC ACC B FFECC AB D BCA DFCFABCCCBCACFCDBACFEDDCCA DFC D B EECE0. BCA ACECDC CEDDCC&FNV1!'ACABACBACFEDDCCA C A D BFABD B DFCBCB CAFBBCACFCDBACFECEFABAECBACBCBACFEDDCCDBACCABAF B FE F B CDDCC#BD.EBFBBDFCFNV1!FFECCEAC!ECBBDBCCCABDDCCDEEEEC.CAEFCDBBCAECE AF DCE D C CA AA EE D B FFCCFCDBACFEAFEA

Page 113: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEACBFBCFDDDD

108

figure 6-12: Estimation of the detection efficiency as product of the detection solid angle D and the source field of view FS. Dashed lines: geometrical calculation of the detection efficiency <$> = D x FS. The collimator position reported on the x-axis is calculated as H+L/2. Dot symbols represent the simulated values of detection efficiency as reported in figure 6-10 and normalized to the geometrical value of D x FS. The notation used to indicate the geometrical dimensions follows the one introduced in figure 6-2. For all the simulations and calculations X=100 cm, S=1mm, T=1mm.

6.3.1.3 Influence of collimator tiles and slits dim ensions on the detection efficiency

#B EA CE A CAC B CACA D BEECAECCECBA&$'EBFBCEEBACFECABA BACB DAECA CEA &!'. DF.AA DDCFI98.BBCDDCCCAEEDDBCCACAACDCEEBEBEBCDDCC&C CA DC!' +FB. A C BA E C DCF IB BDDCC AACB B CA D B EEC BC"AA BA BCBABBBADBAFEECCBCC EEE B EEC CEA &BD EEE B !!CAA C DCF I3' B C DDCC CA FB FB.CCBC&CAACABC"FBABBA2FCBABBACCBCACCC.BDDCCACEBFEDBEEC BCB CA A CA C CE B C & &"C BAAFC B FF' #BD. D C EEC BC"AA. BC DDCC CEE ECE &CC B C & CAA'A C CA AB C DCFI98+CEE. B CCD BDDCCB AEC D CA EC EE B EEC CACA. BCB CA FAFEECB ECF&F344'.BACDCF ACFECA . ABFE B CD EE B EEC CACA&$$' FECEC AEC D. B DDCCF!)*$$CA FB A D B AFEA C DCF I98B.D!E.F!'EE$!'EE$!'C+ENF!EE$!EE$!CA+E

Page 114: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

109

#BFA.AECEECBACDEFBDDCCC CABC"FBEEABA0.BAAEC.BECDEFBACEAEFCACEEACCECB!B

figure 6-13: Detection efficiency as function of the collimator slit and tile width (S,T). For all the simulations S=T. Three series of simulations are reported for different collimator depths (L). The notation used to indicate the geometrical dimensions follows the one introduced in figure 6-2. For all the simulations X=100 cm, H=0.

6.3.2 Influence of the collimator design on the spa tial resolution A EC. DFEE " C F B CE DD EEC EC B BCE ACE AEFC D ECAC ACFECA C BCB B )J%* BA A C AE ?CEAB@ AEE A A" AC AC AACDCFI3BECAFEB&,.ADCFI3'BA C D 4 I4 AA D 3 %C BAF CA AC CB A B D B . B EBCC C >FA EA B AEC D B D BAF94CBAAD9

#BBCDCEABDCACCAB DFC BA FFC CA C -!./01)+2"3 B DFCAACFEEDCBBCDCEABCBCB A D CE EEC.CB AF F AAEBCEAAC.FEAAFBABDFEADFCCB CA EC DEECA ACEE ECFCEACC4!5,&'BDFDDCA&$/$+$3'3CABBCBCABACCDBCDECCDBDFC#BDAAFB3AAACCDBAFACC.CBA.CBADCEDCDBCDCECCBCEEEC3!,&'(BEAA. CFA.DFC

Page 115: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEACBFBCFDDDD

110

EDCBCDFEDFCBDDDFCA CEE AA DC B B DCE 0. C BADBCDCEA.DC CAAFDDCCACBACCDBAFA

#BFDCBADBECAFAFF.BF D B FA. CA CCE BCB BA ECDEF B B DC B AEF A D B DA CA BD ACFE B AF CCBCBBAAEEBBCAACCBADCCCDCBCACEECCEAAAECCBCFAB.CDACA!ECECBCB:W94GCAFFCECAAD9$FFEFD9348.CCC8BCAAECA&-XE3444'.B9GW94:CAAECBACFECADFF&)+FEBE3494'CBA AB B CE CE BC .:W948BACCQACABCEECDBCBC(BEAA.BCAAAFABBACFEBCAACDDFK93ACBB!CEAFA#BD.ACC IW94 P&WC' B E F D BA C CEEC D B C B C +CEE BFA AAF B99W94 BA C C Q ACA B D CDCEAECFFAEC&K3I$'.CBA. B CA CA ACEE D 9GW94: CA ECA 3I$FA99W94 P&'AEC. ACC BBCAACEE.CABAFDCACAABAAFC F A AC !CC AC D A EC BCFFA.F B4< D B EC AA B CB D Y 94< D B !CFCB C CCCFE DCE &)! E 344' (BEAA. A BCCDFECAFDBABEFDE4EW948 P&'CECB3QACACEFCBEEC

#B F CACA D B ACFE & BCB D E ACCI4DBAFAE98<DBE;CFB'BECEECCACDBBAFEBEACACA#BDBDCAACADACFECABDCBBAFBFCACA&E4EW94E P&''.BFA. C !E 3E8W94: BA B C C 3Q A C B AB,!CADEEADCA!CCACB CACBAFCCDDBFCAFFCEEBECAFCC FB F FECEC B A D &944' B F DEECABCBFECEEECFBECAF

Page 116: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

111

6.3.2.1 Influence of the collimator position on the spatial resolution DCFI9ABBCDCEADBCDDAFEBA&.E4EI'CCBEECBAAECACEA3C$BCDBBDCEAABFAACE)J%*A.BCCBAABCBDB)J%* AE !'EE B C ACC CA B ECFCEACC D B CE AB #B B FA B CBDCFCFFCE CD944EECA+A"DACECCBDCBADEBCBDBC DCE * B ED D B AF. B EC A D BB DCEA. BCB ABFE A 8 . AECACFCABE. D BBAA. BACCD B DC CDECCAACABEAFACCACB!CFDK94<

figure 6-14: Detection profiles for three different linear source lengths (Q) 44 mm (red line), 50 mm (black line) and 56 mm (blue line). The fit curves are performed with the function y=a+b·erf(c(x-d)). In the inset are respectively reported the position of the source edge (Q/2) and the value of the fit parameter d with its absolute error. For all the simulations S=T=2 mm, D=2 mm, H=5 cm, L=20 cm, B=35 cm. The reported photon counts have been detected with a configuration equivalent to a ring of 100 collimated detectors. The notation used to indicate the geometrical dimensions follows the one introduced in figure 6-2.

