characterization and comparison of poorly known moth...

45
Draft 1 1 Characterization and comparison of poorly known moth communities through DNA 2 barcoding in two Afrotropical environments in Gabon 3 4 Sylvain Delabye 1,2 *, Rodolphe Rougerie 3 * ~ , Sandrine Bayendi 4 , Myrianne Andeime-Eyene 4 , 5 Evgeny V. Zakharov 5 , Jeremy R. deWaard 5 , Paul D.N. Hebert 5 , Roger Kamgang 6~ , Philippe Le 6 Gall 6~ , Carlos Lopez–Vaamonde 7~ , Jacques-François Mavoungou 8,9 , Ghislain Moussavou 8~ , 7 Nicolas Moulin 10~ , Richard Oslisly 11,12~ , Nil Rahola 13~ , David Sebag 14~ , Thibaud Decaëns 15$~ 8 * Contributed equally to the paper 9 $ Corresponding author 10 ~ Members of the ECOTROP team. Remaining members of this team, and their affiliations, is 11 given in the Acknowledgements section. 12 Addresses: 13 1 Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 14 37005, České Budějovice, Czech Republic 15 2 Biology Center, Institute of Entomology, The Czech Academy of Science, Branišovská 31, 16 37005, České Budějovice, Czech Republic 17 3 Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire 18 naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France. 19 4 Institut de Recherches Agronomique et Forestière (IRAF–CENAREST), Libreville, Gabon 20 5 Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 21 Guelph, ON, Canada N1G 2W1 https://mc06.manuscriptcentral.com/genome-pubs Genome Genome Downloaded from www.nrcresearchpress.com by UNIV GUELPH on 10/05/18 For personal use only. This Just-IN manuscript is the accepted manuscript prior to copy editing and page composition. It may differ from the final official version of record.

Upload: others

Post on 28-Sep-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

1

1 Characterization and comparison of poorly known moth communities through DNA

2 barcoding in two Afrotropical environments in Gabon

3

4 Sylvain Delabye1,2*, Rodolphe Rougerie3*~, Sandrine Bayendi4, Myrianne Andeime-Eyene4,

5 Evgeny V. Zakharov5, Jeremy R. deWaard5, Paul D.N. Hebert5, Roger Kamgang6~, Philippe Le

6 Gall6~, Carlos Lopez–Vaamonde7~, Jacques-François Mavoungou8,9, Ghislain Moussavou8~,

7 Nicolas Moulin10~, Richard Oslisly11,12~, Nil Rahola13~, David Sebag14~, Thibaud Decaëns15$~

8 * Contributed equally to the paper

9 $ Corresponding author

10 ~ Members of the ECOTROP team. Remaining members of this team, and their affiliations, is

11 given in the Acknowledgements section.

12 Addresses:

13 1 Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760,

14 37005, České Budějovice, Czech Republic

15 2 Biology Center, Institute of Entomology, The Czech Academy of Science, Branišovská 31,

16 37005, České Budějovice, Czech Republic

17 3 Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire

18 naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France.

19 4 Institut de Recherches Agronomique et Forestière (IRAF–CENAREST), Libreville, Gabon

20 5 Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph,

21 Guelph, ON, Canada N1G 2W1

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 2: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

2

22 6 Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE UMR 247, IRD–CNRS–

23 Université Paris-Sud), Avenue de la Terrasse, Bâtiment 13, Boite Postale 1, 91198 Gif sur

24 Yvette, France

25 7 Unité de Zoologie Forestière (URZF UR 633, INRA-Orléans), 2163 Avenue de la Pomme de

26 Pin, CS 40001 Ardon, 45075 Orléans Cedex 2, France

27 8 Institut de Recherches en Ecologie Tropicale (IRET–CENAREST), Libreville, Gabon

28 9 Département de Biologie, Faculté des Sciences, Université des Sciences et Techniques de

29 Masuku, B.P 943, Franceville, Gabon

30 10 Nicolas Moulin Entomologiste, 82 route de l’Ecole, 76680 Montérolier, France

31 11 Agence Nationale des Parcs Nationaux (ANPN), BP 20379, Libreville, Gabon

32 12 Laboratoire Patrimoines Locaux et Gouvernance (PALOC) UMR 208, IRD-MNHN, 57 rue

33 Cuvier - Case Postale 26, 75231 Paris cedex 05, France

34 13 International Centre for Medical Research (CIRMF), Franceville, Gabon

35 14 Normandie Université, UNIROUEN, UNICAEN, CNRS, M2C UMR 6143, Place Emile

36 Blondel - Bâtiment IRESE A, 76821 Mont Saint Aignan Cedex, France

37 15 Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de

38 Montpellier–Université Paul-Valéry Montpellier–EPHE), 1919 Route de Mende, F-34293

39 Montpellier, France; [email protected]; +33 (0)4 6761 3243

40

Page 1 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 3: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

3

41 Abstract

42 Biodiversity research in tropical ecosystems – popularized as the most biodiverse habitats on

43 Earth – often neglects invertebrates, yet representing the bulk of local species richness. Insect

44 communities in particular remain strongly impeded by both Linnaean and Wallacean shortfalls,

45 and identifying species often remains a formidable challenge inhibiting the use of these

46 organisms as indicators for ecological and conservation studies.

47 Here we use DNA barcoding as an alternative to traditional taxonomic approach for

48 characterizing and comparing the diversity of moth communities in two different ecosystems in

49 Gabon. Though sampling remains very incomplete, as evidenced by the high proportion (59%) of

50 species represented by singletons, our results reveal an outstanding diversity. With about 3500

51 specimens sequenced and representing 1385 BINs (Barcode Index Numbers, used as a proxy to

52 species) in 23 families, the diversity of moths in the two sites sampled is higher than the current

53 number of species listed for the entire country, highlighting the huge gap in biodiversity

54 knowledge for this country. Both seasonal and spatial turnovers are strikingly high (18.3% of

55 BINs shared between seasons, and 13.3% between sites) and draw attention to the need to

56 account for these when running regional surveys. Our results also highlight the richness and

57 singularity of savannah environments and emphasize the status of Central African ecosystems as

58 hotspots of biodiversity.

59

60 Keywords: Community Ecology, DNA barcodes, Lepidoptera, Tropical Africa, Taxonomic

61 deficit

Page 2 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 4: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

4

62 Introduction

63 Tropical ecosystems host unrivalled species richness (Kier et al. 2005; Myers 1984; Myers et al.

64 2000), a fact that has long captivated public attention and raised concerns about the way to

65 conserve this immense biodiversity (Wilson 1988). Understanding of tropical biodiversity has

66 historically been biased toward the largest organisms such as angiosperms and vertebrates (May

67 2011), leaving considerable gaps in our knowledge of hyperdiverse groups of smaller animals,

68 especially arthropods. These organisms are nevertheless key to ecosystem functioning (Erwin

69 1983; Zhang 2011) and the shortfalls in our taxonomic, biogeographic and ecological knowledge

70 are strong impediments against the integration of these organisms in conservation and

71 management strategies (Miller and Rogo 2002; Whittaker et al. 2005). Because the few studies

72 addressing this topic predict high extinction numbers for insects (Fonseca 2009; Stork and Habel

73 2013), it is urgent to lift “the curse of ignorance” (Diniz-Filho et al. 2010) by developing multi-

74 scale studies on insect diversity that benefit from the technological revolution of the ‘genomic

75 era’ (Godfray 2006; Wilson 2003) and its recent developments in biodiversity sciences (Hebert et

76 al. 2003a).

77 The Afrotropical region is one of the Major Tropical Wilderness Areas on earth (Myers 1990;

78 Wilson 2002), i.e. a large and highly diverse area that has seen little impact from human activities

79 until recently (i.e. < 5 inhab km-2 and > 75% of the original vegetation still present) (Mittermeier

80 et al. 1998). However, recent estimates indicate that annual net deforestation of African tropical

81 rainforests, although less dramatic than in Latin America or Southeast Asia, approached 0.3

82 million ha/year- for the 2000-2010 decade (Achard et al. 2014), which could have led to dramatic

83 biodiversity loss. As many as 100 000 insect species have been reported from the area, but Miller

84 and Rogo (2002) suggest that species richness could exceed 600 000 species. In Gabon, a central-

Page 3 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 5: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

5

85 African country which is still covered by 80% of tropical rainforests, insect inventories have only

86 considered butterflies (vande Weghe 2010), a few groups with limited number of species such as

87 Mantodea (Roy 1973), Lucanidae (Maes and Pauly 1998) or Apoidae (Pauly 1998), and groups

88 with specific economical and/or agronomical importance such as Pseudococcidea (Hemiptera)

89 and their parasitoids (Boussienguet et al. 1991). A few studies have also targeted terrestrial

90 arthropod assemblages along human disturbance gradients (Basset et al. 2004, 2008).

91 Several authors emphasized the potential of using highly diverse groups, such as Lepidoptera, as

92 environmental indicators (Axmacher et al. 2004a, 2004b; Beck et al. 2013; Kitching et al. 2000;

93 Ricketts et al. 2001). They are indeed key herbivores and an important link within foodwebs as

94 prey or as hosts for parasitoids. Variation in the diversity and structure of lepidopteran

95 communities is thus likely to be representative of changes at other trophic levels. For instance,

96 lepidopteran species depend on their host plant species (or a few closely related plants), and in

97 turn play a fundamental role as pollinators; this connects them closely to plant community

98 structure and composition (Ehrlich and Raven 1964; Novotny et al. 2002b). On the other hand,

99 trophic cascades in food webs are likely to link both host plant and primary consumer

100 assemblages to associated higher trophic levels of predators and parasitoids. Surprisingly

101 however, only a few studies have examined this group in the Afrotropics. The taxonomic deficit

102 and the high number of species that occur in those environments are certainly important causes

103 for this deficit, because they impede reliable inventories and the description of community

104 patterns. In a recent study based on a substantial sampling effort in Papua New Guinea (over

105 30 000 specimens collected over several years), Ashton et al. (2014) found that no asymptote was

106 reached by species accumulation curves. These authors, however, also suggested that more

Page 4 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 6: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

6

107 limited sampling could be efficient in highlighting differences in the diversity and composition of

108 moth communities among distant localities.

109 In this study, we use DNA barcodes to document and compare communities of moths in two

110 differing ecosystems of Gabon. Several recent studies have demonstrated the effectiveness of

111 DNA barcoding – a tool for species identification based on a short standardized DNA fragment

112 (Hebert et al. 2003b) – in documenting species diversity of lepidopteran communities in regions

113 where species assemblages are very diverse and when many species are undescribed (Janzen et

114 al., 2009; Lamarre et al. 2016; Lees et al. 2014; Zenker et al. 2016). With this approach we aim at

115 evaluating the sampling effort required to produce relevant census of these communities, to

116 document seasonal variation in community composition, and if species-turnover (β-diversity) as

117 revealed from our data is reflecting significant differences in richness and composition that can

118 be linked to the different habitats sampled. Finally, we discuss the contribution of our study to the

119 current knowledge of moth diversity in Gabon and in the Afrotropical region, with special

120 reference to information compiled in the AfroMoths database (De Prins 2016; De Prins and De

121 Prins 2017).

122 Material and Methods

123 Study sites

124 Moths were collected at two locations (named Lopé 2 and Ipassa research station) in the province

125 of Ogooué-Ivindo, in Gabon (Figures 1 and 2):

126 - Lopé 2 site is situated in the northern part of Lopé National Park, about 12 km south from Lopé

127 village and the Dr. Alphonse Mackanga Missandzou Training Centre (CEDAMM, Wildlife

128 Conservation Society; coordinates: S0°13’9.699” / E11°35’5.6394”; altitude: 300m). Vegetation

Page 5 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 7: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

7

129 comprises a mosaic of forest and shrub savannah (Figure 2A). Shrub savannah is dominated by

130 Poaceae and Cyperaceae like Anadelphia arrecta, Andropogon pseudapricus, Schizachyrium

131 platyphyllum, Hyparrhenia diplandra or Ctenium newtonii and by a shrub layer with

132 Crossopteryx febrifuga and Nauclea latifolia (White and Abernethy 1997). Forest patches are

133 mainly secondary to mature okoumé rainforests, the dominant forest type in western Gabon,

134 dominated by Aucoumea klaineana (“okoumé”), Lophira alata, Desbordesia glaucescens,

135 Scyphocephalium ochochoa, Dacryodes buttneri, Santiria trimera, Sindoropsis le-testui and

136 Uapaca guineensis (Ben Yahmed and Pourtier 2004; White and Abernethy 1997).

137 - The Ipassa research station (Institut de Recherches en Ecologie Tropicale) is situated in the

138 northern part of Ivindo National Park, 12 km from the city of Makokou (coordinates:

139 N0°30’38.1456” / E12°48’1.2594”; altitude: 500m). The site is mainly surrounded by mature

140 Guineo-Congolean rainforest showing both Atlantic and continental influences (Doumenge et al.

141 2004; Nicolas 1977; White 1983), with Baphia leptobotrys and Millettia laurentii dominating the

142 tree cover, as well as Scorodophloeus zenkeri, Plagiostyles africana, Dichostemma glaucescens,

143 Santiria trimera, Polyalthia suaveolens and Poncovia pedicellaris (Figure 2B).

144 The two sites are 160 kilometers apart and share a similar seasonal cycle typical of the equatorial

145 transition zone, with short (January-February) and long (June-September) dry seasons. The

146 average monthly temperature is 24°C while mean annual precipitation is 1500 mm at Lopé and

147 1700 mm at Ipassa.

148 Moth sampling

149 Sampling was conducted at both sites in November 2009 and at Lopé 2 in February-March 2011

150 during a field class organized in the Lopé National Park (ECOTROP field class -

Page 6 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 8: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

8

151 http://www.ecotrop.com/ECOTROP). We used a standard light trap technique consisting of a

152 250W UV (mercury vapor) bulb placed 4-5 meters above the ground to attract insects (Figures

153 2A and 2C). Two low voltage lamps (80W) were positioned on both sides of a vertical white

154 sheet positioned below the UV bulb. Specimens were collected during dark-moon phases from

155 dusk to dawn (6pm to 6am, local time) in order to collect species with varying flight times

156 (Lamarre et al. 2015). Overall, four collecting nights were carried out in each site in 2009 (10th

157 to 14th of November at Lopé 2 and 14th to 18th of November at Ipassa), and three additional

158 nights at the end of the short dry season at Lopé 2 in 2011 (27th February, 1st and 4th March). Our

159 sampling design was therefore relevant to compare observed communities between sites from the

160 samples collected during the rainy season in 2009, and to investigate seasonal turnover at Lopé 2.

161 Our study focuses on macro-moths, i.e. moths whose wingspan were >1 cm, which includes the

162 nocturnal part of Macrolepidoptera as well as larger representative of non-macrolepidopteran

163 families (so-called “Microlepidoptera”), and exclude the smaller species of other families of

164 Macrolepidoptera (Figure 2D). Each night, we sampled specimens of as many species of macro-

165 moths as could be distinguished morphologically when collecting. Moths were killed using a

166 cyanide jar or by an injection of ammonia into the thorax for larger species, and were placed in

167 glassine envelopes marked with a code unique to each sampling event. Specimens are currently

168 deposited in the Museum national d’Histoire Naturelle in Paris, where they are available for

169 further taxonomic study.

170 DNA barcoding and taxonomic assignments

171 The day after collecting, specimens were sorted into morphospecies, i.e. groups of specimens that

172 were readily distinguishable from their external morphology. A maximum of four specimens per

173 morphospecies and per collecting night were then selected for molecular analyses. A small piece

Page 7 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 9: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

9

174 of tissue (generally a complete leg or its tarsus for the largest species) was sampled for each of

175 them (Figure 2D). DNA extraction was carried out at the Canadian Centre for DNA Barcoding

176 (CCDB) at the University of Guelph following a standard automated protocol (Ivanova et al.

177 2006; Hajibabaei et al. 2005). Tissue lysis occurred in 50µl of lysis buffer and proteinase K [0.02

178 mg/µL] incubated at 56ºC overnight. A 658 bp segment of the 5’ region of the COI mitochondrial

179 gene used as a standard DNA barcode was amplified through PCR using the primer pair

180 LepF1/LepR1 (Hebert et al. 2004). Samples failing to amplify after this first PCR pass were re-

181 processed using the primer sets LepF1/MLepR1 and MLepF1/LepR1 that target 307 bp and 407

182 bp overlapping fragments, respectively (Hajibabaei et al. 2006). A standard PCR reaction

183 protocol was used for all PCR amplifications and products were checked on a 2% E-gel 96

184 Agarose (Invitrogen). Unpurified PCR amplicons were sequenced in both directions using the

185 same primers as those used for the initial amplification, and following standard CCDB protocols

186 (http://ccdb.ca/resources/) (Hajibabaei et al. 2005). Trimming of primers, sequence editing and

187 contig assembly were carried out at CCDB using CodonCode software (CodonCode Corporation,

188 Centerville, MA, USA). All sequences were aligned and inspected for frame-shifts and stop

189 codons for removal of editing errors and possible pseudogenes, and then uploaded in the Barcode

190 of Life Data systems (BOLD, Ratnasingham and Hebert 2007). All records – including specimen

191 and sequence data – can be accessed publicly in BOLD and GenBank, and were assembled

192 within BOLD dataset DS-LOPELEP1.

193 Species identification of specimens using either DNA barcodes or morphology could not be

194 achieved for all the specimens, because of the incompleteness of the current DNA barcode library

195 for the region, and because of the lack of taxonomic expertise for many of the moths collected.

196 Also, the use of provisional morphospecies was intractable considering the large number of

Page 8 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 10: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

10

197 specimens and the need for a thorough processing of individuals (spreading of wings, genitalia

198 dissections) for a reliable assessment of observed species diversity (Zenker et al. 2016). As a

199 consequence we used DNA barcodes to delineate molecular taxonomic units (MOTUs) as a

200 proxy for species. More specifically, we used Barcode Index Numbers (BINs) derived from the

201 automated MOTU delineation tool implemented in BOLD (Ratnasingham and Hebert 2013), and

202 which have already been used to consistently approximate species in Lepidoptera (Hausmann et

203 al. 2013; Kekkonen and Hebert 2014). In two families, Saturniidae and Sphingidae, species were

204 carefully identified (by RR and TD) on the basis of morphology and the results were used to test

205 their correspondence with BINs.