DCFI9ICAEBFADBDCCDECCAECAB E AFACC D B EC AF EB ,C D4I4AAD3&BCBABBAFAEA94AAD9CBABDB'.CACBCDEFDBEECACCBACEAEFC.BCDDDCFCACBBEEC!'AD+EEACE

Page 117: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEACBFBCFDDDD

112

B AF. C E ACC AF A. BABAACEEACFE

figure 6-15: Detection profiles for linear source length (Q) varying from 40 mm to 60 mm by steps of 2 mm. The fit curves on the right edge are performed with the function y=a+b·erf(c(x-d)). In the inset are respectively reported the position of the source edge (Q/2) and the value of the fit parameter d with its absolute error. For all the simulations S=T=3 mm, D=1 mm, H=5 cm, L=20 cm, B=35 cm. The reported photon counts have been detected with a configuration equivalent to a ring of 100 collimated detectors. The notation used to indicate the geometrical dimensions follows the one introduced in figure 6-2.

#BDCCDECCABC!CADBBAACDCFI9IABEFDB3CDBDFC DCD BBCDCEA D B EC AFEBAAB.C!E. CDCFI9EAEC.CE DC D B C DCE C CB CEEECCBAFFAAEBCEAAC.FECBACCDBDCCDECC!EBCCBBACCDBAF#BDCBBAACDCFI9I EE B CA FE DE EC B CAC EC -!2(BEAA.EBFBCBBEECBDFCDCFEAC CE. B EC DCA D B C DCEA D BDCFCA D B EEC E C E ACC BA&DCFI9I'.ABBBAEDBDC CAEAK9 B B CAAC D B CA F B CAC EC CA E'6AB78

Page 118: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

113

=DCCCCCBC;BACEAEFC EABCCFCADCDDAFCA.DBCBCFEEEABCB CA B BBA ECFCEACC E B BA B AE FE DC A BCCF CA AFAAC AF EBA DBCB B DC CDECACC DBACCAEABCBBBDBDCACDCAF EBEBFB B BCADCCC FECCFA AEF ACCA D B ACE AEFC C FE EAAFEEFACFECAAFEACBBBDDDCA ACCD B ACE AEFC D BCDD DCFCAFCACC

+EEC B DCCC CF >FA A B D BDCFCAACDCFI9I.BBCEACEAEFCE CA 3 #BCA A B. EA C CCE. B CCE ACEAEFCDBCDCBBAECCECACAACCBADDCFI9I.!!9DEE.EACDCACECBBCBA8#BCAAAACCAFEEFABC"CEAAEAFAFEEACFDFAAEF EAFA. A C DCF I98. BCDDCCAAECECBBEECCECBB

EADCFI9ICBBEECACCBABECDEFBBCEACEAEFCACEECBABC CAEEABBAF.CBCAABEECAEC EEBCA B !AC D B AF B B AECFA!ECDDDBEECCEA+BCAAB BCE ACE AEFC CA E A AC.DEECBCCCCC.E!DEE

Page 119: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEACBFBCFDDDD

114

figure 6-16: Curves of fit inflection point vs. source edge position for three collimator positions: toward the source side (top), central position (middle) and toward the detector side (bottom). The fit inflection point corresponds to the parameter d of the error function fit presented, for example, in figure 6-15. The reported fit points have been performed on photon detection profiles which have been acquired with a configuration equivalent to a ring of 100 collimated detectors. In the inset is reported the equation of the linear fit (red line) weighted on the error bars of the simulation results. There are also reported all the geometrical parameters of each configuration according to the notation introduced in figure 6-2. For all the simulations D=3 mm, X=60 cm.

*B.DBDCFCCBCBBEECCAEEABA&DCFI9I'.EBFBBEECAECCAEECACEBBCDCEA&AAD!ECDCFI9:'B

Page 120: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

115

ACCAD B CDECCAC B DFC DC EE BA EE ECB B E AF ACCA . A EC. B DCFC A C DCF I9I . CB BEECEACECBEACCBA.B EA B A ACE AEFC 2F B B B. A AB CDCFI94.BDCFCCBBEECBAEA CA D B C DDCC D F K9< &D!D 'AD +E' BDCFCBBEECCAEEE#BD.BFEA C EC B EEC B A EBFB BCAAFEFAECDFBCACCA

figure 6-17: Detection profiles for linear source length (Q) varying from 40 mm to 60 mm by steps of 2 mm. The fit curves on the right edge are performed with the function y=a+b·erf(c(x-d)). In the inset are respectively reported the position of the source edge (Q/2) and the value of the fit parameter d with its absolute error. For all the simulations S=T=3 mm, D=1 mm, H=35 cm, L=20 cm, B=5 cm. The reported photon counts have been detected with a configuration equivalent to a ring of 100 collimated detectors. The notation used to indicate the geometrical dimensions follows the one introduced in figure 6-2.

6.3.2.2 Influence of crystal detector width on the spatial resolution ACFFCI3.BEACEAEFCDBECADFC D B B EECD B AEFC AEC.A DCA!CC.AAFFFE B CB D ACE )J%* AE BD BCA ACA D ACFECA D ECC CACC B CDEF D B CB B E ACE AEFC D B #BD. B ADCFC A C DCF I9I !!!9D EE:D !'AD +E BA F EC EE B EEC A FB F FC BACE)J%*CB 9#B AFEAD BA ACFECACDCFI9GBCCBECECCA

Page 121: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEACBFBCFDDDD

116

DFBDCCDECCBAFACCFEABBCA EC CA B B A C DCF I9I DAEA B CA E . EBFB B A CB BA FDD8.BADCFCAAAACEEEBAACEAEFC!'DEEBACAACDBCAFB EC DC '6AB78EBFBBAAFEAB DFBCDCEAACAFAEAAFBBEECAEFCEA C E B CC D B E AEFC D B + B EE AC D B BCA AA ACC AFEAC C A B B CA E D BAC !E BCABFE.BBAC.FFAEECBCC B BCB B F D A B BCB BFDECAACEABCBBAAECCACEE!C

figure 6-18: Curve of fit inflection point vs. source edge position for the collimator placed in central position. The reported fit points have been performed on a photon detection profile which has been acquired with a configuration equivalent to a ring of 100 collimated detectors. In the inset is reported the equation of the linear fit (red line) weighted on the error bars of the simulation results. They are also reported all the geometrical parameter of each configuration according to the notation introduced in figure 6-2. For all the simulations X=60 cm.

6.3.2.3 Influence of the detection statistics on th e spatial resolution A EC B F D C BA D B EC AFAFF.BFDBFA.CACCEBCBBAECDEFBBDCBAEFADBDCAEEBACFECADCACBCDEFDBEECACBACEAEFCBCBBAADBCCBECAFCCDE4EW94E P&'BCBCA944CACABBECACDBACCEECDCB&E4EW948 P&''DCEADCACACEE&3I$'

Page 122: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

117

A E C CAC B EC AF CC D BFCAFFCEACCD944EECACCEEACB BA C D B CCE AF CC (BEAA BCAAA E BBC DCFC. AC C C B !CFFDA.BEBCB .BCBBACEEECCBCFADI4 CAFK:E. DDFFECCEECC D B . C FE AECCE CAEE DFEE CDA F BC#BDDACADACFECACACBCDEFDBFDA. AFF B F D ACACA. BBCE ACE AEFC#BA AFEAA C DCFI9BBBADCFCDBACFECAACDCFI9I&EECE B AC !!!D 9EE' BA E;ACC BCA C E B FC ACACA FFC 94. 34 E4AA!.BBAEDBECDCBCAACDBCA F B DC 'ACB B CCCABC FFCE F DA B C (BEAA ACEE E EC D B DCCDECCBEAFACCCAACBE94FFCEAACEAEFCEDFKECAACEEBEBCBACBDAFBFACACA B D B DFC DC B B CDCEAEEABCCCEC;CEFADDADBDCDFC