206 A “reverse taxonomy” approach (Markmann and Tautz 2005) using DNA barcode results

207 coupled with the BOLD identification tool as well as the topology of the NJ tree failed to produce

208 species identification for most of our query sequences. However, we were able to provide a

209 family-level identification for the majority of individuals analyzed using either their general

210 morphology or DNA barcode analysis. For this second approach, the richness of the BOLD DNA

211 barcode library, with records for more than 100 000 species of Lepidoptera – proved very useful

212 using a simple query for best close matches in the database. Instead of applying a threshold to

213 generate family (or occasionally subfamily and genus) assignment, we verified the proposed

214 assignments by comparing images and, where relevant, by examining the specimens and

215 confirming the proposed taxon on the basis of its morphology.

216 Community data analyses

217 The α-diversity at each site was assessed by plotting rarefaction curves and their extrapolations

218 for both species richness and sample coverage (i.e. a measure of sample completeness that

219 estimates the proportion of the total number of individuals in a community that belong to the

Page 9 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 11: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

11

220 species represented in the sample), using specimen numbers as a measure of sampling intensity.

221 These analyses were carried out using the iNEXT package (Hsieh et al. 2014) for R 3.0.2 (R

222 Development Core Team 2004). We then used the Vegan package (Oksanen et al. 2013) to

223 calculate several diversity indices: observed richness (defined as the total number of observed

224 BINs at a given sampling site or on a given date), Chao1, ACE and second order jacknife

225 diversity estimators, and Fisher α-diversity index. We also used iNEXT to calculate the number of

226 species observed given a constant level of sampling coverage, and Vegan for the estimation of

227 species richness rarefied to a constant level of sampling intensity (i.e. a constant number of

228 specimens collected). We finally used fisherfit, prestonfit and prestondistr functions of Vegan to

229 plot rank-abundance diagrams and fit Fisher's logseries, Preston's lognormal and truncated

230 lognormal models to abundance data for each sampling site.

231 To assess β-diversity among sampling sites (for samples collected in 2009) and seasons (in Lopé

232 2 site only), we calculated an average Sørensen’s index of dissimilarity using the package Vegan

233 (Oksanen et al. 2013):

234 βBC = (b+c)/(2 a + b + c)

235 where a is the number of species (here BINs) shared between two sites B and C, and b and c are

236 the numbers of unique BINs for sites B and C.

237 We used the betapart package to decompose β-diversity into two components (Baselga 2010):

238 nestedness (i.e. when the composition of communities with a smaller species number is a subset

239 of a richer community) which reflects non-random processes of species loss, and spatial turnover

240 which results from species replacement as a consequence of environmental sorting or spatial and

241 historical constraints (Qian et al. 2005; Ulrich et al. 2009; Wright and Reeves 1992). Analyses of

Page 10 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 12: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

12

242 β-diversity were carried out with and without singletons (i.e. BINs represented by a single

243 specimen in the dataset), as their inclusion can lead to overestimation of β-diversity.

244 Results

245 Species richness at the regional scale

246 We obtained 3494 (97.7%) sequences from the 3576 specimens selected for DNA barcoding.

247 These sequences included representatives of 1385 BINs representing 23 families of Lepidoptera

248 (Table 1) and only 6 specimens (6 BINs) could not be identified to family level. Noctuidae,

249 Erebidae and Geometridae represented about one third of the BINs and sampled individuals,

250 whereas 10 other families were each represented by less than 10 specimens. More than half of the

251 BINs (796 in total, 59%) were represented by a single individual in our data set (i.e. singleton).

252 Morphological examination of specimens in the families Saturniidae (177) and Sphingidae (267),

253 led to the distinction of 42 and 63 species, respectively, of which only two (in family Saturniidae)

254 could not be identified to species and were given a provisional name (Orthogonioptilum

255 mgab_RR01 and Dogoia mgab_RR01). The correspondence between morphologically assigned

256 species and BINs was nearly perfect: 42 species versus 43 BINs in Saturniidae (98%) and 63

257 versus 66 in Sphingidae (95%) (see DNA barcode NJ trees in gen-2018-0063.R1Suppla and gen-

258 2018-0063.R1Supplb). In other families, 112 species (representing 121 BINs) were formally

259 identified by taxonomic experts (see acknowledgments) or through DNA barcode matches in

260 BOLD. Overall, with Saturniidae and Sphingidae included, these species represent about 16% of

261 all BINs (230/1385).

262 Comparison between the number of BINs observed in our study and the list of recognized species

263 and subspecies for Gabon, as derived from the AfroMoths online database (De Prins 2016; De

Page 11 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 13: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

13

264 Prins and De Prins 2017), revealed the strong taxonomic deficit and the lack of exploration (i.e.

265 biodiversity surveys, collecting activities) that characterizes moth diversity in the Afrotropics.

266 Afromoths is based on the survey of 7355 published sources for the whole Afro-tropical region

267 (as of August 8th, 2017) and the authors’ own studies. It lists 1301 moth species and subspecies

268 for Gabon, belonging to 36 families. Our survey (Figure 4), limited to macro-moths collected

269 during only 11 nights at two sites, revealed 1385 BINs in just 25 families. Three families

270 (Bombycidae, Brahmaeidae, and Lecithoceridae) detected in our study lack published records for

271 Gabon in the AfroMoths database. For 10 of the 22 other families, the number of BINs recorded

272 in our study exceeded the number of known species (Table 1). Large differences were observed

273 for Cossidae (1 species in AfroMoths versus 11 BINs), Crambidae (9 vs. 52), Erebidae (309 vs.

274 369), Geometridae (184 vs. 220), Lasiocampidae (68 vs. 101), Noctuidae (71 vs. 224), and

275 Pyralidae (6 vs. 70), which may represent the most understudied families or those yet

276 incompletely surveyed in the AfroMoths database.

277 In the few families that are well-studied for this region, we collected approximately half the

278 known number of species (48.2%, sd=6.9, N=4 – including Saturniidae (43 BINS vs. 110 species

279 listed in AfroMoths, 39%), Eupterotidae (15 vs. 32, 47%), Sphingidae (66 vs. 124, 53%) and

280 Lasiocampidae (101 vs. 188 as listed by P. Basquin, personal communication, 54%).

281 Species richness and diversity patterns between sampling sites

282 Our survey revealed a total of 823 BINs (1604 specimens analyzed) and 782 BINs (1890

283 specimens analyzed) in the Ipassa and Lopé 2 sites, respectively (Table 1). Sampling resulted in a

284 high proportion of singletons at both sites (64% and 59% of BINs in Ipassa and Lopé 2,

285 respectively; 57% of all BINs when combining the two sites), and the distributions of BIN

Page 12 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 14: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

14

286 abundance are a strong fit to a log-series model (gen-2018-0063.R1Supplc). While observed

287 richness was similar between the sites, we collected fewer BINs in Lopé 2, despite collecting

288 three additional nights in this site during the dry season.

289 For comparison of the two sites, we only considered specimens collected during the wet season

290 when sampling efforts were identical. The four collecting nights at each site resulted in the

291 capture of 1604 and 1110 specimens, which belonged to 823 and 481 BINs for Ipassa and Lopé

292 2, respectively (Table 2). Richness estimators indicate that species richness ranged between 1250

293 and 1850 species at Ipassa and between 700 and 1200 species at Lopé 2. Rarefaction curves

294 clearly show a higher richness in Ipassa (Figure 5a), while sampling coverage rate was slightly

295 higher at Lopé 2 (73% versus 68% at Ipassa) (Table 2, Figures 4b and 4c). Overall, the moth

296 communities at both sites showed a similar relative abundance of the different families, both in

297 terms of specimen numbers and BINs, although observed richness in the most diverse families

298 was consistently higher in Ipassa, with the exception of Crambidae and Pyralidae, which had

299 more BINs at Lopé 2 (Table 1).

300 Comparison of BINs collected during the wet season at Lopé 2 and Ipassa revealed only 158

301 BINs shared by the two sites, 13.8% of the total number analyzed. Sørensen’s index of β-

302 diversity calculated between the two sites was 0.76 for the whole dataset and 0.42 after singletons

303 were removed (Table 3). In both cases, β-diversity was mainly explained by spatial turnover

304 (71.0% and 67.6%, respectively) and to a lesser extent by nestedness (29.0% and 32.4%).

305 Seasonal changes in moth assemblages at Lopé 2

306 We generated DNA barcodes for 1110 and 780 specimens from Lopé 2 during the rainy and the

307 dry seasons, respectively. Observed richness during the wet season was slightly higher (478 BINs

Page 13 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 15: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

15

308 versus 441 BINs during the dry season), but this trend was reversed after rarefying richness to a

309 constant sampling effort or a constant sampling coverage. Rarefaction curves and diversity

310 estimators were also quite similar, the latter ranging between 650 and 1100 for both seasons

311 (Figure 5).

312 During the dry season, we collected moths belonging to 17 families versus 21 families during the

313 wet season. Seven families were not shared between the two sampling seasons, but all were

314 represented by few BINs (maximum 2) and individuals (maximum 2), excepting one BIN in the

315 family Thyrididae for which 18 specimens were collected in the wet season. Overall, the diversity

316 for each family was similar for the two sampling periods (Table 1) with a few exceptions: the

317 Crambidae (31 vs. 16 BINs), Pyralidae (37 vs. 18), and Saturniidae (31 vs. 9), which were all

318 more diverse during the wet season, and the Sphingidae (40 vs. 28) that was more diverse during

319 the dry season. Out of a total of 782 BINs, 144 (i.e. 18.5%) were found during both the rainy and

320 the dry seasons. Sørensen’s index of dissimilarity between seasons was 0.69, largely explained by

321 temporal turnover (95.4%), but it dropped to 0.23 and was evenly explained by turnover and

322 nestedness after removing singletons from the data set (Table 3).

323 Discussion

324 DNA barcodes for the study of moth diversity in the tropics

325 Overall, we documented in our study a number of molecular units (BINs) that was higher than the

326 total number of species listed for the country in AfroMoths database, including three families not

327 documented so far (De Prins and De Prins 2017). Considering the relatively shallow geographical

328 range and temporal extent of our study, this result highlights the weakness of the current

329 knowledge of moth diversity in the Afrotropics, despite the remarkable efforts by De Prins and

Page 14 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 16: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

16

330 De Prins (2017) to synthesize and centralize this knowledge in the AfroMoths database. Our

331 results clearly highlight the value of DNA barcoding for producing a rapid and accurate census of

332 moth diversity in a poorly studied tropical region. Because this approach facilitates comparisons

333 between sampling campaigns through barcode matches (as exemplified here between sites, but it

334 can also be applied between countries as currently in progress with a similar campaign in Central

335 African Republic), its systematic implementation would represent a powerful mean to address

336 both the Linnean and Wallacean shortfalls (Lomolino 2004), i.e. the inadequacies in taxonomic

337 and distributional knowledge that characterise most invertebrate taxa in poorly studied regions

338 such as the Congo basin (Whittaker et al. 2005).

339 In our study, the large number of BINs without taxonomic assignation at species level (1155 out

340 of 1385) corresponds both to already known species not yet documented in the BOLD libraries

341 and to species that are new to science. The number and proportion of the latter remains unclear

342 and further study by expert taxonomists of the specimens collected is needed, as well as

343 continued efforts to populate DNA barcode reference libraries. In addition, the inflation of

344 species numbers in many families may reflect an incomplete census of Gabonese records in past

345 studies, a considerable task initiated in the Afromoths database, but certainly suffering from the

346 absence of recent dedicated efforts to synthesize lepidopteran diversity data for this country. The

347 bombycid Amusaron kolga (Druce, 1887) and brahmaeid Dactyloceras lucina (Drury, 1782) for

348 instance represent new records for their respective families in Gabon, but are species known to

349 occur in neighbouring countries of the Congo basin (De Prins and De Prins 2017). In

350 Lasiocampidae the number of species listed in AfroMoths (68) is identical to the number of

351 species reported from an independent literature survey by a specialist of this family on the

352 African continent (P. Basquin, personal communication). Furthermore, this same taxonomic

Page 15 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 17: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

17

353 authority (unpublished results) has recorded approximately 188 Gabonese lasiocampid species in

354 natural history collections worldwide, which clearly demonstrates how insufficient the published

355 data are for this family at the regional scale and is consistent with the number of BINs (101)

356 reported in our study.

357 The very close fit we found between species names and BINS in the Saturniidae and Sphingidae

358 families supports previous assessments of BINs as good proxies for species in Lepidoptera where

359 empirical studies (e.g. Hausmann et al. 2013) revealed only few occurrences of discrepancies

360 between morphologically identified and molecular species (for instance one species divided in

361 two or more BINS, or multiple species merged within a single BIN; see Ratnasingham and

362 Hebert, 2013). Within the two families thoroughly investigated here, mismatches between BINs

363 and species are cases where supposedly well-defined morphological species appeared to be split

364 into two or three distinct BINs. These require further study using an integrative approach and

365 may represent cases of cryptic species, i.e. species that cannot be distinguished from

366 morphological characters, or that present subtle morphological and/or ecological traits previously

367 ascribed to intra-specific variation or thought to be insignificant for species-level recognition

368 (Janzen et al. 2009; Janzen et al. 2013; Rougerie et al. 2014). Alternatively, these BIN “splits”

369 may also cause an overestimation of species diversity if they represent cases of pseudogene

370 amplification (although this is considered unlikely here because of the absence of indels, stop

371 codons or unusual amino acid substitutions), insufficient sampling of genetic variation biasing

372 BIN assignments, or Wolbachia infections isolating lineages within species (Smith et al. 2012).

373 Geographical structure of populations in poorly mobile species could also cause strong genetic

374 structure that may inflate the number of BINs per species, but we consider this unlikely in the

375 present study because of the small geographical distance between sampled sites, the absence of

Page 16 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 18: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

18

376 geographical barriers, and the generally high vagility of moth species. DNA barcoding has

377 revealed many cases of cryptic diversity in Lepidoptera since its broad integration in the

378 taxonomic toolbox of lepidopteran taxonomists (e.g. Vaglia et al. 2008; Rougerie et al. 2012,

379 2014) and we consider it is very likely that speciose and less studied families such as Erebidae,

380 Geometridae and Noctuidae will also reveal many such cases, leading to an increase of species

381 numbers in these groups compared to available checklists only based on morphologically

382 recognized species.

383 Moth diversity at Ivindo and Lopé National Parks

384 Among the 1385 BINs found in our samples, 796 (i.e. 58% of the total) were represented by a

385 single specimen, which is a high singleton proportion compared to the average of 32% found by

386 Coddington et al. (2009) in a review of tropical arthropod studies. There are little or no biological

387 explanations for the high proportion of rare species usually found in tropical insect surveys

388 (Novotný and Basset 2000). Rather, this pattern can be attributed to undersampling of highly

389 diverse communities (Coddington et al. 2009), suggesting that caution should be taken when

390 interpreting the observed patterns of community composition and structure. It also suggests that

391 the estimates of species richness derived from our results probably represent a low estimation of

392 the actual diversity of these ecosystems. Both rarefaction curves and sampling coverage indices

393 (Figure 5, Table 2) support this idea, suggesting that at least twice the number of collected

394 species may occur in the study area.

395 We found only a few studies that assessed moth local richness in tropical rainforest or savannah

396 ecosystems and that can be readily compared with our own results. Ashton et al. (2014) sampled

397 791 to 2795 species and produced Chao1 estimates ranging from 1478 to 3666 among three

398 rainforest locations in Malaysia. In Costa Rica, Janzen et al. (2009) published a census of 2349

Page 17 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 19: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

19

399 species using a DNA barcode-based assessment of macro-moth assemblages in the Area de

400 Conservación Guanacaste (see also Janzen and Hallwachs, 2016). On the other hand, Hawes et al.

401 (2009) reported 98 species of Arctiinae (Erebidae), 43 of Saturniidae and 5 of Sphingidae in a

402 primary forest area of Brazilian Amazonia, which is well below our findings in the present study.

403 Variations in the number of species observed among studies are however difficult to interpret,

404 because they can both reflect real differences in species diversity, but can also be biased by

405 differences in sampling efforts and/or sampling performed in different seasons. In fact, the moth

406 sampling by Ashton et al. (2014) and Hawes et al. (2009) was done through 264 and 30 collecting

407 nights per study site, respectively, while the survey of Janzen et al. (2009) was conducted over

408 decades and involved additional sampling methods (in particular, the mass rearing of

409 caterpillars). Comparing the results obtained in different studies and with different sampling

410 intensity requires standardization through rarefaction procedure (Gotelli and Colwell 2001).

411 Applying this approach to the data from Ashton et al. (2014) produces a result different from

412 what can be directly deduced from observed richness (Nakamura A., Ashton L.A., Kitching.

413 R.L., personal communication). For instance, species numbers in their Malaysian sites ranged

414 from 290 to 475 after standardization to a constant sampling effort of 1000 individuals, and

415 between 100 to 270 at a constant sampling coverage of 50%, which was lower to what we found

416 in our two study sites (Table 2). This suggests that Central African rainforests may represent an

417 important hotspot for moth diversity.

418 Variation in moth diversity and composition among study sites

419 Our analyses of moth assemblages during the rainy season in the rainforest of Ipassa and the

420 savannah/forest landscape of Lopé 2 unveiled significant differences in both species diversity and

421 composition. As expected from differences in vegetation coverage, the observed and estimated

Page 18 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 20: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

20

422 richness were both higher in Ipassa. Plant diversity is indeed higher in the rainforest landscape of

423 Ipassa than in the shrubland savannahs and peaty marshes that dominate the landscapes of the

424 northern part of Lopé National Park (White and Abernethy 1997). In addition, despite presenting

425 a comparable structure, forests at Ipassa are more humid and present higher tree diversity when

426 compared with the gallery forests of Lopé 2. These features presumably offer a broader diversity

427 of ecological niches in terms of trophic resources and microhabitats, in particular via the

428 important diversity of epiphytes and lianas (Ben Yahmed and Pourtier 2004).

429 Difference in species assemblage composition among sites was high, with only 13.3% of BINs

430 found in both. This high β-diversity was mainly attributed to spatial turnover, meaning that

431 undersampling may only weakly account for this variation. This is in contrast with other studies

432 that reported relatively low β-diversity of insect herbivores in comparable tropical rainforest

433 habitats (Basset et al. 2012; Novotny et al. 2007). This also concords with other studies having

434 reported high species turnovers among sites as long as these comprised enough variability in

435 vegetation types (Beck and Chey 2007; Ødegaard 2006). In fact, contrasted composition of

436 dominant forest tree species among our study sites may have selected for different assemblages

437 of herbivorous species, as leaf-chewing insects are usually specialized on a single genus of host

438 plants (Novotny et al. 2002a, 2002b). Similarly, the presence of herbaceous ecosystems and

439 secondary forests at Lopé 2 may have also driven the presence of specific species assemblages

440 associated with these open habitats. The high diversity of Crambidae and Pyralidae observed at

441 this site compared to Ipassa could for instance be linked to species preferences within these

442 groups for herbaceous host-plants (Kitching et al. 2000).

443 Even if additional sampling is necessary to confirm this finding, these preliminary results suggest

444 that landscapes dominated by a savannah-forest patchwork may host substantial levels of

Page 19 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 21: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

21

445 herbivore insect diversity with a high compositional specificity at species level compared to

446 typical tropical rainforests. This argues in favor of a better consideration of savannah ecosystems

447 in both global estimates and conservation strategies of insect biodiversity.

448 Seasonal variation of moth assemblages

449 At Lopé 2 we found little difference in species richness of moth assemblages collected during the

450 rainy and the dry seasons. In contrast, BINs compositions clearly differed from one season to the

451 other, with only 18.3% of the BINs collected being observed in both seasons, and this temporal

452 β-diversity being clearly explained by seasonal turnover rather than by nestedness (Table 3).

453 Composition may simply be influenced by the level of vegetation development during the

454 seasonal cycle, which is well known to influence the phenology of lepidopteran species, or by

455 different climatic preferences linked to the feeding and/or reproductive activity of the moths.

456 From a methodological point of view, these results highlight the importance of standardizing the

457 period of sampling to provide fully comparable results among different localities. They also

458 suggest the need of sampling different seasons to obtain a reliable inventory of species at a given

459 study site, as the assemblages observed at the rainy season (the usually preferred period for moth

460 collecting) clearly do not provide a representative overview of the actual species composition of

461 the focal community.

462 Conclusion

463 Our study highlights the usefulness of utilizing DNA barcodes for performing rapid analyses of

464 taxonomic diversity and composition of moth assemblages in poorly studied areas. It also stresses

465 the need to accelerate biodiversity inventories in those areas that have been insufficiently

466 explored regarding moths and other poorly studied invertebrates. Central Africa clearly is one of

Page 20 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 22: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

22

467 those areas and our results represent the first robust assessment of moth diversity in Gabonese

468 forests and savannahs, highlighting a strongly understudied fauna. The material collected and the

469 DNA barcode library released with this study are thus important contributions and we expect that

470 they will serve the development of knowledge on the diversity and distribution of African moths.

471 In general, studies combining molecular data and traditional taxonomic expertise are critically

472 needed to better document invertebrate communities in tropical areas, especially in the regions

473 where anthropogenic pressures are high and where species extinctions remain unaccounted for

474 because species simply remain undocumented.

475 Acknowledgements

476 Fieldwork was supported by grants from the University of Rouen, SCALE Research Federation,

477 French Embassy at Libreville (“Service de Coopération et d’Action Culturelle”) and IRD

478 (“Action Thématique Structurante” call). Logistical support was provided by ANPN, the National

479 Agency for National Parks (Libreville, Gabon), WCS (Libreville, Gabon) and CEDAMM

480 (National Park, Lopé, Gabon), Research Station on Gorilla and Chimpanzee (SEGC, Gabon), as

481 well as “Agence des Universités Francophones” and the numerical campus of Libreville.

482 Sequencing costs were covered by grants to PDNH from Genome Canada and from the Ontario

483 Ministry of Research, Innovation and Science. Patrick Basquin (for Lasiocampidae) and Ugo

484 Dall Asta (for Lymantriinae) provided taxonomic assistance. We also thank the institutions that

485 made this project possible: CENAREST for research authorizations, IRET and IRAF (Libreville,

486 Gabon), Science University of Masuku (Franceville, Gabon (Libreville, Gabon), CIRMF

487 (Franceville, Gabon), University O. Bongo (Libreville, Gabon), and University of Douala

488 (Cameroun).

Page 21 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 23: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

23

489 The ECOTROP team is a multidisciplinary and international consortium of university teachers

490 and researchers working together at organizing field classes in the domain of environmental and

491 ecological research in the tropics. From 2011 to 2014, they coordinated four successive editions

492 of a training course in biodiversity assessment in the North of the Lope National Park in Gabon,

493 producing some of the results included in this paper. The following table gives the list of the

494 members not already listed as authors on the manuscript:

Names Contact

Emilie Arlette APINDA LEGNOUO

CENAREST, IRET, Libreville, Gabon. Email: [email protected]

Diego AYALA MIVEGEC, IRD, CRMF, Franceville, Gabon. Email: [email protected]

Marlucia BONIFACIO MARTINS

Museu Paraense Emilio Goeldi, Belem, Para, Brazil. Email: [email protected]

Laurent BREMOND ISEM, Université de Montpellier, EPHE, IRD, CNRS, Montpellier, France. Email: [email protected]

Barabara EVRARD Normandie Univ, UNIROUEN, UNICAEN, CETAPS 76000 Rouen, France. Email: [email protected]

Damien FEMENIAS Normandie Univ, UNIROUEN, UNICAEN, CETAPS 76000 Rouen, France. Email: [email protected]

Flore KOUMBA PAMBO CENAREST, IRAF, Libreville, Gabon. Email: [email protected]

Boris MAKANGA CENAREST, IRET, Libreville, Gabon. Email: [email protected]

Mike MAKAYA MVOUBOU Université des Sciences et Techniques de Masuku, Franceville, Gabon. Email: [email protected]

Elise MAZEYRAC WCS-Gabon, La Lopé, Gabon. Email: [email protected]

Judicaël OBAME NKOGHE CIRMF, Franceville, Gabon. Email: [email protected]

Marjolaine OKANGA-GUAY LAGRAC, Université Omar Bongo, Libreville, Gabon. Email: [email protected]

Page 22 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 24: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

24

Didier OREVOUNO Ecole Nationale des Eaux et Forêts, Libreville, Gabon. Email: [email protected]

Johan OSZWALD LETG, CNRS, Université Rennes 2, Rennes, France. Email: [email protected]

Christophe PAUPY MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France. Email: [email protected]

Olivia SCHOLTZ WCS-Gabon, Libreville, Gabon. Email: [email protected]

Maurice TINDO Université de Douala, Cameroun. Email: [email protected]

Michel VEUILLE ISYEB, CNRS, MNHN, UPMC, EPHE, Paris, France. Email: [email protected]

495

496 References

497 Achart, F., Beuchle, R., Mayaux, P., Stibig, H.J., Bodart, C., Brink, A., Carboni, S., Desclee, B.,

498 Donnay, F., Eva, H.D, Lupi, A., Rasi, R., Seliger, R., and Simonetti, D. 2014.

499 Determination of tropical deforestation rates and related carbon losses from 1990 to 2010.

500 Glob. Change Biol. 20: 2540-2554.

501 Ashton, L., Barlow, H.S., Nakamura, A., and Kitching, R.L. 2014. Diversity in tropical

502 ecosystems: the species richness and turnover of moths in Malaysian rainforests. Insect.

503 Conserv. Divers. 8(2): 132–142.

504 Axmacher, J.C., Holtmann, G., Scheuermann, L., Brehm, G., Müller-Hohenstein, K., and Fiedler,

505 K. 2004a. Diversity of geometrid moths (Lepidoptera: Geometridae) along an

506 Afrotropical elevational rainforest transect. Divers. Distrib. 10: 293-302.

507 Axmacher, J.C., Tünte, H., Schrumpf, M., Müller-Hohenstein, K., Lyaruu, H.V.M., and Fiedler,

508 K. 2004b. Diverging diversity patterns of vascular plants and geometrid moths during

509 forest regeneration on Mt Kilimanjaro, Tanzania. J. Biogeogr. 31: 895–904.

Page 23 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 25: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

25

510 Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Glob.

511 Ecol. Biogeogr. 19: 134-143.

512 Basset, Y., Cizek, L., Cuenoud, P., Didham, R.K., Guilhaumon, F., Missa, O., Novotny, V.,

513 Odegaard, F., Roslin, T., Schmidl, J., Tishechkin, A.K., Winchester, N.N., Roubik, D.W.,

514 Aberlenc, H.P., Bail, J., Barrios, H., Bridle, J.R., Castano-Meneses, G., Corbara, B.,

515 Curletti, G., da Rocha, W.D., de Bakker, D., Delabie, J.H.C., Dejean, A., Fagan, L.L.,

516 Floren, A., Kitching, R.L., Medianero, E., Miller, S.E., de Oliveira, E.G., Orivel, J.,

517 Pollet, M., Rapp, M., Ribeiro, S.P., Roisin, Y., Schmidt, J.B., Sorensen, L., and Leponce,

518 M. 2012. Arthropod Diversity in a Tropical Forest. Science 338(6113): 1481-1484. doi:

519 10.1126/science.1226727.

520 Basset, Y., Mavoungou, J.F., Mikissa, J.B., Missa, O., Miller, S.E., Kitching, R.L., and Alonso,

521 A. 2004. Discriminatory power of different arthropod data sets for the biological

522 monitoring of anthropogenic disturbance in tropical forests. Biodivers. Conserv. 13: 709-

523 732.

524 Basset, Y., Missa, O., Alonso, A., Miller, S.E., Curletti, G., De Meyer, M., Eardley, C., Lewis,

525 O.T., Mansell, M.W., Novotny, V., and Wagner, T. 2008. Changes in arthropod

526 assemblages along a wide gradient of disturbance in Gabon. Conserv. Biol. 22: 1552-

527 1563.

528 Beck, J., Ballesteros-Mejia, L., Nagel, P., and Kitching, I.J. 2013. Online solutions and the

529 “Wallacean shortfall”: what does GBIF contribute to our knowledge of species’ ranges?

530 Divers. Distrib. 19: 1043-1050.

Page 24 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 26: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

26

531 Beck, J., and Chey, V.K.J. 2007. Beta-diversity of geometrid moths from northern Borneo:

532 effects of habitat, time and space. J. Anim. Ecol. 76: 230-237.

533 Ben Yahmed, D., and Pourtier, R. 2004. Atlas du Gabon. Editions J.A., Paris, France.

534 Boussienguet, J., Neuenschwander, P., and Herren, H.R. 1991. Essais de lutte biologique contre

535 la Cochenille du manioc au Gabon: I. — Établissement, dispersion du parasite exotique

536 Epidinocarsis lopezi [Hym.: Encyrtidae] et déplacement compétitif des parasites

537 indigènes. Entomophaga 36: 455-469.

538 Coddington, J.A., Agnarsson, I., Miller, J.A., Kuntner, M., and Hormiga, G. 2009.

539 Undersampling bias: the null hypothesis for singleton species in tropical arthropod

540 surveys. J. Anim. Ecol. 78: 573-584.

541 De Prins J, De Prins W (2017) Afromoths, online database of Afrotropical moth species

542 (Lepidoptera). World Wide Web electronic publication (www.afromoths.net) [accessed

543 on Aug. 8th, 2017]

544 Diniz-Filho, J.A.F., de Marco Jr, P., and Hawkins, B.A. 2010. Defying the curse of ignorance:

545 perspectives in insect macroecology and conservation biogeography. Insect. Conserv.

546 Divers. 3: 172-179.

547 Doumenge, C., Issembé, Y., Mertens, B., and Trébuchon, J.-F. 2004. Amélioration de la

548 connaissance et de la cartographie des formations végétales du parc national de l’Ivindo

549 (Gabon). Rapport de mission d’expertise CIFOR/IRET-CENAREST/CIRAD.

550 Ehrlich, P.R., and Raven, P.H. 1964. Butterflies and plants - A study in coevolution. Evolution

551 18(4): 586-608.

Page 25 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 27: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

27

552 Erwin, T.L. 1983. Tropical forest canopies: the last biotic frontier. Bull. Ecol. Soc. Am. 29: 14-

553 20.

554 Fonseca, C.R. 2009. The silent mass extinction of insect herbivores in biodiversity hotspots.

555 Conserv. Biol. 23(6): 1507-1515.

556 Godfray, H.C.J. 2006. To boldly sequence. Trends Ecol. Evol. 21: 603–604.

557 Gotelli, N.J., and Colwell, R.K. 2001. Quantifying biodiversity: procedures and pitfalls in the

558 measurement and comparison of species richness. Ecol. Lett. 4(4): 379-391. doi:

559 10.1046/j.1461-0248.2001.00230.x.

560 Hajibabaei, M., deWaard, J.R., Ivanova, N.V., Ratnasingham, S., Dooh, R.T., Kirk, S.L., Mackie,

561 P.M., and Hebert, P.D.N. 2005. Critical factors for assembling a high volume of DNA

562 barcodes. Philos. Trans. R. Soc. B-Biol. Sci. 360: 1959-1967.

563 Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W., and Hebert, P.D.N. 2006. DNA

564 barcodes distinguish species of tropical Lepidoptera. Proc. Natl. Acad. Sci. U. S. A. 103:

565 968-971.

566 Hausmann, A., Godfray, H.C.J., Huemer, P., Mutanen, M., Rougerie, R., van Nieukerken, E.J.,

567 Ratnasingham, S., and Hebert, P.D.N. 2013. Genetic patterns in European geometrid

568 moths revealed by the barcode index number (BIN) system. PLoS ONE 8: e84518.

569 Hawes, J., Motta, C.d.S., Overal, W.L., Barlow, J., Gardner, T.A., and Peres, C.A. 2009.

570 Diversity and composition of Amazonian moths in primary, secondary and plantation

571 forests. J. Trop. Ecol. 25: 281-300. doi: 10.1017/s0266467409006038.

572 Hebert, P.D.N., Cywinska, A., Ball, S.L., and deWaard, J.R. 2003a. Biological identifications

573 through DNA barcodes. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 270: 313-321.

Page 26 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 28: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

28

574 Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H., and Hallwachs, W. 2004. Ten species in

575 one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes

576 fulgerator. Proc. Natl. Acad. Sci. U. S. A. 101: 14812–14817.

577 Hebert, P.D.N., Ratnasingham, S., and deWaard, J.R. 2003b. Barcoding animal life: cytochrome

578 c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. Ser.

579 B-Biol. Sci. 270: S96–S99.

580 Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S., and Francis, C.M. 2004. Identification of birds

581 through DNA barcodes. PLoS Biol. 2: e312.

582 Hsieh, T.C., Ma, K.H., and Chao, A. 2014. iNEXT: An R package for interpolation and

583 extrapolation in measuring species diversity.

584 Ivanova, N.V., deWaard, J.R., and Hebert, P.D.N. 2006. An inexpensive, automation-friendly

585 protocol for recovering high-quality DNA. Mol. Ecol. Notes 6: 998–1002.

586 Janzen, D.H., Hallwachs, W., Blandin, P., Burns, J.M., Cadiou, J.-M., Chacon, I., Dapkey, T.,

587 Deans, A.R., Epstein, M.E., Espinoza, B., Franclemont, J.G., Haber, W.A., Hajibabaei,

588 M., Hall, J.P.W., Hebert, P.D.N., Gauld, I.D., Harvey, D.J., Hausmann, A., Kitching, I.J.,

589 Lafontaine, D., Landry, J.-F., Lemaire, C., Miller, J.Y., Miller, J.S., Miller, L., Miller,

590 S.E., Montero, J., Munroe, E., Green, S.R., Ratnasingham, S., Rawlins, J.E., Robbins,

591 R.K., Rodriguez, J.J., Rougerie, R., Sharkey, M.J., Smith, M.A., Solis, M.A., Sullivan,

592 J.B., Thiaucourt, P., Wahl, D.B., Weller, S.J., Whitfield, J.B., Willmott, K.R., Wood,

593 D.M., Woodley, N.E., and Wilson, J.J. 2009. Integration of DNA barcoding into an

594 ongoing inventory of complex tropical biodiversity. Mol. Ecol. Resour. 9: 1–26.

Page 27 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 29: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

29

595 Janzen, D.H., Hallwachs, W., Harvey, D., K., D., Rougerie, R., Hajibabaei, M., Smith, M.A.,

596 Chacon, I., Espinoza, B., Sullivan, B., Decaëns, T., Herbin, D., Chavarria, L.F., Franco,

597 R., Cambronero, H., Rios, S., Quesada, F., Pereira, G., Vargas, J., Guadamuz, A.,

598 Espinoza, R., Hernandez, J., Rios, L., Cantillano, E., Moraga, R., Moraga, C., Rios, P.,

599 Rios, M., Calero, R., Martinez, D., Briceño, D., Carmona, M., Apu, E., Aragon, K.,

600 Umaña, C., Perez, J., Cordoba, A., Umaña, P., Sihezar, G., Espinoza, O., Cano, C., Araya,

601 E., Garcia, D., Ramirez, H., Pereira, M., Cortez, J., Pereira, M., and Hebert, P.D.N. 2013.

602 What happens to the traditional taxonomy when a well-known tropical saturniid moth

603 fauna is DNA barcoded? Invertebr. Syst. 26: 478–505.