6.3.3 Conclusions and perspectives ECCACADACFECABAD CAAAA BCDEFD BCCEADFECEECFEC CA C DDCC ACE AEFCEBFBBBACACCACEEECFEF EACA C CAC B B CCA D B CCCFECECACDBEECAA"DAFEDD.ACE.BDDCCACEAEFCDB

Page 123: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEACBFBCFDDDD

118

figure 6-19: Curves of fit inflection point vs. source edge position for three different linear activities of the photon source. The reported fit points have been performed on photon detection profiles which have been acquired with a configuration equivalent to 10 (top), 20 (middle) and 50 (bottom) collimated detectors. In the inset is reported the equation of the linear fit (red line) weighted on the error bars of the simulation results. They geometrical parameters of the simulated camera are the same as in figure 6-16

%E CA D B CDEF D EEC AC B CDDCCBCBDFCBECFBCDCFACFECAACDCEE. CBAABB BCDDCC.A !. AA !CEE CB B CA D B EECBC"AAFCEAA.E.BEECACCCBABBAFECDDCCCA.CD

Page 124: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

119

FK34<DEECBC"AA!CD+EKE<D!DCAD+E.BDF D B DCFC C BCB B EEC CA EE E C B AF B A #BCA BCF FE FFECCE!ECACCBCDDCCFDABFD BCECAECE(BAFDCEDC(BEAA CA EFCDB( . EAF . CA AA EE D B FFCC FC D BACFE AFEA BA EA AB B C B A B B C B AEC F B CECB CA A. B CDDCC ECE A &CC B EEC BC"AA CAFB'BCCDBDDCCBAECDCAEC EE B EECCACA $D$D.BCB CAFAFEECBECF&F344'.BACDC

+DCFCFFCECD944EECA.CBADF B. EA C CCE. BCCE ACE AEFC E CDC BBAECCECACA !.EA CDC ACECB #BCA AA ACC AFE E FA BC"CEAAEAFAFEEACFDFAAEF EA FA. A C >FA . B C DDCC AAECECBBEECCECBB.ABBEBFBB E ACE AEFC D B E CA DFC D B BEECD B AEFC . EA CE B CC D E + B EE AC D B BCAAA ACC AFE AC C A B B CA E DBAC !E BC A B FE . B B AC. FFA EE C B C C B BCB BFDABBCBBFDECAACEABCBBAAECCACEE!C

= AB A EE B B EEC ACC BA E CDEF BBCEACEAEFCACEECBABCCAEEABBAF.CBCAA.BEECAECEEBCAB!ACDBAFBBAECFA!ECDDDBEECCEAECBECDBACEAEFC*B.DBDCFCCBCBBEECCA E EA B A. EBFB B EEC AEC CA EECACE B B C DCEA. B ACCA D B CDEC CACBDFCDCEEBAEEECBBEAF ACCA A AFF B DCFCA B BEEC CA E ACE C B E ACC &BCB C CCEABFE C B A ACE AEFC' EA B A BEA B A ACE AEFC 2F B B B. AC >FA. B DCFCCB B EEC BA EA CA D B C DDCC D F K9< &D !D 'AD +E' BDCFCBBEECCAEEEBD.BFEACECBEECBA

Page 125: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCDEACBFBCFDDDD

120

EACACBCDEFDBCACACABBCEACE AEFC "C B FFCE F D EECA E CE C F B EC AF D BA A!BACEAEFCACBBCCCABCFFCEFDAEBC(BEAAACEEEECDBDC CDECC B E AF ACC CA A D BDCFCACB 94 34 FFCE ABCBFE ACEE4G8 9I: D B3Q D B DFEE ;CFB%CBBABCBDE.AFBDCFCFEA!CFCFE !AC D EECA AD 9BCB FEBDAEECCCEB.AACEDCFCACEECABCDDCC.BFAAFF EA B ACE AEFC. FE AC CEEC &A DCF I9' DFAC B2" C BCA A BFE C B C CB F E B CD BCAED C (BEAA. A B FE AFE.CB CEEC C FE FAE ! BCC D DFAC!CDCAFB2"ACEAEFCDFK38CEAAFACECCEB

B C B C DDCC FE CA B BC"AA EBFB A CCAC ECCC F B CECCC D )J%* AEA &BCB CA " C F C BACFECAAAD'FAACBDDDBA C DDCC "F CA F )F(BEAA.EBFBEEBACFECABDCBAE BC"AA D EE D AC CA &ACEE A C BCA "' D B !CE AFEA C CB B FEC!CABCBCFAB.BCAACEEACCABAEBC"AA

EA. BA ECC ACFECA CEE B FAF ACFECACBCBBCDEFDEEBCEAAB FE CAC CB E AAC AF BCDEFD BEC!CE DCEC DBCCCBCABA"CFACFA!EFB BCE ACE AEFC +FB. ECAC EC BDCEABFACADBFEECAFDBCBBBCAACFEA;FACBAFAFCEC CCCA AE BA C D A CEA B 2" B A D B F DBACDB2"BA E CDEFBCCDBCE

Page 126: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCAAD

121

7 Summary and outlook

ABCDECBFDACEEFCACCCCDDADCD CBDCD CBCDCACEFAA D CC C CDE BC DADCD D DDC EEADADACDCBDCDCDAAEDFDCCCCDCDCDEEDCACDCDCDDCDEEDCBDDABDEFBADDCCDADCDEADEFADE

CBCBDCDDCBF!"#$DCEFEDDECAAABACDDCDDABCDECBF!#ACCE%&&'$"# EEF BEFA D BDEC B(C C )* DEDCF!+CAC )F$ C EDAC CE D C BED C CBBEDCD C CCC A C ACC BADCE ADCD D CD D !"AD C E ',,-$ .CE A C C F EDAABDC CDDCF A C C ADDCBEEDD E C C CDCD CD ! CA A$ DD DF ED C D DADCA F E DCDEAFEDEFCADC"#

D CD CD BCA CD A BBC BCACCD D D BDDBE EA EE E DDCD CC C BBEDCD CCC BE D C DE CDADCDDCEDEAEEDCBCDCDADCDDBADCADC C C BEA A CE D DCEA

DC BDCBA C C) ./ DEDCF !0 1$DC 23456 %3078 D DBDD "44 CC ACCA CC CCBBC9FEAADCEFECADCCD!# C C E ',,-$ 4 C ADDDCD C BBC BC!D ECA DC C 0D $ A A ADCD!ECADCC0D$ADCCDEDC !:1$BCCDCDCDBDCECBADCDACEFC D C D BCDE DBC D DC BDC CDDDCEF A C D; C DEAD CDE !# C C E ',,&$EED CA ECDACC CB CC D BDDBE BEFAEDDEEF E ECD D DCD D BDC BA C C ) ./ A )* DEDCD DC &<456 A3,<456%'078 DCBBAD"44 ACBC!4CCE',%,$ADECCCFCECDCBBCBC BDE A 0D D DCDA C D DCFBDEEF A D CBF F CD F BBEDE C CFECBEA CD CC D CBE CDEC D C %ACFCCDCDCC DACC DDEECC EE C CD C DDCD C BCDE DCDCD C =%,- D6

Page 127: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCAAD

122

CFBDEEF A D 0D CBF F C ACCA BBC BC C CBDA DDCEF D CCDCD C DEF CC ECDCECEDCADEBDCDCBAEDDEADCDD DE AF F C DCD "*+A:1 CD BC ACADDDCDDCCCACCDABBCCBC ECA DC C BDF D DC A C CCACCAC&,>CDAACBDAEDCDC A BDE 4 C BEDDF EC DC C ECDACCBDC CEF BA C ) ./DC 2<456 %3078 D ACC E ECD D A C C D BC A C BCBACDFDEA CCA/?*:ACCBD C CF C BDC DC E ECDACC BCCFB C BADCDF0D

ACDDEECDCDCCCBCCFBECDEEDCA A ECDACC D D BEA C DECFBBABEDDFD)C@4C0EDECD C C DE C D CDE BC DC ACCD DDF A BDE ECD EC DECA DBEDDA CB D D ED BCBEA CBBC9FBAAF CADCCD CDAC D EC CC DC ACC D CDD C %, ',DCDEECCCFBCADCECDACCBDCC) ./BCDEECDC='3CCFBDEAADEDDECBFEFDE.CECDDECDCAFC BA CD DC C C DE E EDCADE BBCBCBDEDD BCDADCADC0DEDC CE DA BCDE DEA D C CC D C BCACECDEBCDEECD

EAFCDA CBDCD ECBCA D CD CDDEE EA CC AEBC AA E BCCFB ECDEEDCA AECDACCDDEECCADCDFDABCAA C BBEDCDBBC CBCCBF DCEFDCCDCBCCBFDEDCDDCEAD D C C CBF C C BDEEF BCDDDCDCDCDBDCBCBA C D C EC C BBC BCDCCAB DDACBCDE D2< CD EDCBCCDC!/1E',%,$CAEDCCADCDDA@,CDDBCC!)AC',,,$CDDCBBCBCBACDCC=<DBCAC DA DC BC BA C 0D C DADCD A4C EBCB(CDE CCDACC EAFCCDFACBDEEEACBADCEEE C EDCADE BBC BC BDE D DEE CDEE D CECDDCACDCDCBBDCD

Page 128: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABCAAD

123

CECDBEEECCBDCECBCADCDCDCD DECD BA F B C CAF CDD AF BBC F BAA F E CDAD D CBF D A C EDAC C BFD AEAEDCBBCADCCDECD)C@!/1ECE',%,$4DDECDCADCEFDDCCDDCADDAED0BCBBCDDADDCBF!4BCDACE',%,$DECDCAD BA D C ADDDA B E CE C A ABDCD D D CBF D DCEFDACFBACCDEADCFFCED C EEDCA BBC 0BC A CCD5CD!+CE',,&$ADCAEBEDDEBCCFBCEEDCAA0BCBBC

Page 129: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

124

8 Appendix

8.1 NaI(Tl) calibration for beam intensity monitoring ABCDE ABFBD FCC D CEC EDCBECCBCECCDBABCEFBDBCBBC CBABABC D CEC B CAF B AECC CDC!CEBECBC"B A#"$$CCEABF EB D DCB EED F $ ABCD % C BD CEB B FBD D C! E DA C &'( B BAB FB E F D C'BABCD BE FB ECCB BFBD BB % E AB%C "B A #"$$!) BDC FB#*+'CED BBF(BBEAE(!,$-(,.CE/E!

NaI Monitor [Hz] CF44 [nA] Ions/s

20 0,0 ± 0,5 0,00E+00 ± 5,2E+08

330 0,3 ± 0,5 3,13E+08 ± 5,2E+08

910 1,0 ± 0,5 1,04E+09 ± 5,2E+08

650 0,8 ± 0,5 8,33E+08 ± 5,2E+08

1600 2,0 ± 0,5 2,08E+09 ± 5,2E+08

2400 3,0 ± 0,5 3,13E+09 ± 5,2E+08

2900 3,8 ± 0,5 3,96E+09 ± 5,2E+08

3600 4,2 ± 0,5 4,38E+09 ± 5,2E+08

1430 1,9 ± 0,5 1,98E+09 ± 5,2E+08

2200 2,7 ± 0,5 2,81E+09 ± 5,2E+08

Table 8-1: Detected count rates for the NaI(Tl) detector used to monitor the beam intensity. Reference beam current values are given by the Faraday cup (CF44) (for C6+ 1 nA 109 ions/s).

ECFC B&'(FCFABEC&'(EECBCDCEC BEECCB A D BBE F 0! 1 BC ABCDE D BBEE (CBBACDC2B CBEC%CCAC' AFFEDCCDC2C'CD!

Page 130: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

125

figure 8-1: Beam intensity as function of the count rates detected by NaI(Tl) monitor detector. A good linearity is observed up to beam intensities of ~5 nA. The error bars are due to the sensitivity of the Faraday cup (0.5 nA).

8.2 Electronics and acquisition set-up "BABCDE BEB CDBCEBC CEEABFBD C %C 3 BCE 435 6 CECCEED! FC B ABE 7 CBDE F ECABEECEDCE!

8.2.1 GANIL single-detector experiment EC'B ABCD B ECCBE 8"9 8#0,( BCB6 CECCABFBDB A7EEC CC %BB 1# B CBC CC%BB :1#! 7 CBD F ECE ABEEC EDC CEABE C FC B &'9! E EBC C AB%C E ABBA ECCB E E DCB D CEC C 7B %E C C B ABABC D BB! C F EC ECCB E F BCBC BE E BB B B 435 EBD E BEAB D F 7B %E! CE AB%C B DECACFBDCCAC%CBDCECABDECF BE F CEBCDCB 1CEBC EC %BCE BC ABCD!%BEE DCCDC2 6 CECC 'CD DA C%CEBD 1C%CEBCEC2CFBCBECE!BCB E B% EBABEDA C&'(B C%C% ECDE CBC FBD BBF(.(%E/EBBB6 CECCC!

Page 131: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

126

figure 8-2: Block diagram of the signals processing schematic for GANIL single -detector experiment.

;"DE BDE%ABFBDDEFCDDAC %BB # E EB EC E AB%C CB 8#0,( B 8"9BE BCB E FBC CEBCDCB #"1! CD7EE ACDC2BCBCECE%CA ECEFCBEFBABEE AE('(,34!;"EAECEAB%CBCFB6 <"ECDA EF=(E%B&,EE C!

88"98#0,(ECEBEAC>?ABEEFBDAC BC!EEBCCBDE BDE ECDA ABFBD CB DACFCC DAC F BEECE E EEC% F C 1#! EC ABEEC FB B CE DB DAC! >C FB ?>1 ED EC E CB %B CFFB E C E F 8#0,( 5 1 F ,, E ECF 0 E E FC B 0'0 % BCB BEC!;BCEF8"9BEB 0,E 0,,E5>ECEFCBEDACFCCFEDACFCBDAC"ECCFFA EEAB'EAC!ECCB%BE C F BBABEEEABFBDEC CB %B EB ! CE ABC B EC ABEEC EAC%B?>1ABFBDE!

Page 132: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

127

8.2.2 GSI single-detector experiment 7CBDF ECEABEECEDC FB> EC'BABCD ABE C FC B &' CE DE CC E ABE % A FB ;" EA EC C C CE E EAB%C AEC ECCBE ? (9 CBAC D! EECCBEBE EDE BCB DBFCECCB BFB CB B E CB 435 EBD ! AEC ECCBE FFCC E 7 DABC ECCCCDEF =(,,@ AF(,0CE/E!

figure 8-3: Block diagram of the signals processing schematic for GSI single-detector experiment.