604 Kekkonen, M., and Hebert, P.D.N. 2014. DNA barcode-based delineation of putative species:

605 efficient start for taxonomic workflows. Mol. Ecol. Resour. 4(4): 706-715.

606 Kier, G., Mutke, J., Dinerstein, E., Ricketts, T.H., Küper, W., Kreft, H., and Barthlott, W. 2005.

607 Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 32: 1107–1116.

608 Kitching, R.l., Orr, A.G., Thalib, L., Mitchell, H., Hopkins, M.S., and Graham, A.W. 2000. Moth

609 assemblages as indicators of environmental quality in remnants of upland Australian rain

610 forest. J. Appl. Ecol. 37: 284-297.

611 Lamarre, G., Mendoza, I., Rougerie, R., Decaëns, T., Hérault, B., and Bénéluz, F. 2015. Stay out

612 (almost) all night: contrasting responses in flight activity among tropical moth

613 assemblages. Neotrop. Entomol. 44: 109-115.

614 Lamarre, G.P.A., Decaëns, T., Rougerie, R., Barbut, J., deWaard, J.R., Hebert, P.D.N., Herbin,

615 D., Laguerre, M., Thiaucourt, P., and Martins Bonifacio, M. 2016. An integrative

Page 28 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 30: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

30

616 taxonomy approach unveils unknown and threatened moth species in Amazonian

617 rainforest fragments. Insect. Conserv. Divers. 9(5): 475-479. doi: 10.1111/icad.12187.

618 Lees, D.C., Kahawara, A.Y., Rougerie, R., Kawakita, A., Bouteleux, O., De Prins, J., and Lopez-

619 Vaamonde, C. 2013. DNA barcoding reveals a largely unknown fauna of Gracillariidae

620 leaf-mining moths in the Neotropics. Mol. Ecol. Resour. 14(2): 286–296.

621 Lomolino, M.V. 2004. Conservation biogeography. In Frontiers of biogeography: new directions

622 in the geography of nature. Edited by M.V. Lomolino and L.R. Heaney. Sinauer

623 Associates, Sunderland, Massachusetts. pp. 293–296.

624 Maes, J.-M., and Pauly, A. 1998. Lucanidae (Coleoptera) du Gabon. Bull. Ann. Soc. R. Belge

625 Entomolog. 134: 279-285.

626 May, R.M. 2011. Why worry about how many species and their loss? PLoS Biol. 9(8): e1001130.

627 Miller, S.E., and Rogo, L. 2002. Challenges and opportunities in understanding and utilisation of

628 African insect diversity. Cimbebesia 17: 197-218.

629 Mittermeier, R.A., Myers, N., Thomsen, J.B., Da Fonseca, G.A.B., and Olivieri, S. 1998.

630 Biodiversity hotspots and major tropical wilderness areas: approaches to setting

631 conservation priorities. Conserv. Biol. 12: 516-520.

632 Myers, N. 1984. The primary source: tropical forests and our future. W.W. Norton, New York.

633 Myers, N. 1990. The biodiversity challenge: expanded hot-spots analysis. Environmentalist 10:

634 243-256.

635 Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., and Kent, J. 2000.

636 Biodiversity hotspots for conservation priorities. Nature 403: 853-858.

Page 29 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 31: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

31

637 Nicolas, P. 1977. Contribution à l’étude phytogéographique de la forêt du Gabon. Université de

638 Paris I.

639 Novotný, V., and Basset, Y. 2000. Rare species in communities of tropical insect herbivores:

640 pondering the mystery of singletons. Oikos 89: 564-572.

641 Novotny, V., Basset, Y., Miller, S.E., Drozd, P., and Cizek, L. 2002a. Host specialization of leaf-

642 chewing insects in a New Guinea rainforest. J. Anim. Ecol. 71: 400-412.

643 Novotny, V., Basset, Y., Miller, S.E., Weiblen, G.D., Bremer, B., Cizek, L., and Drozd, P. 2002b.

644 Low host specificity of herbivorous insects in a tropical forest. Nature 416(6883): 841-

645 844. doi: 10.1038/416841a.

646 Novotny, V., Miller, S.E., Hulcr, J., Drew, R.A.I., Basset, Y., Janda, M., Setliff, G.P., Darrow,

647 K., Stewart, A.J.A., Auga, J., Isua, B., Molem, K., Manumbor, M., Tamtiai, E., Mogia,

648 M., and Weiblen, G.D. 2007. Low beta diversity of herbivorous insects in tropical forests.

649 Nature 448: 692-697.

650 Ødegaard, F. 2006. Host specificity, alpha- and beta-diversity of phytophagous beetles in two

651 tropical forests in Panama. Biodivers. Conserv. 15: 83-105.

652 Oksanen, J., Blanchet, F.G., Kindt, R., Oksanen, M.J., and Suggests, M. 2013. Package “vegan.”

653 Community ecology package. R package version 2.0-10.

654 Pauly, A. 1998. Hymenoptera Apoidea from Gabon. Ann Mus. R. Afr. Cent. Sci. Zool. 282: 1–

655 121.

656 Qian, H., Ricklefs, R.E., and White, P.S. 2005. Beta diversity of angiosperms in temperate floras

657 of eastern Asia and eastern North America. Ecol. Lett. 8: 15-22.

Page 30 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 32: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

32

658 R Development Core Team. 2004. R: a language and environment for statistical computing. R

659 Foundation for Statistical Computing, Vienna, Austria.

660 Ratnasingham, S., and Hebert, P.D.N. 2007. BOLD: The Barcode of Life Data System

661 (http://www.barcodinglife.org). Mol. Ecol. Notes 7: 355-364.

662 Ratnasingham, S., and Hebert, P.D.N. 2013. A DNA-based registry for all animal species: the

663 barcode index number (BIN) system. PLoS ONE 8: e66213.

664 Ricketts, T.H., Daily, G.C., Ehrlich, P.R., and Fay, J.P. 2001. Countryside biogeography of

665 moths in a fragmented landscape: biodiversity in native and agricultural habitats. Conserv.

666 Biol. 15: 378-388.

667 Rougerie, R., Kitching, I.J., Haxaire, J., Miller, S.E., Hausmann, A., and Hebert, P.D.N. 2014.

668 Australian Sphingidae – DNA Barcodes challenge current species boundaries and

669 distributions. PLoS ONE 9(7): e101108.

670 Roy, R. 1973. Premier inventaire des mantes du Gabon. Biol. Gab. 8: 235–290.

671 Stork, N.E., and Habel, J.C. 2013. Can biodiversity hotspots protect more than tropical forest

672 plants and vertebrates? J. Biogeogr. 41: 421-428.

673 Ulrich, W., Almeida-Neto, M., and Gotelli, N.J. 2009. A consumer’s guide to nestedness

674 analysis. Oikos 118: 3-17.

675 Vande Weghe, J.P. 2010. Papillons du Gabon. Wildlife Conservation Society, Libreville.

676 White, F. 1983. The vegetation of Africa: a descriptive memoir to accompany the

677 Unesco/AETFAT/UNSO vegetation map of Africa. Unesco/AETFAT/UNSO. pp. 356.

Page 31 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 33: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

33

678 White, L.J.T., and Abernethy, K.A. 1997. A guide to the vegetation of the Lopé Reserve, Gabon.

679 Wildlife Conservation Society, New York.

680 Whittaker, R.J., Araújo, M.B., Jepson, P., Ladle, R.J., Watson, J.E.M., and Willis, K.J. 2005a.

681 Conservation biogeography: assessment and prospect. Divers. Distrib. 11: 3–23.

682 Whittaker, R.J., Araujo, M.B., Paul, J., Ladle, R.J., Watson, J.E.M., and Willis, K.J. 2005.

683 Conservation Biogeography: assessment and prospect. Divers. Distrib. 11(1): 3-23. doi:

684 10.1111/j.1366-9516.2005.00143.x.

685 Wilson, E.O. 1988. Biodiversity. National Academies of Sciences, Washington DC.

686 Wilson, E.O. 2002. The future of life. Vintage Books, New York.

687 Wilson, E.O. 2003. The encyclopedia of life. Trends Ecol. Evol. 18: 77-80.

688 Wright, D.H., and Reeves, J.H. 1992. On the meaning and measurement of nestedness of species

689 assemblages. Oecologia 92: 416-428.

690 Zenker, M.M., Rougerie, R., Teston, J.A., Laguerre, M., Pie, M.R., and Freitas, A.V.L. 2016.

691 Fast Census of Moth Diversity in the Neotropics: A Comparison of Field-Assigned

692 Morphospecies and DNA Barcoding in Tiger Moths. PloS ONE 11(2): e0148423. doi:

693 10.1371/journal.pone.0148423.

694 Zhang, Z.-Q. 2011. Animal biodiversity: an introduction of higher-level classification and survey

695 of taxonomic richness. Zootaxa 3148 : 7-12.

Page 32 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 34: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

34

696 Figure Captions

697 Figure 1. Location of the study sites; Dark grey areas on the upper right map represent National

698 Parks in Gabon. The Ipassa site is located near Ivindo.

699 Figure 2. Photos of the two study sites and sampling methods: A) View of the savannah-forest

700 patchwork in Lopé National Park, showing the position of the light trap (Lopé 2, November

701 2009); B) Rainforests at Ipassa research station at the edge of the Ivindo river (November 2009);

702 C) Light trapping at Lopé 2 in March 2011; D) Tissue sampling for DNA barcoding during the

703 ECOTROP field class in March 2011.

704 Figure 3. Diversity and composition of the macro-moth sample at the two locations (Lopé 2 and

705 Ipassa): the circular phylogram represents the results of a Neighbor Joining analysis in BOLD of

706 3,494 COI sequences clustering into 1,385 BINs; barcodes obtained for specimens from Ipassa

707 are in green while those from Lopé 2 are in grey. The pie chart represents the relative

708 contribution (ordered) of the different families and sub-families (for Erebidae) of moths collected

709 in the two sites; numbers within brackets indicate the number of BINs and number of specimens

710 sampled, respectively.

711 Figure 4. Comparisons between the numbers of BINs observed in this study for 28 families and

712 sub-families of macro-moths (dashed bars) and the numbers reported from Gabon in the

713 AfroMoths online database (grey bars; De Prins and De Prins 2017).

714 Figure 5. Individual-, sample-, and coverage-based rarefaction and extrapolation curves for the

715 two study sites and for two seasons at Lopé 2 (DS: dry season, WS: wet season): A) Size-based

716 rarefaction/extrapolation curves; B) Sample coverage plotted against the number of individuals;

717 C) Coverage-based rarefaction/extrapolation (rarefaction curves are represented in solid lines,

Page 33 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 35: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

35

718 extrapolation curves in dashed lines; shaded areas represent a 95% confidence intervals based on

719 a bootstrap method with 200 replications).

Page 34 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 36: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

36

720 Tables

721 Table 1. Number of individuals and number of BINs collected for different families/sub-families

722 of macro-moths at the two study sites and for two seasons at Lopé 2, and number of species listed

723 in the AfroMoths online database (grey bars; De Prins and De Prins 2017) for the same

724 families/sub-families (WS= wet season; DS= dry season).

Ipassa (WS) Lopé (WS) Lopé (DS) Lopé Total

# ind # BINs # ind # BINs # ind # BINs # ind # BINs # ind # BINs

Bombycidae 2 2 2 2

Brahmaeidae 2 1 2 1 2 1 4 1

Cossidae 6 5 5 4 8 4 13 8 19 11

Crambidae 17 14 73 31 19 16 92 43 109 52

Drepanidae 6 4 1 1 1 1 7 5

Erebidae (Arctiinae) 198 71 131 41 75 37 206 65 404 113

Erebidae (Erebinae) 75 38 71 24 47 34 118 46 193 72

Erebidae

(Lymantriinae) 220 103 47 32 79 54 126 73 346 164

Other Erebidae 61 33 102 18 22 18 124 32 185 60

Eriocottidae 2 2 2 2 2 2

Eupterotidae 13 10 22 3 5 3 27 5 40 15

Euteliidae 1 1 4 2 5 2 5 2

Geometridae 293 153 130 63 117 62 247 107 540 220

Lasiocampidae 88 55 80 42 74 36 154 61 242 101

Lecithoceridae 1 1 2 1 3 2 3 2

Limacodidae 31 15 20 14 8 7 28 18 59 30

Noctuidae 199 125 103 66 95 69 198 124 397 224

Nolidae 2 2 2 2 2 2

Notodontidae 155 77 72 31 45 27 117 49 272 104

Psychidae 1 1 2 2 6 4 8 4 9 5

Page 35 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 37: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

37

Pyralidae 65 29 82 37 25 18 107 49 172 70

Saturniidae 62 32 79 31 36 9 115 33 177 43

Sphingidae 98 44 58 28 111 40 169 47 267 66

Thyrididae 4 4 18 1 18 1 22 5

Tineidae 2 1 2 1 2 1

Tortricidae 5 4 1 1 1 1 6 5

Uraniidae 1 1 1 1 1 1

Zygaenidae 1 1 0 1 1

Not identified 2 2 4 4 4 4 6 6

Total 1604 823 1110 481 780 443 1890 782 3494 1385

725

Page 36 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 38: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

38

727 Table 2. Summary of macro-moth data sets collected at the two study sites and for two seasons in

728 Lopé 2 (numbers in parentheses represent the 95% confidence intervals based on a bootstrap

729 method with 200 replications).

Ipassa (WS) Lopé (WS) Lopé (DS) Lopé

Number of indiduals collected 1604 1110 780 1890

Observed richness 823 481 443 782

Proportion of singletons (%) 63.85 63.61 64.93 59.31

Sampling coverage (%) 67.32 (± 2.95) 72.44 (± 2.27) 63.14 (± 3.02) 75.54 (± 1.77)

Richness at constant sampling coverage of 50% 469.2 (± 13.8) 197.6 (± 7.0) 313.7 (± 12.9) 330.4 (± 7.6)

Richness at constant sampling intensity of 1000 indiv. 599.1 (± 8.9) 449.9 (± 4.4) 511.4 (± 25.6) 521.5 (± 9.5)

Chao1 estimated richness 1837.0 (± 130.6) 1011.6 (± 107.9) 869.5 (± 70.9) 1513.4 (± 96.5)

ACE estimated richness 1849.4 (± 27.6) 1120.6 (± 20.7) 1054.4 (± 22.9) 1629.5 (± 26.2)

First order jackniffe estimated richness 1269.2 (± 286.2) 728.5 (± 169.7) 663.7 (± 166.9) 1211.4 (± 197.0)

Fisher alpha 678.3 (± 36.5) 318.2 (± 21.0) 419.3 (± 32.3) 491.5 (± 25.0)

730

Page 37 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 39: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

39

732 Table 3. Comparison of macro-moth species assemblages between the two study sites and for

733 two seasons in Lopé 2 showing the Sørensen index of dissimilitude (with singletons removed or

734 not from the dataset) and its partitioning into geographical/seasonal turnover and nestedness.

Sørensen Turnover (%) Nestedness (%)

Ipassa vs Lopé 2 0.75 70.97 29.03

Same without singletons 0.40 67.57 32.43

Wet vs dry season (Lopé 2) 0.69 95.39 4.61

Same without singletons 0.23 54.76 45.24

735

Page 38 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 40: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

40

736 Captions for Supplementary materials

737 gen-2018-0063.R1Suppla. Neighbour Joining (NJ) tree based on K2P distances for the

738 Sphingidae and Saturniidae moths collected in Ipassa (terminals labelled as ‘makokou’ in the

739 tree) and Lopé 2 (labelled as ‘La Lope’). The tree was produced with records in BOLD dataset

740 DS-LOPELEP1 using BOLD-alignment and default settings.

741 gen-2018-0063.R1Supplb. Images of specimens in NJ tree of gen-2018-0063.R1Suppla;

742 numbers of images correspond to numbers of terminals in gen-2018-0063.R1Suppla tree.

743 gen-2018-0063.R1Supplc. Rank-abundance diagrams for Ipassa (left panels) and Lopé 2 (right

744 panels): (A) and (C) represent Fisher's logseries functions fitted on abundance data; (B) and (D)

745 represent Preston's lognormal (red lines) and truncated lognormal (blue lines) models.

Page 39 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 41: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

Page 40 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 42: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

A B

C D

Page 41 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 43: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft Nudaurelia dione|Lope11−0980Nudaurelia dione|TDGABb−298Nudaurelia dione|TDGABb−297Nudaurelia dione|TDGABb−296Nudaurelia dione|TDGABb−295Nudaurelia dione|TDGABb−294Nudaurelia dione|TDGABb−293Nudaurelia anthinoides|TDGABb−270Nudaurelia amathusia|TDGABb−269Nudaurelia amathusia|TDGABb−267Nudaurelia amathusia|TDGABb−268Bunaea alcinoe|Lope11−0867Bunaea alcinoe|TDGABb−292Bunaea alcinoe|TDGABb−291Bunaea alcinoe|Lope11−0678Nudaurelia bouvieri|TDGABb−273Nudaurelia bouvieri|TDGABb−272Nudaurelia bouvieri|TDGABb−271Imbrasia epimethea|Lope11−0679Imbrasia epimethea|TDGABb−256Imbrasia epimethea|TDGABb−258Imbrasia epimethea|TDGABb−260Imbrasia epimethea|TDGABb−259Imbrasia epimethea|TDGABb−299Imbrasia longicaudata|TDGABb−387Imbrasia ertli|TDGABb−257Imbrasia ertli|TDGABb−255Imbrasia ertli|TDGABb−254Nudaurelia eblis|TDGABb−283Nudaurelia eblis|TDGABb−282Nudaurelia eblis|TDGABb−281Nudaurelia eblis|TDGABb−280Nudaurelia eblis|TDGABb−279Nudaurelia jamesoni|TDGABb−300Lobobunaea goodii|Lope11−0879Lobobunaea goodii|Lope11−0680Lobobunaea erythrotes|TDGABb−303Lobobunaea erythrotes|TDGABb−302Lobobunaea erythrotes|TDGABb−306Lobobunaea erythrotes|TDGABb−305Lobobunaea erythrotes|TDGABb−304Lobobunaea acuta|TDGABb−307Lobobunaea phaedusa|Lope11−0428Lobobunaea phaedusa|TDGABb−310Lobobunaea phaedusa|TDGABb−309Lobobunaea phaedusa|TDGABb−308Lobobunaea phaedusa|TDGABb−311Lobobunaea acetes|TDGABb−290Lobobunaea acetes|TDGABb−289Lobobunaea acetes|TDGABb−288Athletes albicans|TDGABb−301Athletes albicans|TDGABb−0183Athletes albicans|TDGABb−0181Athletes albicans|TDGABb−0180Athletes albicans|TDGABb−0182Pseudobunaea cleopatra|TDGABb−287Pseudobunaea tyrrhena|TDGABb−285Pseudobunaea alinda|TDGABb−286Pseudantheraea discrepans|TDGABb−0189

Pseudantheraea discrepans|TDGABb−0185

Pseudantheraea discrepans|TDGABb−0188

Pseudantheraea discrepans|TDGABb−0184

Pseudantheraea discrepans|TDGABb−0186

Pseudantheraea discrepans|TDGABb−0187

Pselaphelia gemmifera|TDGABb−317Dasychira|Lope11−0133Aurivillius triramis|TDGABb−278Aurivillius triramis|TDGABb−277Aurivillius aratus|TDGABb−276Aurivillius aratus|TDGABb−275Eudaemonia argiphontes|TDGABb−398

Eudaemonia argiphontes|TDGABb−397

Eudaemonia argiphontes|TDGABb−396

Eudaemonia argiphontes|TDGABb−389

Eudaemonia argiphontes|TDGABb−395

Eudaemonia argus|TDGABb−394

Eudaemonia argus|TDGABb−393

Eudaemonia argus|TDGABb−392

Eudaemonia argus|TDGABb−391

Eudaemonia argus|TDGABb−390

Eudaemonia troglophylla|TDGABb−388

Noctuidae|TDGAB−2073Geometridae|Lope11−0489Geometridae|Lope11−0321Geometridae|TDGAB−1466Geometridae|TDGAB−0210Geometridae|TDGAB−2267Geometridae|TDGAB−0658Geometridae|TDGAB−2185Timana|TDGAB−0833Timana|TDGAB−0161Arctiinae|Lope11−0315Epanaphe|TDGAB−2415Epanaphe|TDGAB−2296Epanaphe|TDGAB−2119Epanaphe|TDGAB−1236Epanaphe|TDGAB−1996Epanaphe|TDGAB−1986Epanaphe|TDGAB−0054Epanaphe|TDGAB−1795Epanaphe|TDGAB−0714Epanaphe|TDGAB−1111Epanaphe|TDGAB−1926