8.2.3 GANIL multi-detector experiment D C'B ABCD FC% A>; ECCBE A>; ('0 B E BCB 6 CECC ABFBDB A7EECCC%BB1#!7CBDF ECE ABEEC EDC CE ABE C FC B &'$!E FB EC'BABCDE EDCBDCECCEECABEECECCABECEC,!

Page 133: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

128

figure 8-4: Block diagram of the signals processing schematic for GANIL multi-detector experiment.

C ;" DE BDE % ABFBD DE F CD DAC %BB#EEBECEAB%CFFC% A>; BE BCB E FBC CEBCDCB #"1!;"EAECEAB%CBCFB6 <"ECDA EF=(E%B&,EE C! 'CFF'C ECE AB C 435 D ?B E E CCF CA>;ECCBBCB6 CECC%!

Page 134: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABC

129

Bibliography

Achenbach, P. et al., 2008. In-beam tests of scintillating fibre detectors at MAMI and at

GSI. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 593(3), 353–360.

Adler Jr, J.R. et al., 1997. The Cyberknife: a frameless robotic system for radiosurgery.

Stereotactic and functional neurosurgery, 69(1-4 Pt 2), 124. Agostinelli, S. et al., 2003. Geant4-a simulation toolkit. Nuclear Instruments and

Methods in Physics Research-Section A, 506(3), 250–303. Amaldi, U. & Kraft, G., 2007. European developments in radiotherapy with beams of

large radiobiological effectiveness. Journal of Radiation Research, 48(Suppl. A), 27–41.

Ammerlaan, C.A.J., Rumphorst, R.F. & Koerts, L.A., 1963. Particle identification by

pulse shape discrimination in the pin type semiconductor detector. Nuclear Instruments and Methods, 22, 189–200.

Anger, H.O., 1964. Scintillation camera with multichannel collimators. Journal of

Nuclear Medicine, 5(7), 515. Barkas, W.H. & Evans, D.A., 1963. Nuclear research emulsions, Academic Press New

York. Barnabà, O. et al., 1998. A Full–Integrated Pulse Shape Discriminator for Liquid

Scintillator Counters. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 410(2), 220–228.

Baro, J. et al., 1995. PENELOPE: an algorithm for Monte Carlo simulation of the

penetration and energy loss of electrons and positrons in matter. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 100(1), 31–46.

Barth, R.F., Soloway, A.H. & Fairchild, R.G., 1990. Boron Neutron Capture Therapy of

Cancer1. Cancer Research, 50, 1061–1070. Battistoni, G. et al., 2007. The FLUKA code: Description and benchmarking. Dans AIP

Conference Proceedings. p. 31. Beddoe, A.H., 1997. Boron neutron capture therapy. British Journal of Radiology, 70,

665–667. Berger, M.J. et al., 1998. XCOM: photon cross sections database. NIST Standard

Page 135: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABC

130

Reference Database, 8, 87–3597. Bergonzo, P. et al., 2001. CVD diamond for radiation detection devices. Diamond and

Related Materials, 10(3-7), 631–638. Bert, C., Grozinger, S.O. & Rietzel, E., 2008. Quantification of interplay effects of

scanned particle beams and moving targets. Physics in medicine and biology, 53(9), 2253–2266.

Bethe, H., 1930. Zur theorie des durchgangs schneller korpuskularstrahlen durch

materie. Annalen der Physik, 397(3), 325–400. Beuve, M. et al., 2009. Statistical effects of dose deposition in track-structure modelling

of radiobiology efficiency. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267(6), 983–988.

Bielajew, A. et al., 1994. History, Overview and Recent Improvement of EGS4.

Technical report PIRS-0436. Birks, J.B., 1951. Scintillations from organic crystals: specific fluorescence and relative

response to different radiations. Proceedings of the Physical Society. Section A, 64, 874–877.

Blakely, E.A. et al., 1979. Inactivation of human kidney cells by high-energy

monoenergetic heavy-ion beams. Radiat. Res, 80(1), 122–160. Bloch, F., 1933. Bremsvermögen von Atomen mit mehreren Elektronen. Zeitschrift für

Physik A Hadrons and Nuclei, 81(5), 363–376. Bloser, P. et al., 2003. Development of silicon strip detectors for a medium energy

gamma-ray telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 512(1-2), 220–228.

Bortfeld, T., 2009. The number of beams in IMRT-theoretical investigations and

implications for single-arc IMRT. Arxiv preprint arXiv:0909.3332. Bortfeld, T. & Webb, S., 2009. Single-arc IMRT? Physics in Medicine and Biology, 54,

N9–N20. Bragg, W.H. & Kleeman, R., 1905. On the alpha particles of radium and their loss of

range in passing through various atoms and molecules. Philos. Mag, 10, 318. Brahme, A. et al., 2001. Design of a centre for biologically optimised light ion therapy

in Stockholm. Nuclear Inst. and Methods in Physics Research, B, 184(4), 569–588.

Braunn, B. et al., 2010. 12C nuclear reaction measurements for hadrontherapy. 12th

international conference on nuclear reaction mechanisms.

Page 136: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABC

131

Brower, V., 2009. European boost for particle therapy. Nature, 457(7226), 139. Bushberg, J.T. et al., 2003. The essential physics of medical imaging. Medical Physics,

30, 1936. Carminati, F. & al., 1991. GEANT Users Guide. CERN program Library. Chatterjee, A. et al., 1981. High energy beams of radioactive nuclei and their

biomedical applications. Int. J. Radiat. Oncol. Biol. Phys, 7, 503–7. Chu, W.T., Ludewigt, B.A. & Renner, T.R., 1993. Instrumentation for treatment of

cancer using proton and light-ion beams. Review of Scientific Instruments, 64, 2055.

Cirrone, G.A.P. et al., 2010. Validation of the Geant4 electromagnetic photon cross-

sections for elements and compounds. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

Constanzo, J., 2010. Etude et mise au point d'un détecteur pour le monitorage en ligne

de l'hadronthérapie à l'aide des gamma prompts. M.S. Thesis, Institut de physique nucléaire de Lyon Université Claude Bernard Lyon1.

Crespo, P., Shakirin, G. & Enghardt, W., 2006. On the detector arrangement for in-

beam PET for hadron therapy monitoring. Physics in Medicine and Biology, 51, 2143–2163.

Crespo, P. et al., 2007. Direct time-of-flight for quantitative, real-time in-beam PET: a

concept and feasibility study. Physics in Medicine and Biology, 52(23), 6795–6811.

Crespo, P., 2006. Optimization of in-beam positron emission tomography for

monitoring heavy ion tumor therapy. PhD Thesis, Technische Universität Darmstadt Germany.

Crittin, M., Kern, J. & Schenker, J.L., 2000. The new prompt gamma-ray activation

facility at the Paul Scherrer Institute, Switzerland. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 449(1-2), 221–236.

Dale, R.G., 1986. The application of the linear-quadratic model to fractionated

radiotherapy when there is incomplete normal tissue recovery between fractions, and possible implications for treatments involving multiple fractions per day. British Journal of Radiology, 59(705), 919.