Epanaphe|TDGAB−1823

Epanaphe|TDGAB−1820

Epanaphe carteri|TDGAB−1915

Epanaphe carteri|TDGAB−1139

Epanaphe carteri|TDGAB−0472

Epanaphe carteri|TDGAB−1657

Epanaphe carteri|TDGAB−1585

Lasiocampidae|Lope11−0152

Lasiocampidae|TDGAB−1771

Lasiocampidae|TDGAB−1662

Lasiocampidae|TDGAB−1659

Lasiocampidae|TDGAB−1206

Lasiocampidae|TDGAB−0105

Lasiocampidae|TDGAB−1179

Notodontidae|TDGAB−1023

Notodontidae|Lope11−0785

Noctuidae|TDGAB−1873

Noctuidae|TDGAB−0580

Noctuidae|TDGAB−1675

Noctuidae|TDGAB−0262

Jana gracilis|TDGABb−328

Noctuidae|TDGAB−0411

Lymantriinae|Lope11−0994

Lymantriinae|TDGAB−0858

Griveaudyria cangia|Lope11−0719

Griveaudyria cangia|Lope11−0630

Griveaudyria cangia|Lope11−0621

Griveaudyria cangia|Lope11−0620

Griveaudyria cangia|Lope11−0105

Griveaudyria cangia|TDGAB−1883

Griveaudyria cangia|TDGAB−1759

Griveaudyria cangia|TDGAB−1393

Griveaudyria cangia|TDGAB−1392

Griveaudyria cangia|TDGAB−1382

Griveaudyria cangia|TDGAB−0881

Griveaudyria cangia|TDGAB−0539

Griveaudyria cangia|TDGAB−0513

Griveaudyria cangia|TDGAB−0355

Griveaudyria cangia|TDGAB−0936

Griveaudyria|TDGAB−2158

Griveaudyria|TDGAB−1290

Griveaudyria|TDGAB−1084

Griveaudyria|TDGAB−0248

Griveaudyria|TDGAB−2343

Griveaudyria|TDGAB−2330

Griveaudyria|TDGAB−2118

Griveaudyria|TDGAB−1294

Griveaudyria|TDGAB−0341

Griveaudyria|TDGAB−0451

Griveaudyria|TDGAB−0813

Griveaudyria|TDGAB−0359

Griveaudyria ila|Lope11−0627

Griveaudyria ila|Lope11−0160

Griveaudyria ila|TDGAB−1169

Griveaudyria ila|TDGAB−0358

Griveaudyria|TDGAB−1993

Griveaudyria|TDGAB−0525

Griveaudyria|TDGAB−1701

Griveaudyria|TDGAB−1445

Griveaudyria|TDGAB−0356

Lymantriinae|TDGAB−2161

Lymantriinae|TDGAB−1015

Lymantriinae|TDGAB−2082

Lymantriinae|TDGAB−2140

Lymantriinae|TDGAB−1187

Lymantriinae|TDGAB−0951

Lymantriinae|TDGAB−1238

Lymantriinae|TDGAB−1909

Lymantriinae|TDGAB−1591

Lymantriinae|TDGAB−1541

Lymantriinae|TDGAB−0842

Lymantriinae|TDGAB−0818

Lymantriinae|TDGAB−0874

Lymantriinae|TDGAB−2083

Lymantriinae|TDGAB−0527

Lymantriinae|TDGAB−0508

Lymantriinae|TDGAB−0494

Lymantriinae|TDGAB−1269

Lymantriinae|TDGAB−1256

Lymantriinae|TDGAB−0450

Lymantriinae|Lope11−0331

Lymantriinae|Lope11−0046

Lymantriinae|TDGAB−0847

Lymantriinae|TDGABb−366

Lymantriinae|TDGAB−0371

Lymantriinae|TDGABb−365

Lymantriinae|TDGAB−1195

Lymantriinae|TDGAB−1182

Lymantriinae|TDGAB−0886

Lymantriinae|TDGAB−0348

Lymantriinae|TDGAB−0372

Dasychira UD001|Lope11−0928

Dasychira UD001|Lope11−0558

Dasychira|TDGAB−0530

Dasychira|TDGAB−0490

Dasychira|Lope11−0910

Dasychira|TDGAB−1527

Dasychira|TDGAB−0152

Dasychira|Lope11−0180

Euproctis|Lope11−0154

Euproctis|TDGAB−1222

Euproctis UD001|Lope11−0124

Euproctis|TDGAB−1234

Euproctis|TDGAB−1004

Euproctis|TDGAB−0362

Euproctis UD008|Lope11−0821

Euproctis|TDGAB−1970

Euproctis|TDGAB−0966

Euproctis UD002|Lope11−0171

Euproctis|TDGAB−1868

Euproctis|TDGAB−1793

Euproctis UD003|Lope11−0792

Euproctis UD006|Lope11−0148

Euproctis|Lope11−0369

Euproctis|TDGAB−1631

Euproctis|TDGAB−1949

Euproctis|TDGAB−1840

Euproctis|TDGAB−0801

Euproctis|TDGAB−0759

Neomardara africana|Lope11−0847

Neomardara africana|Lope11−0098

Neomardara africana|TDGAB−1436

Neomardara africana|Lope11−0782

Neomardara africana|Lope11−0169

Neomardara africana|Lope11−0166

Neomardara africana|TDGAB−1875

Lymantriinae|TDGAB−1910

Lymantriinae|TDGAB−0826

Lymantriinae|TDGAB−0946

Lymantriinae|TDGABb−340

Lymantriinae|TDGAB−0489

Lymantriinae|TDGAB−0400

Dasychira|Lope11−0636

Dasychira delicata|Lope11−0120

Lymantriinae|TDGAB−2042

Lymantriinae|TDGAB−0463

Lymantriinae|TDGAB−2228

Lymantriinae|TDGAB−1889

Lymantriinae|TDGAB−1335

Lymantriinae|TDGAB−1008

Lymantriinae|TDGAB−2260

Lymantriinae|TDGAB−0485

Rahona macrodonta|Lope11−0442

Rahona macrodonta|TDGAB−0379

Rahona macrodonta|TDGAB−0377

Dasychira antica|TDGAB−2293

Lymantriinae|TDGAB−1637

Lymantriinae|TDGAB−1031

Lymantriinae|TDGAB−0173

Lymantriinae|TDGAB−1299

Lymantriinae|TDGAB−0453

Lymantriinae|TDGAB−1155

Notodontidae|Lope11−0946

Notodontidae|TDGAB−0082

Notodontidae|TDGAB−1499

Notodontidae|TDGAB−1664

Notodontidae|TDGAB−1584

Notodontidae|Lope11−0839

Notodontidae|Lope11−0825

Notodontidae|Lope11−0312

Notodontidae|Lope11−0183

Notodontidae|Lope11−0099

Notodontidae|TDGAB−1562

Notodontidae|TDGAB−0132

Notodontidae|TDGAB−1468

Notodontidae|Lope11−0094

Notodontidae|TDGAB−1522

Notodontidae|TDGAB−1521

Notodontidae|TDGAB−1434

Notodontidae|TDGAB−1513

Notodontidae|TDGAB−1488

Notodontidae|TDGAB−1489

Notodontidae|TDGAB−1511

Notodontidae|TDGAB−1520

Notodontidae|TDGAB−1579

Notodontidae|TDGAB−1861

Notodontidae|TDGAB−1881

Notodontidae|Lope11−0085

Notodontidae|Lope11−0717

Notodontidae|Lope11−0559

Notodontidae|Lope11−0556

Notodontidae|Lope11−0329

Notodontidae|Lope11−0303

Notodontidae|Lope11−0158

Notodontidae|Lope11−0103

Notodontidae|TDGAB−1923

Notodontidae|TDGAB−1869

Notodontidae|TDGAB−1857

Notodontidae|TDGAB−1856

Notodontidae|TDGAB−1572

Notodontidae|TDGAB−1540

Notodontidae|TDGAB−0117

Notodontidae|TDGAB−0129

Notodontidae|TDGAB−0861

Notodontidae|TDGAB−1034

Notodontidae|TDGAB−1451

Notodontidae|TDGAB−1519

Notodontidae|Lope11−0357

Notodontidae|TDGAB−1831

Notodontidae|Lope11−0101

Notodontidae|TDGAB−1590

Notodontidae|Lope11−0363

Notodontidae|TDGAB−1262

Notodontidae|TDGAB−2271

Notodontidae|TDGAB−1038

Notodontidae|TDGAB−1214

Lymantriinae|Lope11−0845

Lymantriinae|Lope11−0147

Lymantriinae|TDGAB−0154

Lymantriinae|Lope11−0721

Lymantriinae|TDGAB−1953

Lymantriinae|TDGAB−1605

Lymantriinae|TDGAB−2067

Lymantriinae|TDGAB−1082

Lymantriinae|TDGAB−1313

Lymantriinae|TDGAB−0938

Lymantriinae|TDGAB−0541

Laelia UD001|TDGAB−2176

Lymantriinae|TDGAB−1163

Lymantriinae|TDGAB−0863

Lymantriinae|TDGAB−0958

Lymantriinae|TDGAB−1177

Lymantriinae|TDGAB−0502

Lymantriinae|TDGAB−1914

Lymantriinae|Lope11−0642

Lymantriinae|TDGAB−0614

Lymantriinae|TDGAB−1053

Lymantriinae|TDGAB−0947

Lymantriinae|Lope11−0481

Lymantriinae|TDGAB−0238

Lymantriinae|TDGAB−0375

Lymantriinae|TDGAB−0875

Dasychira|Lope11−0143

Dasychira|Lope11−0142

Lymantriinae|TDGAB−2094

Lymantriinae|TDGAB−2013

Lymantriinae|TDGAB−0272

Lymantriinae|TDGAB−1688

Lymantriinae|Lope11−0631

Lymantriinae|TDGAB−2135

Lymantriinae|TDGAB−1098

Lymantriinae|TDGAB−1002

Lymantriinae|TDGAB−1452

Notodontidae|Lope11−0590

Notodontidae|TDGAB−0768

Notodontidae|TDGAB−0576

Notodontidae|TDGAB−0283

Lymantriinae|TDGAB−1130

Lymantriinae|TDGAB−0465

Lymantriinae|TDGAB−0330

Otroeda caffra

|Lope11−0869

Otroeda caffra

|Lope11−0715

Otroeda|TDGABb−321

Notodontidae|TDGAB−1075

Notodontidae|TDGAB−1070

Notodontidae|TDGAB−0920

Anticarsia irrorata|TDGAB−1253

Anticarsia irrorata|TDGAB−1151

Naroma signifera|Lope11−0644

Naroma signifera|Lope11−0346

Naroma signifera|TDGAB−1684

Naroma signifera|TDGAB−0065

Naroma signifera|TDGAB−0998

Naroma|TDGAB−0595

Noctuidae|TDGAB−1330

Noctuidae|TDGAB−1158

Noctuidae|TDGAB−0668

Noctuidae|TDGAB−0110

Noctuidae|TDGAB−1927

Noctuidae|TDGAB−1563

Noctuidae|TDGAB−0066

Soloe|Lope11−0817

Soloe|Lope11−0318

Soloe|Lope11−0081

Soloe|TDGAB−1787

Soloe|TDGAB−0685

Soloe|TDGAB−0624

Soloe|TDGAB−0669

Noctuidae|TDGAB−1961

Dasychira goodii|T

DGAB−1825

Lymantriinae|TDGAB−1012

Arctiinae|Lope11−0814

Lymantriinae|TDGABb−318

Pyralidae|Lope11−0639

Lymantriinae|TDGAB−1289

Lymantriinae|TDGAB−0919

Notodontidae|Lope11−0638

Notodontidae|TDGAB−1110

Notodontidae|TDGAB−1083

Notodontidae|TDGAB−0943

Notodontidae|TDGAB−1088

Notodontidae|TDGAB−0996

Notodontidae|TDGAB−0921

Notodontidae|TDGAB−1107

Notodontidae|TDGAB−0906

Arctiinae|TDGAB−1945

Arctiinae|TDGAB−1935

Arctiinae|TDGAB−1805

Arctiinae|TDGAB−0151

Arctiinae|TDGAB−0007

Arctiin

ae|TDGAB−19

41

Arctiin

ae|TDGAB−18

46

Arctiin

ae|TDGAB−06

16

Arctiin

ae|TDGAB−01

49

Arctiin

ae|TDGAB−17

85

Arctiin

ae|TDGAB−00

05

Arctiin

ae|TDGAB−19

44

Arctiin

ae|TDGAB−19

43

Arctiin

ae|TDGAB−19

42

Arctiin

ae|TDGAB−19

40

Arctiin

ae|TDGAB−17

07

Arctiin

ae|TDGAB−16

96

Arctiin

ae|TDGAB−14

85

Arctiin

ae|TDGAB−13

71

Arctiin

ae|TDGAB−01

47

Arctiin

ae|TDGAB−01

31

Arctiin

ae|TDGAB−08

48

Arctiin

ae|TDGAB−19

39

Arctiin

ae|TDGAB−18

48

Arctiin

ae|TDGAB−14

12

Arctiin

ae|TDGAB−07

95

Arctiin

ae|TDGAB−18

26

Arctiin

ae|TDGAB−01

53

Arctiin

ae|TDGAB−00

04

Arctiin

ae|TDGAB−19

31

Arctiin

ae|TDGAB−07

47

Arctiin

ae|TDGAB−17

83

Arctiin

ae|Lope1

1−09

91

Arctiin

ae|Lope1

1−08

07

Arctiin

ae|TDGAB−1

532

Arctiin

ae|TDGAB−1

446

Arctiin

ae|Lope1

1−05

37

Arctiin

ae|Lope1

1−05

33

Arctiin

ae|Lope1

1−05

32

Arctiin

ae|Lope1

1−02

93

Arctiin

ae|Lope1

1−02

88

Arctiin

ae|Lope1

1−00

64

Arctiin

ae|TDGAB−2

034

Arctiin

ae|TDGAB−1

188

Arctiin

ae|Lope1

1−00

05

Arctiin

ae|TDGAB−1

742

Arctiin

ae|Lope1

1−05

40

Arctiin

ae|Lope1

1−03

54

Arctiin

ae|TDGAB−1

252

Arctiin

ae|Lope1

1−05

23

Automolis|TDGAB−0

523

Balacra

|Lope11−

0805

Balacra

|Lope11−

0804

Balacra

|TDGAB−160

7

Balacra

|Lope11−

0353

Balacra

|Lope11−

0150

Balacra

pulchra|

Lope11−

0800

Balacra

pulchra|

TDGAB−143

3

Balacra

pulch

ra|TD

GAB−080

0

Balacra

pulch

ra|Lo

pe11

−052

7

Balacra

pulch

ra|Lo

pe11

−052

5

Balacra

pulch

ra|Lo

pe11

−003

5

Balacra

pulch

ra|Lo

pe11

−003

4

Balacra

pulch

ra|Lo

pe11

−003

3

Balacra

pulch

ra|Lo

pe11

−003

0

Balacra

pulch

ra|Lo

pe11

−002

9

Balacra

pulch

ra|Lo

pe11

−000

2

Balacra

pulch

ra|TD

GAB−201

6

Balacra

pulch

ra|TD

GAB−186

5

Balacra

pulch

ra|TD

GAB−185

2

Balacra

pulch

ra|TD

GAB−168

0

Balacra

|TDGAB−2

021

Balacra

|Lope

11−0

802

Balacra

|Lope

11−0

040

Balacra

|Lope

11−0

039

Balacra

|Lope

11−0

036

Balacra

|TDGAB−2

346

Balacra

|TDGAB−2

089

Balacra

|TDGAB−1

254

Balacra

|TDGAB−0

399

Balacra

|TDGAB−2

351

Balacra

|TDGAB−2

197

Balacra

|Lope

11−0

801

Balacra

|Lope

11−0

037

Balacr

a|Lop

e11−

0038

Balacr

a|Lop

e11−

0008

Balacr

a|TDGAB−0

008

Balacr

a|TDGAB−0

002

Arctiin

ae|Lo

pe11

−080

6

Arctiin

ae|Lo

pe11

−053

5

Arctiin

ae|TD

GAB−061

3

Rhipida

rctia|

TDGAB−0

880

Arctiin

ae|Lo

pe11

−053

8

Arctiin

ae|Lo

pe11

−031

0

Arctiin

ae|Lo

pe11

−004

1

Arctiin

ae|TD

GAB−166

7

Arctiin

ae|TD

GAB−224

9

Arctiin

ae|TD

GAB−206

1

Arctiin

ae|TD

GAB−055

9

Arctiin

ae|TD

GAB−201

4

Para

melisa

|TDGAB−0

225

Arctiin

ae|Lo

pe11

−054

2

Arctiin

ae|TD

GAB−171

6

Arctiin

ae|TD

GAB−169

7

Arctiin

ae|TD

GAB−160

6

Arctiin

ae|TD

GAB−073

3

Arctiin

ae|TD

GAB−063

6

Arctiin

ae|TD

GAB−073

4

Arctiin

ae|TD

GAB−076

3

Arctiin

ae|TD

GAB−081

7

Arctiin

ae|Lo

pe11

−031

9

Arctiin

ae|TD

GAB−075

2

Arctiin

ae|TD

GAB−018

0

Arctiin

ae|Lo

pe11

−004

2

Arctiin

ae|TD

GAB−234

7

Arctiin

ae|TD

GAB−215

3

Arctiin

ae|TD

GAB−212

5

Arctiin

ae|TD

GAB−177

7

Arctiin

ae|TD

GAB−127

9

Arctiin

ae|TD

GAB−107

9

Arctiin

ae|TD

GAB−107

8

Arctiin

ae|TD

GAB−234

5

Arctiin

ae|TD

GAB−214

1

Arctiin

ae|TD

GAB−233

3

Arctiin

ae|T

DGAB−029

7

Arctiin

ae|L

ope1

1−02

86

Arctii

nae|T

DGAB−227

2

Arctii

nae|T

DGAB−225

6

Arctii

nae|T

DGAB−203

7

Arctii

nae|T

DGAB−092

4

Arctii

nae|T

DGAB−206

3

Anom

is|Lo

pe11

−055

2

Anom

is|TD

GAB−025

7

Anom

is|Lo

pe11

−010

2

Anom

is fla

va|T

DGAB

−222

1

Anom

is|TD

GAB−1

836

Noct

uida

e|Lop

e11−

0352

Noct

uida

e|TDG

AB−1

366

Noct

uida

e|TDG

AB−0

445

Noct

uida

e|TDG

AB−2

087

Noct

uida

e|TDG

AB−0

697

Noct

uida

e|TDG

AB−0

687

Noct

uida

e|TDG

AB−0

275

Pacid

ara v

enus

tissim

a|Lop

e11−

0060

Phyt

omet

ra|T

DGAB

−011

3

Bom

byco

psis|

Lope

11−0

937

Eupr

octis

|Lop

e11−

0629

Eupr

octis

|Lop

e11−

0628

Eupr

octis

|Lop

e11−

0140

Eupr

octis

|TDG

AB−0

427

Eupr

octis

|TDG

AB−1

087

Arct

iinae

|TDG

ABb−

370

Arct

iinae

|TDG

ABb−

361

Arct

iinae

|TDG

ABb−

360

Arct

iinae

|TDG

AB−1

125

Arct

iinae

|TDG

ABb−

359

Arct

iinae

|TDG

ABb−

369

Arct

iinae

|TDG

AB−2

124

Arct

iinae

|TDG

AB−1

864

Noct

uida

e|Lop

e11−

0936

Noct

uida

e|TDG

AB−0

558

Euch

rom

ia|Lo

pe11

−080

8

Euch

rom

ia|TD

GAB−

1209

Euch

rom

ia|TD

GAB−

0612

Euch

rom

ia|TD

GAB−

0398

Euch

rom

ia|TD

GAB−

0335

Euch

rom

ia|TD

GAB−

0537

Euch

rom

ia|TD

GAB−

2353

Euch

rom

ia let

he|T

DGAB

−165

2

Euch

rom

ia let

he|T

DGAB

−120

8

Euch

rom

ia let

he|T

DGAB

−061

1

Euch

rom

ia let

he|T

DGAB

−047

6

Noct

uida

e|Lop

e11−

0649

Arct

iinae

|TDG

AB−1

960

Noct

uida

e|TDG

AB−0

430

Acon

tia tr

ansf

igur

ata|L

ope1

1−06

45

Noct

uida

e|TDG

AB−2

068

Noct

uida

e|TDG

AB−1

339

Noct

uida

e|TDG

AB−1

780

Noct

uida

e|TD

GAB−

1561

Noct

uida

e|TD

GAB−

1183

Noct

uida

e|TD

GAB−

0982

Noct

uida

e|Lo

pe11

−055

4

Noct

uida

e|TD

GAB−

1305

Noct

uida

e|TD

GAB−

1231

Noct

uida

e|TD

GAB−

2417

Noct

uida

e|TD

GAB−

2362

Noct

uida

e|TD

GAB−

1314

Noct

uida

e|TD

GAB−

1653

Noct

uida

e|Lo

pe11

−035

9

Noct

uida

e|TD

GAB−

0444

Noct

uida

e|TD

GAB−

1326

Noct

uida

e|TD

GAB−

1311

Noct

uida

e|TD

GAB−

1334

Noct

uida

e|TD

GAB−

2331

Noct

uida

e|TD

GAB−

0361

Noct

uida

e|TD

GAB−

0468

Noct

uida

e|TD

GAB−

0930

Noct

uida

e|TD

GAB−

1040

Noct

uida

e|TD

GAB−

0645

Noct

uida

e|TD

GAB−

2116

Noct

uida

e|TD

GAB−

1018

Noct

uida

e|TD

GAB−

1178

Noct

uida

e|TD

GAB−

0548

Noct

uida

e|TD

GAB−

0156

Noct

uida

e|TD

GAB−

1302

Amer

ila|L

ope1

1−06

77

Amer

ila|L

ope1

1−05

26

Amer

ila|T

DGAB

−073

0

Amer

ila|T

DGAB

−013

7

Amer

ila|T

DGAB

−000

6

Amer

ila|L

ope1

1−06

58

Amer

ila lu

teib

arba

|Lop

e11−

0524

Amer

ila lu

teib

arba

|TDG

AB−1

228

Amer

ila lu

teib

arba

|TDG

AB−0

486

Amer

ila lu

teib

arba

|TDG

AB−0

464

Amer

ila lu

teib

arba

|Lop

e11−

0342

Amer

ila lu

teib

arba

|TDG

AB−0

197

Amer

ila lu

teib

arba

|TDG

AB−0

168

Amer

ila lu

teib

arba

|TDG

AB−0

907

Amer

ila lu

teib

arba

|TDG

AB−0

409

Amer

ila lu

teib

arba

|TDG

AB−1

249

Amer

ila lu

teib

arba

|Lop

e11−

0292

Amer

ila lu

teib

arba

|TDG

AB−0

174

Amer

ila lu

teib

arba

|TDG

AB−0

637

Amer

ila lu

teib

arba

|TDG

AB−0

407

Amer

ila lu

teib

arba

|TDG

AB−0

047

Amer

ila lu

teib

arba

|TDG

AB−2

029

Amer

ila lu

teib

arba

|TDG

AB−0

046

Amer

ila lu

teib

arba

|TDG

AB−0

629

Amer

ila|T

DGAB

−171

5

Amer

ila|T

DGAB

−079

3

Amer

ila|T

DGAB

−002

0

Amer

ila|T

DGAB

−124

0

Amer

ila|T

DGAB

−122

3

Amer

ila|T

DGAB

−071

7

Amer

ila|T

DGAB

−174

0

Ereb

idae

|Lop

e11−

0608

Asot

a sp

ecio

sa|T

DGAB

b−33

7

Asot

a sp

ecio

sa|T

DGAB

−183

2

Asot

a sp

ecio

sa|T

DGAB

−168

2

Asot

a sp

ecio

sa|T

DGAB

−138

6

Asot

a sp

ecio

sa|T

DGAB

−168

1

Ereb

inae

|TDG

AB−2

373

Ereb

inae

|TDG

AB−1

536

Ereb

inae

|TDG

AB−0

160

Ereb

inae

|TDG

AB−1

804

Ereb

inae

|TDG

AB−2

196

Ereb

inae

|TDG

AB−0

521

Ereb

inae

|TDG

AB−2

190

Ereb

inae

|TDG

AB−2

121

Ereb

inae

|TDG

AB−1

057

Spilo

som

a|Lo

pe11

−065

7

Spilo

som

a|Lo

pe11

−029

0

Spilo

som

a|Lo

pe11

−028

9

Spilo

som

a|TD

GAB−

1642

Spilo

som

a|TD

GAB−

0028

Spilo

som

a|TD

GAB−

0027

Spilo

som

a|Lo

pe11

−053

4

Spilo

som

a|Lo

pe11

−017

3

Arct

iinae

|TDG

AB−2

032

Arct

iinae

|TDG

AB−2

025

Arct

iinae

|TDG

AB−0

040

Arct

iinae

|TDG

AB−1

216

Arct

iinae

|TDG

AB−0

975

Arct

iinae

|TDG

AB−0

952

Arct

iinae

|TDG

AB−1

093

Arct

iinae

|TDG

AB−1

080

Spod

opte

ra e

xem

pta|

TDG

AB−1

510

Spod

opte

ra tr

itura

ta|T

DGAB

−133

3

Spod

opte

ra tr

itura

ta|T

DGAB

−109

7

Arct

iinae

|TDG

AB−1

461

Noct

uida

e|Lo

pe11

−099

0

Noct

uida

e|Lo

pe11

−016

4

Noct

uida

e|Lo

pe11

−015

1

Noct

uida

e|Lo

pe11

−084

3

Noct

uida

e|TD

GAB

−184

9

Noct

uida

e|Lo

pe11

−005

3

Noct

uida

e|TD

GAB

−119

8

Noct

uida

e|TD

GAB

−231

7

Noct

uida

e|TD

GAB

−102

5

Noct

uida

e|TD

GAB

−109

6

Noct

uida

e|TD

GAB

−102

9

Noct

uida

e|TD

GAB

−096

5

Noct

uida

e|TD

GAB

−051

0

Noct

uida

e|TD

GAB

−017

6

Noct

uida

e|TD

GAB

−036

9

Noct

uida

e|TD

GAB

−087

2

Noct

uida

e|TD

GAB

−096

4

Noct

uida

e|TD

GAB

−097

9

Noct

uida

e|TD

GAB

−101

3

Noct

uida

e|TD

GAB

−096

3

Noct

uida

e|TD

GAB

−087

1

Noct

uida

e|Lo

pe11

−033

5

Noct

uida

e|Lo

pe11

−032

3

Noct

uida

e|TD

GAB

−239

4

Noct

uida

e|Lo

pe11

−083

6

Noct

uida

e|TD

GAB

−173

3

Noct

uida

e|Lo

pe11

−008

6

Noct

uida

e|TD

GAB

−238

6

Noct

uida

e|TD

GAB

−220

7

Noct

uida

e|Lo

pe11

−085

2

Noct

uida

e|Lo

pe11

−085

1

Xyle

nina

e|Lo

pe11

−065

0

Xyle

nina

e|Lo

pe11

−032

5

Xyle

nina

e|TD

GAB

−071

1

Xyle

nina

e|Lo

pe11

−016

5

Noct

uida

e|TD

GAB

−225

2

Noct

uida

e|TD

GAB

−197

2

Noct

uida

e|TD

GAB

−153

8

Noct

uida

e|TD

GAB

−206

0

Noct

uida

e|TD

GAB

−196

6

Laci

nipo

lia|T

DGAB

−123

3

Laci

nipo

lia|T

DGAB

−069

6

Laci

nipo

lia|T

DGAB

−080

2

Noct

uida

e|Lo

pe11

−017

5

Noct

uida

e|TD

GAB

−023

6

Noct

uida

e|TD

GAB

−132

4

Noct

uida

e|TD

GAB

−098

4

Noct

uida

e|TD

GAB

−105

5

Noct

uida

e|Lo

pe11

−000

1

Noct

uida

e|TD

GAB

−161

8

Callo

pist

ria|T

DGAB

−066

3

Brith

ys c

rini|L

ope1

1−09

45

Brith

ys c

rini|L

ope1

1−05

44

Noct

uida

e|Lo

pe11

−029

6

Noct

uida

e|TD

GAB

−221

0

Noct

uida

e|TD

GAB

−201

7

Noct

uida

e|Lo

pe11

−009

0

Noct

uida

e|TD

GAB

−056

9

Noct

uida

e|TD

GAB

−079

8

Noct

uida

e|TD

GAB

−175

7

Noct

uida

e|Lo

pe11

−017

6

Noct

uida

e|Lo

pe11

−008

9

Noct

uida

e|TD

GAB

−169

5

Noct

uida

e|TD

GAB

−153

7

Noct

uina

e|TD

GAB

−075

6

Noct

uida

e|TD

GAB

−137

6

Noct

uida

e|TD

GAB

−043

1

Earia

s|TD

GAB

−011

1

Noct

uida

e|TD

GAB

−240

0

Noct

uida

e|TD

GAB

−236

0

Noct

uida

e|TD

GAB

−060

1

Noct

uida

e|TD

GAB

−016

4

Noct

uida

e|TD

GAB

−110

3

Noct

uida

e|TD

GAB

−182

9

Noct

uida

e|TD

GAB

−082

5

Noct

uida

e|TD

GAB

−040

1

Noct

uida

e|TD

GAB

−038

8

Met

allo

spor

a|Lo

pe11

−077

4

Geo

met

ridae

|Lop

e11−

0108

Geo

met

ridae

|TDG

AB−2

230

Geo

met

ridae

|TDG

AB−0

782

Geo

met

ridae

|TDG

AB−0

422

Chry

sode

ixis

acu

ta|L

ope1

1−06

10

Chry

sode

ixis

acu

ta|L

ope1

1−00

96

Chry

sode

ixis

acu

ta|T

DGAB

−010

4

Chry

sode

ixis

acu

ta|T

DGAB

−070

2

Chry

sode

ixis

acu

ta|T

DGAB

−145

8

Chry

sode

ixis

acu

ta|T

DGAB

−184

5

Chry

sode

ixis

acu

ta|T

DGAB

−193

4

Thys

anop

lusi

a sp

olia

ta|L

ope1

1−03

24

Noct

uida

e|TD

GAB

−240

5

Noct

uida

e|TD

GAB

−193

6

Noct

uida

e|TD

GAB

−011

4

Noct

uida

e|TD

GAB

−006

0

Noct

uida

e|Lo

pe11

−082

8

Noct

uida

e|Lo

pe11

−015

7

Noct

uida

e|TD

GAB

−124

3

Noct

uida

e|TD

GAB

−051

1

Noct

uida

e|TD

GAB

−134

9

Noct

uida

e|TD

GAB

−084

5

Noct

uida

e|TD

GAB

−050

3

Noct

uida

e|TD

GAB

−215

1

Noct

uida

e|TD

GAB

−210

9

Noct

uida

e|TD

GAB

−028

9

Noct

uida

e|TD

GAB

−096

7

Noct

uida

e|TD

GAB

−204

3

Calp

inae

|TDG

AB−2

080

Calp

inae

|TDG

AB−0

274

Calp

inae

|TDG

AB−0

171

Gra

cilo

des|

TDG

AB−0

393

Noct

uida

e|Lo

pe11

−017

8

Noct

uida

e|Lo

pe11

−008

3

Noct

uida

e|TD

GAB

−200

9

Noct

uida

e|TD

GAB

−035

1

Noct

uida

e|TD

GAB

−199

0

Noct

uida

e|TD

GAB

−239

8

Noct

uida

e|TD

GAB

−199

5

Noct

uida

e|TD

GAB

−225

5

Noct

uida

e|TD

GAB

−058

6

Noct

uida

e|TD

GAB

−076

6

Noct

uida

e|TD

GAB

−029

0

Noct

uida

e|TD

GAB

−057

7No

ctui

dae|

TDG

AB−0

285

Noct

uida

e|TD

GAB

−214

5No

ctui

dae|

TDG

AB−2

117

Noct

uida

e|TD

GAB

−085

2No

ctui

dae|

TDG

AB−0

563

Noct

uida

e|TD

GAB

−007

0No

ctui

dae|

TDG

AB−1

821

Noct

uida

e|TD

GAB

−059

0No

ctui

dae|

TDG

AB−0

201

Lym

antri

inae

|Lop

e11−

0637

Lym

antri

inae

|Lop

e11−

0623

Jana

eur

ymas

|TDG

ABb−

348

Jana

MG

ABsp

2|TD

GAB

b−33

3

Dasy

chira

|Lop

e11−

0136

Dasy

chira

|Lop

e11−

0130

Aedi

inae

|Lop

e11−

0300

Lym

antri

inae

|TDG

AB−2

002

Lym

antri

inae

|TDG

AB−1

138

Lym

antri

inae

|TDG

AB−0

328

Noct

uida

e|Lo

pe11

−060

7No

ctui

dae|

Lope

11−0

059

Noct

uida

e|TD

GAB

−237

4No

ctui

dae|

TDG

AB−2

208

Noct

uida

e|TD

GAB

−084

9No

ctui

dae|

TDG

AB−2

225

Noct

uida

e|TD

GAB

−111

9No

ctui

dae|

TDG

AB−1

285

Noct

uida

e|TD

GAB

−234

2No

ctui

dae|

TDG

AB−0

655

Noct

uida

e|TD

GAB

−158

9No

ctui

dae|

TDG

AB−0

509

Noct

uida

e|TD

GAB

−155

6No

ctui

dae|

TDG

AB−1

325

Noct

uida

e|TD

GAB

−006

9No

ctui

dae|

TDG

AB−1

298

Noct

uida

e|TD

GAB

−124

2No

ctui

dae|

TDG

AB−1

180

Ereb

inae

|Lop

e11−

0982

Ereb

inae

|TDG

AB−1

690

Ereb

inae

|Lop

e11−

0920

Ereb

inae

|Lop

e11−

0871

Ereb

inae

|TD

GA

B−1

888

Ereb

inae

|TD

GA

B−1

892

Ereb

inae

|Lop

e11−

0615

Ereb

inae

|Lop

e11−

0057

Ereb

inae

|Lop

e11−

0913

Ereb

inae

|Lop

e11−

0594

Ereb

inae

|TD

GA

B−1

885

Ereb

inae

|TD

GA

B−1

581

Ereb

inae

|TD

GA

B−1

719

Ereb

inae

|TD

GA

B−1

350

Ereb

inae

|Lop

e11−

08681002−

BA

GDT|eaniberE

7421−B

AG

DT|eaniberEEreb

inae

|TD

GA

B−0

933

Ereb

inae

|TD

GA

B−0

9013090−11epoL|eaniberE8151−

BA

GDT|eaniberE

9980−B

AG

DT|eaniberE5551−

BA

GDT|eaniberE

0060−11epoL|eaniberE6580−

BA

GDT|eaniberE

6510−11epoL|eaniberE7202−

BA

GDT|suberE

4351−B

AG

DT|eaniberE6780−11epoL|eaniberE2380−

BA

GDT|eaniberE

4320−B

AG

DT|eaniberE8510−

BA

GDT|eaniberE

3880−B

AG

DT|eaniberE6850−11epoL|eaniberE9312−

BA

GDT|eaniberE

2891−B

AG

DT|eaniberE3400−11epoL|eaniberE7381−

BA

GDT|eaniberE

4580−B

AG

DT|eaniberE9790−11epoL|eaniberE2490−11epoL|eaniberEEr

ebin

ae|T

DG

AB

−071

8Er

ebin

ae|L

ope1

1−09

06Er

ebin

ae|L

ope1

1−04

47Erebinae|Lope11−0932Erebinae|Lope11−0100Erebinae|TD

GA

B−194764

91−

BA

GDT

|ean

iber

E73

91−

BA

GDT

|ean

iber

E12

91−

BA

GDT

|ean

iber

E58

61−

BA

GDT

|ean

iber

E73

00−

BA

GDT

|ean

iber

E12

00−

BA

GDT

|ean

iber

E53

51−

BA

GDT

|ean

iber

E15

00−

BA

GDT

|ean

iber

E05

51−

BA

GDT

|ean

iber

E49

51−

BA

GDT

|ean

iber

E72

90−

BA

GDT

|ean

iber

E08

70−

BA

GDT

|ean

iber

EErebinae|TDG

AB

−0808Erebinae|TD

GA

B−0812

Erebinae|TDG

AB

−0882Erebinae|TD

GA

B−1388

Erebinae|TDG

AB

−1516Erebinae|TD

GA

B−166188

51−

BA

GDT

|ean

iber

E87

51−

BA

GDT

|ean

iber

EErebinae|TDG

AB

−1533Erebinae|TD

GA

B−1212

Erebinae|TDG

AB

−0941Erebinae|TD

GA

B−0806

Erebinae|TDG

AB

−1244Erebinae|Lope11−0592Erebinae|TD

GA

B−1419

Erebinae|TDG

AB

−0140Erebinae|Lope11−0874Erebinae|TD

GA

B−1924

Erebinae|Lope11−0873Erebinae|TD

GA

B−1745

Erebinae|TDG

AB

−1344Erebinae|TD

GA

B−1891

Erebinae|TDG

AB

−1363Erebinae|Lope11−0440Erebinae|TD

GA

B−1248

Erebinae|TDGAB−0835

Erebinae|TDGAB−1897

Ogovia|Lope11−0922

Ogovia|Lope11−0911

Ogovia|TDG

AB−0339O

govia pudens|Lope11−0919O

govia pudens|Lope11−0915O

govia pudens|TDGAB−1938

Ogovia pudens|Lope11−0593

Ogovia pudens|TDG

AB−2155O

govia pudens|TDGAB−2020

Ogovia pudens|TDG

AB−1925O

govia pudens|TDGAB−1908

Ogovia pudens|TDG

AB−1901O

govia pudens|TDGAB−1878

Ogovia pudens|TDG

AB−1818O

govia pudens|TDGAB−1734

Ogovia pudens|TDG

AB−1732O

govia pudens|TDGAB−1714

Ogovia pudens|TDG

AB−1713O

govia pudens|TDGAB−1704

Ogovia pudens|TDG

AB−1687O

govia pudens|TDGAB−1640

Ogovia pudens|TDG

AB−1636O

govia pudens|TDGAB−1610

Ogovia pudens|TDG

AB−1517O

govia pudens|TDGAB−1508

Ogovia pudens|TDG

AB−1476O

govia pudens|TDGAB−1471

Ogovia pudens|TDG

AB−1417

Ogovia pudens|TDG

AB−1396

Ogovia pudens|TDG

AB−1389

Ogovia pudens|TDG

AB−1378

Ogovia pudens|TDG

AB−1361

Ogovia pudens|TDG

AB−1346

Ogovia pudens|TDG

AB−1250

Ogovia pudens|TDG

AB−1047

Ogovia pudens|TDG

AB−0959

Ogovia pudens|TDG

AB−0911

Ogovia pudens|TDG

AB−0902

Ogovia pudens|TDG

AB−0895

Ogovia pudens|TDG

AB−0834

Ogovia pudens|TDG

AB−0772

Ogovia pudens|TDG

AB−0575

Ogovia pudens|TDG

AB−0520

Ogovia pudens|TDG

AB−0125

Ogovia pudens|TDG

AB−0057

Ogovia pudens|TDG

AB−0048

Ogovia pudens|TDG

AB−0033

Ogovia pudens|TDG

AB−1580

Ogovia pudens|TDG

AB−1318

Ogovia pudens|TDG

AB−0053

Ogovia pudens|TDG

AB−1394

Ogovia pudens|TDG

AB−1515

Ogovia pudens|TDG

AB−1586

Ogovia pudens|TDG

AB−1633

Ogovia pudens|TDG

AB−1803

Ogovia pudens|TDG

AB−1703

Ogovia pudens|TDG

AB−1691

Ogovia pudens|TDG

AB−0909

Ogovia pudens|TDG

AB−1168

Ogovia pudens|TDG

AB−1373

Ogovia pudens|TDG

AB−1486

Ogovia pudens|TDG

AB−1898

Ogovia pudens|TDG

AB−1648

Ogovia pudens|TDG

AB−1255

Ogovia pudens|TDG

AB−0035

Ogovia pudens|TDG

AB−1128

Ogovia pudens|TDG

AB−1559

Ogovia pudens|TDG

AB−1558

Ogovia pudens|TDG

AB−1319

Ogovia pudens|TDG

AB−1032

Ogovia pudens|TDG

AB−1723

Ogovia pudens|TDG

AB−1830

Ogovia pudens|TDG

AB−1557

Ogovia pudens|TDG

AB−0914

Erebinae|Lope11−0917

Erebinae|Lope11−0591

Erebinae|Lope11−0162

Erebinae|TDGAB−1989

Erebinae|TDGAB−0900

Erebinae|TDGABb−342

Erebinae|TDGAB−1913

Erebinae|TDGAB−1755

Erebinae|TDGAB−1355

Erebinae|TDGAB−1390

Erebinae|TDGAB−1912

Erebinae|TDGAB−0764

Erebinae|TDGAB−1583

Erebinae|TDGAB−2364

Erebinae|TDGAB−2321

Erebinae|TDGAB−0368

Erebinae|TDGAB−0347

Erebinae|TDGAB−2311

Erebinae|TDGAB−2131

Erebinae|TDGAB−2012

Erebinae|TDGAB−2011

Erebinae|TDGAB−1306

Erebinae|TDGAB−0581

Erebinae|TDGAB−2191

Erebinae|TDGAB−0278

Erebinae|TDGAB−0519

Erebinae|TDGAB−2005

Erebinae|TDGAB−1985

Erebinae|TDGAB−0346

Erebinae|TDGAB−1059

Erebinae|TDGAB−1874

Erebinae|TDGAB−1601

Erebinae|TDGAB−1828

Erebinae|TDGAB−1784

Erebinae|TDGAB−1863

Erebinae|TDGAB−1819

Erebinae|TDGAB−1387

Erebinae|TDGAB−0724

Erebinae|TDGAB−0045

Erebinae|TDGAB−0009

Erebinae|TDGAB−1600

Erebinae|TDGAB−1582

Erebinae|TDGAB−1455

Erebinae|TDGAB−0811

Erebinae|Lope11−0445

Erebinae|Lope11−0599

Erebinae|Lope11−0588

Erebinae|Lope11−0190

Erebinae|TDGAB−2244

Erebinae|TDGAB−1273

Erebinae|TDGAB−0866

Erebinae|TDGAB−0598

Erebinae|Lope11−0450

Erebinae|TDGABb−327

Erebinae|Lope11−0155

Erebinae|TDGAB−2264

Erebinae|Lope11−0510

Erebinae|Lope11−0505

Erebinae|TDGAB−1372

Erebinae|Lope11−0072

Erebinae|TDGAB−0012

Erebinae|TDGAB−1621

Erebinae|TDGAB−0447

Mocis conveniens|TDG

AB−2044

Erebinae|TDGAB−1668

Erebinae|TDGAB−1186

Ericeia inangulata|Lope11−0938

Ericeia inangulata|TDGAB−0892

Amphipyrinae|TDG

AB−1911

Amphipyrinae|TDG

AB−0707

Amphipyrinae|TDG

AB−1809

Amphipyrinae|TDG

AB−1477

Amphipyrinae|TDG

AB−1428

Amphipyrinae|TDG

AB−1385

Amphipyrinae|TDG

AB−1362

Amphipyrinae|TDG

AB−1729

Amphipyrinae|TDG

AB−1725

Amphipyrinae|TDG

AB−0148

Amphipyrinae|TDG

AB−1565

Amphipyrinae|TDG

AB−0259

Amphipyrinae|TDG

AB−0301

Amphipyrinae|TDG

AB−1422

Amphipyrinae|TDG

AB−1424

Amphipyrinae|TDG

AB−1444

Amphipyrinae|TDG

AB−1528

Marcipa|Lope11−0380

Marcipa|TDG

AB−1148

Marcipa|TDG

AB−0405

Marcipa|TDG

AB−1353

Marcipa|TDG

AB−1292

Marcipa|TDG

AB−1170

Marcipa|TDG

AB−1271

Marcipa|TDG

AB−0497

Marcipa|TDG

AB−2248

Marcipa|Lope11−0308

Marcipa|TDG

AB−1408

Marcipa|TDG

AB−0987

Marcipa|Lope11−0341

Marcipa|TDG

AB−0244

Marcipa|TDGAB−1205

Marcipa|TDGAB−2298

Marcipa|TDGAB−0211

Marcipa|TDGAB−0956

Marcipa|TDGAB−2081

Marcipa|TDGAB−0416

Marcipa|TDGAB−0237

Marcipa|TDGAB−1525

Marcipa|TDGAB−0673

Marcipa|TDGAB−0670

Marcipa|Lope11−0092

Marcipa|TDGAB−1230

Marcipa|TDGAB−0150

Marcipa|TDGAB−1847

Marcipa|TDGAB−1566

Marcipa|TDGAB−0715

Marcipa|TDGAB−0657

Marcipa|TDGAB−1604

Marcipa|TDGAB−1459

Marcipa|TDGAB−1587

Marcipa|TDGAB−0649

Marcipa|TDGAB−0779

Marcipa|TDGAB−0646