Dauvergne, D. et al., 2009. New methods of real-time control imaging for ion therapy.

NIRS-ETOILE Joint Symposium on Carbon Ion Therapy, Lyon France. Available at: hal.in2p3.fr/docs/00/36/33/82/PDF/NIRS-ETOILE_Dauvergne.pdf.

Page 137: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABC

132

Davisson, C.M. & Evans, R.D., 1952. Gamma-ray absorption coefficients. Reviews of

Modern Physics, 24(2), 79–107. d'Enterria, D.G. et al., 2001. Evidence for thermal equilibration in multifragmentation

reactions probed with bremsstrahlung photons. Physical Review Letters, 87(2), 22701.

Dilmanian, F.A. et al., 1998. Improvement of the prompt-gamma neutron activation

facility at Brookhaven National Laboratory. Physics in Medicine and Biology, 43, 339–349.

Durante, M. & Loeffler, J.S., 2009. Charged particles in radiation oncology. Nature

Reviews Clinical Oncology. Elsässer, T., Krämer, M. & Scholz, M., 2008. Accuracy of the local effect model for the

prediction of biologic effects of carbon ion beams in vitro and in vivo. International Journal of Radiation Oncology, Biology, Physics.

Elsässer, T. & Scholz, M., 2007. Cluster effects within the local effect model. Radiation

research, 167(3), 319–329. Enghardt, W. et al., 2004. Charged hadron tumour therapy monitoring by means of

PET. Nuclear Inst. and Methods in Physics Research, A, 525(1-2), 284–288. Enghardt, W. et al., 1992. The spatial distribution of positron-emitting nuclei generated

by relativistic light ion beams in organic matter. Physics in Medicine and Biology, 37, 2127–2131.

Enghardt, W. et al., 2004. Dose quantification from in-beam positron emission

tomography. Radiotherapy and Oncology, 73, 96–98. Enghardt, W. et al., 2000. Positron emission tomography (PET) for ion therapy quality

assurance. GSI Scientific Report, 2001–1. Fano, U., 1963. Penetration of protons, alpha particles, and mesons. Annual Review of

Nuclear Science, 13(1), 1–66. Fiedler, F. et al., 2010. On the effectiveness of ion range determination from in-beam

PET data. Physics in medicine and biology, 55(7), 1989. Firestone, R.B. et al., 1996. Table of isotopes, Wiley New York. Fuchs, R. et al., 2008. Assembly of the carbon beam gantry at the Heidelberg Ion

Therapy (HIT) accelerator. Furusawa, Y. et al., 2000. Inactivation of Aerobic and Hypoxic Cells from Three

Different Cell Lines by Accelerated 3He,12C and 20Ne Ion Beams. Radiation research, 154(5), 485–496.

Page 138: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABC

133

Geiger, K.W. & Van der Zwan, L., 1975. Radioactive neutron source spectra from 9Be (alpha, n) cross section data. Nuclear Instruments and Methods, 131(2), 315–321.

Gottschalk, B., 2006. Neutron dose in scattered and scanned proton beams: In regard to

Eric J. Hall (Int J Radiat Oncol Biol Phys 2006; 65: 1-7). International Journal of Radiation Oncology* Biology* Physics, 66(5), 1594.

Gudowska, I. et al., 2004. Ion beam transport in tissue-like media using the Monte Carlo

code SHIELD-HIT. Physics in medicine and biology, 49, 1933. Gunter, D.L., 2004. Collimator design for nuclear medicine. Emission tomography: the

fundamentals of PET and SPECT. San Diego, London: Elsevier Academic, 153–68.

Gunzert-Marx, K., 2004. Nachweis leichter Fragmente aus Schwerionenreaktionen mit

einem BaF2-Teleskop-Detektor. PhD Thesis, Technische Universität Darmstadt Germany.

Gunzert-Marx, K. et al., 2008. Secondary beam fragments produced by ions 200 MeV/u

12C in water and their dose contributions in carbon ion radiotherapy. New Journal of Physics, 10, 075003.

Gunzert-Marx, K. et al., 2005. Response of a BaF2 scintillation detector to quasi-

monoenergetic fast neutrons in the range of 45 to 198MeV. Nuclear Inst. and Methods in Physics Research, A, 536(1-2), 146–153.

Haberer, T. et al., 1993. Magnetic scanning system for heavy ion therapy. Nuclear

Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 330(1-2), 296–305.

Haberer, T. et al., 2004. The Heidelberg ion therapy center. Radiotherapy and

Oncology, 73, 186–190. Haettner, E., 2006. Experimental study on carbon ion fragmentation in water using GSI

theraphy beams. M.S. Thesis Kungliga tekniska hogskolan Stockholm. Haettner, E., Iwase, H. & Schardt, D., 2006. Experimental fragmentation studies with

12C therapy beams. Radiation protection dosimetry, 122(1-4), 485. Harrison, R.L. et al., 2002. Acceleration of SimSET photon history generation. Dans

2002 IEEE Nuclear Science Symposium Conference Record. Henriquet, P., 2010. Etude de l'emission de particules chragées secondaires dans

l'optique d'une dosimetrie en ligne en hadrontherapie. PhD Thesis, Institut de physique nucléaire de Lyon Université Claude Bernard Lyon1.

Highland, V.L., 1975. Some practical remarks on multiple scattering. Nuclear

Instruments and Methods, 129(2), 497–499.

Page 139: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABC

134

Hüfner, J., 1985. Heavy fragments produced in proton-nucleus and nucleus-nucleus collisions at relativistic energies. Physics Reports, 125(4), 129–185.

Iseki, Y. et al., 2004. Range verification system using positron emitting beams for

heavy-ion radiotherapy. Physics in Medicine and Biology, 49(14), 3179–3195. Iwase, H. et al., 2005. Comparison between calculation and measured data on secondary

neutron energy spectra by heavy ion reactions from different thick targets. Radiation protection dosimetry, 116(1-4), 640.

Jackson, J.D., 1975. Classical Electrodynamics 2nd ed., John Wiley & Sons New York. Jäkel, O. et al., 2007. On the cost-effectiveness of Carbon ion radiation therapy for skull

base chordoma. Radiotherapy and Oncology, 83(2), 133–138. Jan, S. et al., 2004. GATE: a simulation toolkit for PET and SPECT. Physics in

Medicine and Biology, 49, 4543. Johns, H.E. & Cunningham, J.R., 1983. The physics of radiology 4th ed., Thomas

Springfield, Illinois. Jones, L.T. & Woollam, P.B., 1975. Resolution improvement in CdTe gamma detectors

using pulse-shape discrimination. Nuclear Instruments and Methods, 124(2), 591–595.

K. Weyrather, S.R., 1999. RBE for carbon track-segment irradiation in cell lines of

differing repair capacity. International Journal of Radiation Biology, 75(11), 1357–1364.

Kanai, T. et al., 1999. Biophysical characteristics of HIMAC clinical irradiation system

for heavy-ion radiation therapy. International Journal of Radiation Oncology Biology Physics, 44(1), 201–210.

Kato, I. et al., 2004. Effectiveness of BNCT for recurrent head and neck malignancies.

Applied Radiation and Isotopes, 61(5), 1069–1073. Kitagawa, A. et al., 2006. Medical application of radioactive nuclear beams at HIMAC.

Review of Scientific Instruments, 77, 03C105. Kligerman, M.M. et al., 1979. Experience with pion radiotherapy. CA A Cancer Journal

for Clinicians, 43(3), 1043–1051. Knoll, G.F., 1989. Radiation detection and measurement, Wiley New York. Kobayashi, T., Sakurai, Y. & Ishikawa, M., 2000. A noninvasive dose estimation

system for clinical BNCT based on PG-SPECT—Conceptual study and fundamental experiments using HPGe and CdTe semiconductor detectors. Medical Physics, 27, 2124.

Kooy, H.M. et al., 2010. A Case Study in Proton Pencil-Beam Scanning Delivery.

Page 140: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABC

135

International Journal of Radiation Oncology Biology Physics, 76(2), 624–630. Kox, S. et al., 1987. Trends of total reaction cross sections for heavy ion collisions in

the intermediate energy range. Physical Review C, 35(5), 1678–1691. Kraft, G., 2000. Tumor therapy with heavy charged particles. Progress in Particle and

Nuclear Physics, 45, 473–544. Kraft, G. & Kraft, S.D., 2009. Research needed for improving heavy-ion therapy. New

Journal of Physics, 11, 025001. Krämer, K.W. et al., 2006. Development and characterization of highly efficient new

cerium doped rare earth halide scintillator materials. Journal of Materials Chemistry, 16(27), 2773–2780.

Krämer, M. et al., 2000. Treatment planning for heavy-ion radiotherapy: physical beam

model and dose optimization. Physics in Medicine and Biology, 45(11), 3299–3318.

Krämer, M. & Scholz, M., 2000. Treatment planning for heavy-ion radiotherapy:

calculation and optimization of biologically effective dose. Physics in medicine and biology, 45(11), 3319–3330.

Le Foulher, F., 2010. Simulations Monte Carlo et mesures de l'emission de gamma

prompts appliquées au contrôle en ligne en hadronthérapie. PhD Thesis, Institut de physique nucléaire de Lyon Université Claude Bernard Lyon1.

Le Foulher, F. et al., 2010. Monte Carlo simulations of prompt-gamma emission

during carbon ion irradiation. Accepted for publication in IEEE TNS. Lechner, A., Ivanchenko, V.N. & Knobloch, J., 2010. Validation of recent Geant4

physics models for application in carbon ion therapy. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 268, 2343-2354

Lempicki, A., Wojtowicz, A.J. & Berman, E., 1993. Fundamental limits of scintillator

performance. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 333(2-3), 304–311.

Leo, W.R., 1994. Techniques for nuclear and particle physics experiments: a how-to

approach, Springer Verlag. Li, Q. et al., 2007. Heavy-ion conformal irradiation in the shallow-seated tumor therapy

terminal at HIRFL. Medical and Biological Engineering and Computing, 45(11), 1037–1043.

Llacer, J., Schmidt, J.B. & Tobias, C.A., 1990. Characterization of fragmented heavy-

ion beams using a three-stage telescope detector: Measurements of 670-MeV/amu Ne beams. Medical physics, 17, 151.

Page 141: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABC

136

Lomax, A.J. et al., 2004. Treatment planning and verification of proton therapy using

spot scanning: initial experiences. Medical physics, 31, 3150. Lorch, E.A., 1973. Neutron spectra of 241Am-B, 241Am-Be, 241Am-F, 242Cm-Be,

238Pu-13C and 252Cf isotopic neutron sources. The International journal of applied radiation and isotopes, 24(10), 585.

Mackie, T.R. et al., 1999. Tomotherapy. Dans Seminars in Radiation Oncology. p. 108–

117. Marrone, S. et al., 2006. Pulse shape analysis of signals from BaF2 and CeF3

scintillators for neutron capture experiments. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 568(2), 904–911.

Maughan, R.L. & Burmeister, J., 2007. Intensity modulated neutron therapy for the

treatment of adenocarcinoma of the prostate. Int. J. Radiation Oncology Biol. Phys, 68(5), 1546–1556.

Meier, D. et al., 2002. Silicon detector for a Compton camera in nuclear medical

imaging. IEEE Transactions on Nuclear Science, 49(3), 812–816. Min, C.H. et al., 2006. Prompt gamma measurements for locating the dose falloff region

in the proton therapy. Applied physics letters, 89, 183517. Mollenauer, J.F., 1962. Gamma-Ray Emission from Compound Nucleus Reactions of

Helium and Carbon Ions. Physical Review, 127(3), 867–879. Mowlavi, A.A. & Koohi-Fayegh, R., 2004. Determination of 4.438 MeV gamma-ray to

neutron emission ratio from a 241Am-9Be neutron source. Applied Radiation and Isotopes, 60(6), 959–962.

Newhauser, W.D. et al., 2009. The risk of developing a second cancer after receiving

craniospinal proton irradiation. Physics in Medicine and Biology, 54, 2277–2291.

Nifenecker, H. et al., 1972. Gamma-neutron competition in the de-excitation

mechanism of the fission fragments of 252Cf. Nuclear Physics A, 189(2), 285–304.

Niita, K. et al., 2006. PHITS–a particle and heavy ion transport code system. Radiation

measurements, 41(9-10), 1080–1090. Normand, S. et al., 2002. Discrimination methods between neutron and gamma rays for

boron loaded plastic scintillators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 484(1-3), 342–350.

Oliveira, L.F., Donangelo, R. & Rasmussen, J.O., 1979. Abrasion-ablation calculations

Page 142: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABC

137

of large fragment yields from relativistic heavy ion reactions. Physical Review C, 19(3), 826–833.

Paganetti, H., Bortfeld, T. & Delaney, T.F., 2006. Neutron dose in proton radiation

therapy: in regard to Eric J. Hall (Int J Radiat Oncol Biol Phys 2006; 65: 1-7). International Journal of Radiation Oncology* Biology* Physics, 66(5), 1594–1595.

Paganetti, H. et al., 2002. Relative biological effectiveness (RBE) values for proton

beam therapy 1. International Journal of Radiation Oncology Biology Physics, 53(2), 407–421.

Park, S.T., 2003. Neutron energy spectra of 252 Cf, Am-Be source and of the D (d, n) 3

He reaction. Journal of Radioanalytical and Nuclear Chemistry, 256(1), 163–166.

Parodi, K., 2004. On the feasibility of dose quantification with in-beam PET data in

radiotherapy with 12C and proton beams. PhD Thesis, Technische Universität Dresden Germany.

Parodi, K. et al., 2008. PET imaging for treatment verification of ion therapy:

Implementation and experience at GSI Darmstadt and MGH Boston. Nuclear Inst. and Methods in Physics Research, A, 591(1), 282–286.

Parodi, K. et al., 2005. Random coincidences during in-beam PET measurements at

microbunched therapeutic ion beams. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 545(1-2), 446–458.

Parodi, K., Enghardt, W. & Haberer, T., 2002. In-beam PET measurements of b+

radioactivity. Physics in Medicine and Biology, 47, 21–36. Peters, A. et al., 2008. Spill Structure Measurements at the Heidelberg Ion Therapy

Centre. European Particle Accelerator Conference, TUPP127. Pijls-Johannesma, M., Pommier, P. & Lievens, Y., 2008. Cost-effectiveness of particle

therapy: Current evidence and future needs. Radiotherapy and oncology, 89(2), 127–134.

Polf, J.C., Peterson, S., Ciangaru, G. et al., 2009. Prompt gamma-ray emission from

biological tissues during proton irradiation: a preliminary study. Physics in medicine and biology, 54, 731.

Polf, J.C., Peterson, S., McCleskey, M. et al., 2009. Measurement and calculation of

prompt gamma spectra emitted during proton irradiation. Physics in Medicine and Biology, 54, N519–N527.

Pshenichnov, I. et al., 2010. Nuclear fragmentation reactions in extended media studied

with Geant4 toolkit. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.

Page 143: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABC

138

Pshenichnov, I. et al., 2007. PET monitoring of cancer therapy with 3He and 12C

beams: a study with the GEANT4 toolkit. Physics in Medicine and Biology, 52, 7295.

Rebisz, M. et al., 2006. Synthetic diamonds for heavy-ion therapy dosimetry. Diamond

and Related Materials, 15(4-8), 822–826. Richard, M. et al., 2010. Design guidelines for a double scattering Compton camera for

prompt-gamma imaging during ion beam therapy: a Monte Carlo simulation study. Accepted for publication in IEEE TNS.

Richard, M., 2009. Design of a Compton camera for 3D prompt-gamma imaging during

ion beam therapy. M.S. Thesis CNDRI INSA Lyon. Riess, S., 1989. Exclusive photon yields from peripheral collisions of 40Ar+ 158Gd at

44 MeV/u. Nuclear Physics, Section A, 495(1-2), 49–55. Rietzel, E. & Bert, C., 2010. Respiratory motion management in particle therapy.

Medical Physics, 37, 449. Rivaton, A. & Arnold, J., 2008. Structural modifications of polymers under the impact

of fast neutrons. Polymer Degradation and Stability, 93(10), 1864–1868. Rosenschöld, P.M. et al., 2001. Toward clinical application of prompt gamma

spectroscopy for in vivo monitoring of boron uptake in boron neutron capture therapy. Medical Physics, 28, 787.

Saha, G.B., 2006. Physics and radiobiology of nuclear medicine, Springer Verlag. Schall, I. et al., 1996. Charge-changing nuclear reactions of relativistic light-ion beams

(5 less-than-or-equals, slant Z less-than-or-equals, slant 10) passing through thick absorbers. Nucl. Instr. and Meth. B, 117, 221.

Schardt, D., Elsässer, T. & Schulz-Ertner, D., 2010. Heavy-ion tumor therapy: Physical

and radiobiological benefits. Reviews of Modern Physics, 82, 383–425. Schardt, D. et al., 1996. Nuclear fragmentation of high-energy heavy-ion beams in

water. Advances in Space Research, 17(2), 87–94. Schardt, D. et al., 2007. Precision bragg-curve measurements for light-ion beams in

water. GSI Scientific Report. Schneider, U. et al., 2002. Secondary neutron dose during proton therapy using spot

scanning. International Journal of Radiation Oncology* Biology* Physics, 53(1), 244–251.

Scholz, M. & Elsässer, T., 2007. Biophysical models in ion beam radiotherapy.

Advances in Space Research, 40(9), 1381–1391.

Page 144: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABC

139

Scholz, M. & Kraft, G., 1994. Calculation of heavy ion inactivation probabilities based on track structure, x ray sensitivity and target size. Radiation Protection Dosimetry, 52(1), 29–38.

Schulz-Ertner, D. & Tsujii, H., 2007. Particle radiation therapy using proton and heavier

ion beams. Journal of Clinical Oncology, 25(8), 953. Sihver, L. et al., 2008. Dose calculations at high altitudes and in deep space with

GEANT4 using BIC and JQMD models for nucleus–nucleus reactions. New Journal of Physics, 10, 105019.

Sisterson, J., 2005. Ion beam therapy in 2004. Nuclear Inst. and Methods in Physics

Research, B, 241(1-4), 713–716. Solevi P., 2007. Stydy of in beam PET system for CNAO, the National Centre for

Oncological Hadrontherapy. PhD Thesis Università degli Studi di Milano Italy. Styczynski, J. et al., 2009. Can Prompt Gamma Emission During Proton Therapy

Provide in Situ Range Verification? Medical Physics, 36, 2425. Testa, E. et al., 2008. Monitoring the Bragg peak location of 73 MeV/ u carbon ions by

means of prompt gamma-ray measurements. Applied Physics Letters, 93, 093506.

Testa, E. et al., 2009. Dose profile monitoring with carbon ions by means of prompt-

gamma measurements. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267(6), 993–996.

Testa, M. et al., 2010. Real-time monitoring of the Bragg-peak position in ion therapy

by means of single photon detection. Radiation and Environmental Biophysics, 49, 337–343.

Tobias, C.A. et al., 1958. Pituitary Irradiation with High-Energy Proton Beams A

Preliminary Report. Cancer Research, 18(2), 121. Tsuji, H. et al., 2005. Hypofractionated radiotherapy with carbon ion beams for prostate

cancer. International Journal of Radiation Oncology Biology Physics, 63(4), 1153–1160.

Tsujii, H. et al., 2007. Clinical results of carbon ion radiotherapy at NIRS. Journal of

radiation research, 48(Suppl. A), 1–13. Valentine, T.E., 2001. Evaluation of prompt fission gamma rays for use in simulating

nuclear safeguard measurements. Annals of Nuclear Energy, 28(3), 191–201. Van Eijk, C.W., 2001. Inorganic-scintillator development. Nuclear Inst. and Methods in

Physics Research, A, 460(1), 1–14. Walenta, A.H. et al., 2005. Vertex detection in a stack of Si-drift detectors for high

resolution gamma-ray imaging. IEEE Transactions on Nuclear Science, 52(5

Page 145: Charged particle therapy, ion range verification, prompt ...2.1 Physical rationale for particle radiation therapy..... 8 2.2 Radiobiological rationale for particle radiation therapy

ABC

140

Part 1), 1434–1438. Wang, C. et al., 2008. Arc-modulated radiation therapy. Physics in medicine and

biology, 53, 6291–6303. Waters, L.S. et al., 2007. The MCNPX Monte Carlo radiation transport code. Dans AIP

Conference Proceedings. p. 81. Webb, S., 2003. The physical basis of IMRT and inverse planning. British Journal of

Radiology, 76(910), 678. Weber, U. & Kraft, G., 1999. Design and construction of a ripple filter for a smoothed

depth dose distribution in conformal particle therapy. Physics in Medicine and Biology, 44, 2765–2775.

Weyrather, W.K. & Kraft, G., 2004. RBE of carbon ions: experimental data and the

strategy of RBE calculation for treatment planning. Radiotherapy and Oncology, 73, 161–169.

Wilson, R.R. & others, 1946. Radiological use of fast protons. Radiology, 47(5), 487–

491. Winyard, R.A., Lutkin, J.E. & McBeth, G.W., 1971. Pulse shape discrimination in

inorganic and organic scintillators. Nuclear Instruments and Methods, 95(1), 141–153.

Wisshak, K. & Käppeler, F., 1984. Large barium fluoride detectors. Nuclear

Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 227(1), 91–96.

Wolski, D. et al., 1995. Comparison of n-gamma discrimination by zero-crossing and

digital charge comparison methods. Nuclear Instruments and Methods in Physics Research A, 360, 584–592.

Ziegler, J.F., 2004. SRIM-2003. Nuclear Instruments and Methods in Physics Research

Section B: Beam Interactions with Materials and Atoms, 219, 1027–1036.