Marcipa|TDGAB−0726

Marcipa|TDGAB−1554

Marcipa|TDGAB−1957

Marcipa|TDGAB−1014

Marcipa|TDGAB−1308

Marcipa|TDGAB−1577

Marcipa|TDGAB−1882

Notodontidae|TDGAB−1190

Noctuidae|Lope11−0643

Noctuidae|Lope11−0597

Noctuidae|Lope11−0004

Noctuidae|TDGAB−2126

Noctuidae|TDGAB−1628

Noctuidae|TDGAB−0713

Noctuidae|TDGAB−1553

Noctuidae|Lope11−0613

Noctuidae|TDGAB−0298

Noctuidae|TDGAB−0630

Noctuidae|TDGAB−0810

Noctuidae|TDGAB−2215

Noctuidae|TDGAB−2053

Noctuidae|Lope11−0603

Noctuidae|Lope11−0609

Noctuidae|TDGAB−2113

Noctuidae|Lope11−0611

Noctuidae|Lope11−0088

Noctuidae|Lope11−0598

Noctuidae|TDGAB−1281

Noctuidae|TDGAB−1016

Noctuidae|Lope11−0334

Noctuidae|TDGAB−1643

Schausia|Lope11−0601

Schausia|TDGAB−0349

Schausia|TDGAB−1414

Agaristinae|TDGAB−2138

Schausia|TDGAB−0876

Schausia|TDGAB−0429

Schausia|TDGAB−0181

Agaristinae|Lope11−0519

Agaristinae|TDGAB−1971

Agaristinae|TDGAB−0917

Amphipyrinae|TDGAB−2257

Amphipyrinae|TDGAB−0441

Amphipyrinae|TDGAB−1201

Amphipyrinae|TDGAB−0313

Auchenisa|TDGAB−0761

Amphipyrinae|TDGAB−0203

Utetheisa|TDGAB−1749

Noctuidae|Lope11−0587

Noctuidae|TDGAB−1932

Noctuidae|TDGAB−1718

Noctuidae|TDGAB−1629

Noctuidae|TDGAB−1548

Noctuidae|TDGAB−1539

Noctuidae|TDGAB−0089

Noctuidae|TDGAB−0098

Noctuidae|TDGAB−0758

Noctuidae|TDGAB−0064

Noctuidae|TDGAB−0243

Noctuidae|Lope11−0486

Noctuidae|TDGAB−0571

Noctuidae|Lope11−0376

Noctuidae|TDGAB−2416

Noctuidae|TDGAB−2397

Noctuidae|TDGAB−1165

Noctuidae|TDGAB−1263

Noctuidae|TDGAB−2074

Noctuidae|TDGAB−1077

Erebinae|Lope11−0916

Erebinae|Lope11−0912

Erebinae|TDGAB−0141

Erebinae|TDGAB−2000

Erebinae|Lope11−0087

Erebinae|TDGAB−2299

Erebinae|TDGAB−2004

Erebinae|TDGAB−0564

Erebinae|TDGAB−0183

Erebinae|TDGAB−0397

Erebinae|Lope11−0301

Erebinae|Lope11−0606

Erebinae|Lope11−0135

Erebinae|TDGAB−0913

Erebinae|Lope11−0129

Erebinae|TDGAB−0552

Erebinae|Lope11−0080

Erebinae|TDGAB−1114

Erebinae|TDGAB−2136

Erebinae|TDGAB−1142

Erebinae|TDGAB−0528

Erebinae|TDGAB−0487

Erebinae|TDGAB−0332

Erebinae|TDGAB−1117

Erebinae|TDGAB−0522

Erebinae|TDGAB−0378

Hypocala|Lope11−0655

Hypocala|TDGAB−1903

Hypocala|TDGAB−1870

Hypocala|TDGAB−1859

Hypocala|TDGAB−1770

Hypocala|TDGAB−1677

Hypocala|TDGAB−1645

Hypocala|TDGAB−1595

Hypocala|TDGAB−0722

Hypocala|TDGAB−0080

Hypocala|TDGAB−0807

Hypocala|TDGAB−1343

Hypocala|TDGAB−1345

Hypocala|TDGAB−1552

Hypocala|TDGAB−0044

Hypocala|TDGAB−1644

Hypocala|TDGAB−1807

Hypocala|TDGAB−1364

Hypsoropha|Lope11−0441

Hypsoropha|Lope11−0139

Eudocima|TDGABb−326

Eudocima|TDGAB−1669

Hypena|TDGAB−2283

Hypena|TDGAB−1293

Hypena|TDGAB−0572

Hypena|TDGAB−0408

Hypena|TDGAB−0179

Hypena|TDGAB−0360

Noctuidae|Lope11−0841

Noctuidae|Lope11−0172

Noctuidae|TDGAB−1224

Noctuidae|Lope11−0604

Noctuidae|Lope11−0181

Noctuidae|Lope11−0179

Noctuidae|Lope11−0718

Noctuidae|TDGAB−0071

Noctuidae|TDGAB−1693

Noctuidae|TDGAB−2127

Noctuidae|TDGAB−0250

Noctuidae|TDGAB−1983

Noctuidae|TDGAB−0337

Noctuidae|TDGAB−0043

Noctuidae|TDGAB−1674

Noctuidae|Lope11−0612

Noctuidae|TDGAB−2046

Noctuidae|TDGAB−0443

Noctuidae|Lope11−0618

Noctuidae|TDGAB−0109

Noctuidae|Lope11−0377

Noctuidae|TDGAB−0032

Noctuidae|TDGAB−0304

Noctuidae|TDGAB−0121

Noctuidae|Lope11−0340

Noctuidae|TDGAB−2106

Noctuidae|TDGAB−1264

Erebinae|Lope11−0872

Erebinae|TDGAB−1772

Erebinae|TDGAB−2423

Antiophlebia|Lope11−0784

Antiophlebia|TDGAB−1758

Antiophlebia|Lope11−0097

Noctuidae|Lope11−0614

Noctuidae|Lope11−0337

Noctuidae|Lope11−0347

Noctuidae|Lope11−0168

Noctuidae|Lope11−0018

Noctuidae|Lope11−0149

Noctuidae|TDGAB−0418

Noctuidae|TDGAB−0256

Noctuidae|TDGAB−0666

Noctuidae|TDGAB−1041

Noctuidae|TDGAB−1006

Noctuidae|TDGAB−0199

Noctuidae|Lope11−0368

Noctuidae|Lope11−0298

Noctuidae|TDGAB−0545

Noctuidae|TDGAB−1654

Noctuidae|TDGAB−1544

Noctuidae|TDGAB−0515

Noctuidae|TDGAB−0095

Noctuidae|Lope11−0929

Soloella|Lope11−0529

Soloella|Lope11−0291

Noctuidae|TDGAB−2202

Noctuidae|TDGAB−0570

Anapisa|Lope11−0832

Anapisa|TDGAB−0435

Anapisa monotica|Lope11−0364

Anapisa monotica|Lope11−0153

Tuerta|TDGAB−0605

Tuerta|TDGAB−0266

Noctuidae|Lope11−0842

Noctuidae|Lope11−0546

Noctuidae|TDGAB−0731

Noctuidae|TDGAB−1316

Noctuidae|TDGAB−0241

Noctuidae|Lope11−0145

Noctuidae|Lope11−0326

Noctuidae|Lope11−0304

Arctiinae|Lope11−0824

Arctiinae|TDGAB−2007

Arctiinae|Lope11−0333

Arctiinae|TDGAB−0321

Arctiinae|TDGAB−2031

Arctiinae|TDGAB−1282

Arctiinae|TDGAB−0918

Arctiinae|TDGAB−2057

Arctiinae|TDGAB−0739

Arctiinae|TDGAB−2427

Arctiinae|TDGAB−0319

Arctiinae|TDGAB−0299

Arctiinae|TDGAB−1564

Arctiinae|TDGAB−1284

Arctiinae|TDGAB−0458

Arctiinae|TDGAB−0457

Arctiinae|TDGAB−0425

Arctiinae|TDGAB−0322

Arctiinae|TDGAB−2076

Arctiinae|TDGAB−0512

Arctiinae|TDGAB−0442

Arctiinae|TDGAB−0320

Arctiinae|TDGAB−0314

Arctiinae|TDGAB−2189

Arctiinae|TDGAB−2395

Arctiinae|TDGAB−0326

Arctiinae|TDGAB−0547

Arctiinae|Lope11−0361

Arctiinae|Lope11−0316

Arctiinae|TDGAB−2390

Arctiinae|TDGAB−2213

Arctiinae|TDGAB−1215

Arctiinae|TDGAB−1213

Arctiinae|TDGAB−0932

Arctiinae|TDGAB−1000

Arctiinae|TDGAB−0305

Manulea|Lope11−0541

Manulea|Lope11−0517

Manulea|Lope11−0378

Manulea|TDGAB−0086

Manulea|TDGAB−0677

Manulea|TDGAB−2261

Manulea|TDGAB−2170

Manulea|TDGAB−2038

Manulea|TDGAB−1763

Manulea|TDGAB−1728

Manulea|TDGAB−1498

Manulea|TDGAB−1260

Manulea|TDGAB−0923

Manulea|TDGAB−0765

Manulea|TDGAB−0753

Manulea|TDGAB−0736

Manulea|TDGAB−0689

Manulea|TDGAB−0310

Manulea|TDGAB−0931

Manulea|TDGAB−0276

Manulea|TDGAB−1673

Manulea|TDGAB−2201

Manulea|TDGAB−2110

Manulea|TDGAB−1800

Manulea|TDGAB−1756

Manulea|TDGAB−1649

Manulea|TDGAB−1639

Manulea|TDGAB−1288

Manulea|TDGAB−0258

Manulea|TDGAB−0690

Manulea|TDGAB−0691

Manulea|TDGAB−0694

Manulea|TDGAB−0743

Manulea|TDGAB−0775

Manulea|TDGAB−0809

Manulea|TDGAB−1450

Manulea|TDGAB−1568

Manulea|TDGAB−0774

Manulea|TDGAB−0345

Manulea|TDGAB−1634

Manulea|TDGAB−1356

Manulea|TDGAB−0922

Manulea|TDGAB−0791

Manulea|TDGAB−0740

Manulea|TDGAB−0693

Manulea|TDGAB−1377

Manulea|TDGAB−0873

Manulea|TDGAB−0745

Manulea|TDGAB−0692

Manulea|TDGAB−0342

Manulea|TDGAB−0424

Manulea|TDGAB−0264

Arctiinae|TDGAB−2409

Arctiinae|TDGAB−2352

Arctiinae|TDGAB−1500

Arctiinae|TDGAB−1266

Arctiinae|TDGAB−2332

Arctiinae|TDGAB−1611

Arctiinae|TDGAB−2356

Arctiinae|TDGAB−0327

Arctiinae|TDGAB−2239

Arctiinae|TDGAB−2171

Arctiinae|TDGAB−0440

Arctiinae|TDGAB−2431

Arctiinae|TDGAB−0928

Arctiinae|TDGAB−2108

Arctiinae|TDGAB−2420

Arctiinae|TDGAB−2426

Arctiinae|TDGAB−1054

Arctiinae|TDGAB−0324

Arctiinae|TDGAB−2403

Arctiinae|TDGAB−0270

Arctiinae|TDGAB−2265

Arctiinae|TDGAB−1074

Arctiinae|TDGAB−0972

Arctiinae|TDGAB−2078

Arctiinae|TDGAB−0300

Arctiinae|TDGAB−0449

Arctiinae|TDGAB−2077

Arctiinae|TDGAB−0325

Arctiinae|TDGAB−0323

Herminiinae|TDGAB−2065

Herminiinae|TDGAB−1312

Caryatis|TDGAB−2015

Lepidoptera|Lope11−0641

Lepidoptera|TDGAB−1754

Lepidoptera|TDGAB−1571

Chiromachla|Lope11−0443

Lymantriinae|TDGAB−2388

Cyana|Lope11−0536

Cyana|TDGAB−0417

Cyana|TDGAB−0189

Cyana|Lope11−0531

Cyana|Lope11−0146

Cyana|TDGAB−2019

Cyana|TDGAB−0981

Cyana|TDGAB−2339

Cyana|TDGAB−0560

Cyana|TDGAB−0517

Cyana|TDGAB−2128

Cyana|TDGAB−2174

Cyana|TDGAB−0830

Cyana|Lope11−0379

Cyana|TDGAB−1791

Cyana|TDGAB−1773

Arctiinae|Lope11−0803

Erebidae|TDGAB−2179

Erebidae|TDGAB−0452

Noctuidae|TDGAB−2328

Noctuidae|TDGAB−0387

Noctuidae|TDGAB−0182

Erebidae|TDGAB−2275

Erebidae|TDGAB−2093

Rhypopteryx UD003|Lope11−0818

Rhypopteryx UD003|Lope11−0811

Rhypopteryx UD001|Lope11−0790

Rhypopteryx UD003|Lope11−0786

Rhypopteryx|TDGAB−1905

Rhypopteryx|TDGAB−1786

Rhypopteryx|TDGAB−0499

Rhypopteryx|TDGAB−0438

Rhypopteryx UD002|Lope11−0812

Rhypopteryx UD002|Lope11−0810

Rhypopteryx|TDGAB−0331

Stracena venosa|Lope11−0056

Stracena UD001|Lope11−0633

Stracena|Lope11−0349

Stracena|TDGAB−1768

Stracena UD002|TDGAB−2334

Stracena|TDGAB−2114

Stracena|TDGAB−2302

Stracena|TDGAB−2245

Stracena|TDGAB−1141

Leucoma|Lope11−0106

Lymantriinae|TDGAB−1623

Lymantriinae|TDGAB−1457

Lymantriinae|TDGAB−1421

Lymantriinae|TDGAB−0705

Lymantria vacillans|TDGAB−1994

Lymantria vacillans|TDGAB−1317

Lymantria vacillans|TDGAB−1134

Lymantria vacillans|TDGAB−0829

Lymantria vacillans|TDGAB−0479

Lymantria vacillans|TDGAB−0175

Leucoma luteipes|Lope11−0635

Leucoma|TDGAB−2295

Leucoma|TDGAB−0295

Leucoma|TDGAB−2214

Leucoma|TDGAB−0573

Leucoma|TDGAB−0253

Leucoma|TDGAB−2430

Leucoma|TDGAB−2399

Leucoma|TDGAB−1181

Leucoma|TDGAB−1066

Leucoma|TDGAB−0973

Leucoma|TDGAB−0896

Leucoma|TDGAB−0195

Leucoma|TDGAB−2413

Leucoma|TDGAB−2175

Leucoma|TDGAB−0583

Leucoma|TDGAB−2160

Leucoma|TDGAB−0953

Leucoma|TDGAB−0877

Leucoma|TDGAB−2340

Leucoma|TDGAB−1067

Leucoma|TDGAB−1064

Leucoma|TDGAB−0978

Leucoma|TDGAB−2219

Leucoma|TDGAB−2173

Leucoma|TDGAB−2292

Leucoma|TDGAB−1150

Leucoma|TDGAB−0955

Leucoma|TDGAB−2341

Leucoma|TDGAB−2030

Leucoma|TDGAB−1127

Leucoma|TDGAB−1062

Leucoma|TDGAB−1063

Leucoma|TDGAB−0466

Leucoma|TDGAB−0163

Leucoma|TDGAB−0279

Leucoma|TDGAB−1987

Leucoma|TDGAB−1129

Leucoma|TDGAB−1065

Leucoma|TDGAB−1061

Leucoma|TDGAB−0912

Dasychira statheuta|Lope11−0066

Dasychira statheuta|TDGAB−2315

Lymantriinae|TDGAB−2018

Lymantriinae|TDGAB−0350

Lymantriinae|TDGAB−2064

Lymantriinae|TDGAB−0184

Lymantriinae|TDGAB−0217

Lymantriinae|TDGAB−0245

Lymantriinae|TDGAB−0281

Lymantriinae|TDGAB−0420

Lymantriinae|TDGAB−0432

Lymantriinae|TDGAB−0514

Lymantriinae|TDGAB−0291

Lymantriinae|TDGAB−0251

Lymantriinae|TDGAB−0240

Lymantriinae|TDGAB−0561

Lymantriinae|TDGAB−0426

Lymantriinae|TDGAB−0204

Lymantriinae|TDGAB−0218

Lymantriinae|TDGAB−0556

Lymantriinae|TDGAB−0448

Lymantriinae|TDGAB−0219

Lymantriinae|TDGAB−0242

Lymantriinae|TDGAB−0215

Lymantriinae|TDGAB−0216

Lymantriinae|TDGAB−0177

Arctiinae|Lope11−0809

Arctiinae|TDGAB−0102

Arctiinae|TDGAB−0659

Arctiinae|TDGAB−1774

Arctiinae|TDGAB−2220

Arctiinae|TDGAB−1348

Arctiinae|TDGAB−0606

Arctiinae|TDGAB−0312

Arctiinae|TDGAB−2052

Arctiinae|TDGAB−0916

Arctiinae|TDGAB−1072

Arctiinae|TDGAB−2433

Arctiinae|TDGAB−2424

Arctiinae|TDGAB−2391

Arctiinae|TDGAB−1547

Arctiinae|TDGAB−0316

Arctiinae|TDGAB−1439

Arctiinae|TDGAB−1978

Arctiinae|TDGAB−2058

Arctiinae|TDGAB−2367

Arctiinae|TDGAB−1627

Arctiinae|TDGAB−2263

Arctiinae|TDGAB−0783

Arctiinae|TDGAB−1546

Arctiinae|TDGAB−0317

Arctiinae|TDGAB−1762

Arctiinae|TDGAB−2259

Arctiinae|TDGAB−1218

Arctiinae|TDGAB−1567

Arctiinae|TDGAB−1416

Arctiinae|TDGAB−0664

Arctiinae|TDGAB−0306

Arctiinae|TDGAB−1357

Arctiinae|TDGAB−2262

Arctiinae|TDGAB−1801

Arctiinae|TDGAB−2411

Arctiinae|TDGAB−2378

Arctiinae|TDGAB−2325

Arctiinae|TDGAB−2203

Arctiinae|TDGAB−2095

Arctiinae|TDGAB−2055

Arctiinae|TDGAB−2371

Arctiinae|TDGAB−2274

Arctiinae|TDGAB−2075

Arctiinae|TDGAB−0784

Arctiinae|TDGAB−0318

Arctiinae|TDGAB−0500

Arctiinae|Lope11−0516

Arctiinae|TDGAB−2434

Arctiinae|TDGAB−2370

Arctiinae|TDGAB−1217

Arctiinae|TDGAB−1232

Arctiinae|TDGAB−2309

Arctiinae|TDGAB−2381

Arctiinae|TDGAB−2366

Arctiinae|TDGAB−2365

Arctiinae|TDGAB−0456

Arctiinae|TDGAB−1085

Arctiinae|TDGAB−1219

Arctiinae|TDGAB−0742

Noctuidae|TDGAB−2273

Amphipyrinae|TDGAB−0207

Noctuidae|Lope11−0487

Noctuidae|Lope11−0343

Noctuidae|TDGAB−1529

Noctuidae|TDGAB−0672

Noctuidae|Lope11−0480

Noctuidae|Lope11−0367

Noctuidae|TDGAB−1599

Noctuidae|TDGAB−2236

Noctuidae|TDGAB−0446

Noctuidae|TDGAB−0209

Lepidoptera|TDGAB−0867

Pardasena|TDGAB−0112

Noctuidae|Lope11−0918

Noctuidae|TDGAB−0894

Noctuidae|Lope11−0052

Noctuidae|TDGAB−2396

Noctuidae|TDGAB−1046

Noctuidae|TDGAB−0235

Noctuidae|TDGAB−0591

Noctuidae|TDGAB−2389

Noctuidae|TDGAB−2237

Noctuidae|TDGAB−2231

Noctuidae|TDGAB−2152

Noctuidae|TDGAB−0249

Noctuidae|TDGAB−0395

Noctuidae|TDGAB−0544

Noctuidae|TDGAB−2289Arctiinae|TDGAB−1327

Notodontidae|TDGAB−1295

Epiphora ploetzi|TDGABb−284

Epiphora rectifascia|TDGABb−274

Epiphora albida|TDGABb−261

Notodontidae|TDGAB−1267

Geometridae|TDGAB−2066Crambidae|TDGAB−1814

Lepidoptera|TDGAB−2054

Lymantriinae|TDGAB−1197

Lymantriinae|TDGAB−0929

Orthogonioptilum|Lope11−0897

Orthogonioptilum|Lope11−0435

Orthogonioptilum|Lope11−0433

Orthogonioptilum|Lope11−0893

Orthogonioptilum|TDGABb−0195

Orthogonioptilum|Lope11−0434

Orthogonioptilum|Lope11−0432

Orthogonioptilum|Lope11−0429

Orthogonioptilum|Lope11−0426

Orthogonioptilum|Lope11−0425

Orthogonioptilum|TDGABb−228

Orthogonioptilum|TDGABb−0203

Orthogonioptilum|TDGABb−0201

Orthogonioptilum|TDGABb−0193

Orthogonioptilum|TDGABb−0194

Orthogonioptilum|TDGABb−0200

Orthogonioptilum|TDGABb−0198

Orthogonioptilum|TDGABb−0199

Orthogonioptilum|TDGABb−0204

Orthogonioptilum|TDGABb−0205Orthogonioptilum|TDGABb−216Orthogonioptilum|TDGABb−217Orthogonioptilum|TDGABb−220Orthogonioptilum|TDGABb−221Orthogonioptilum|TDGABb−225Orthogonioptilum|Lope11−0430Orthogonioptilum|Lope11−0892Orthogonioptilum|Lope11−0887Orthogonioptilum|Lope11−0885Orthogonioptilum|Lope11−0884Orthogonioptilum|Lope11−0437Orthogonioptilum|Lope11−0436Orthogonioptilum|Lope11−0684Orthogonioptilum|Lope11−0683Orthogonioptilum|Lope11−0682Orthogonioptilum|Lope11−0681Orthogonioptilum|Lope11−0883Orthogonioptilum|Lope11−0882Orthogonioptilum|Lope11−0881Orthogonioptilum|Lope11−0685Orthogonioptilum|TDGABb−224Orthogonioptilum|TDGABb−215

Orthogonioptilum|TDGABb−0197Orthogonioptilum|TDGABb−223

Orthogonioptilum|TDGABb−0196Orthogonioptilum|TDGABb−226Orthogonioptilum|TDGABb−222Orthogonioptilum|TDGABb−218

Orthogonioptilum luminosum|Lope11−0875Orthogonioptilum luminosum|Lope11−0431Orthogonioptilum luminosum|TDGABb−230Orthogonioptilum luminosum|TDGABb−229Orthogonioptilum luminosum|TDGABb−231Orthogonioptilum violascens|Lope11−0878Orthogonioptilum violascens|TDGABb−219

Orthogonioptilum vestigiatum|TDGABb−264Orthogonioptilum vestigiatum|TDGABb−262Orthogonioptilum vestigiatum|TDGABb−263

Carnegia mirabilis|TDGABb−213Carnegia mirabilis|TDGABb−212

Carnegia mirabilis|TDGABb−0206Carnegia mirabilis|TDGABb−209Carnegia mirabilis|TDGABb−211Micragone neonubifera|Lope11−0886Micragone neonubifera|Lope11−0686Micragone neonubifera|TDGABb−249Micragone neonubifera|TDGABb−247Micragone neonubifera|TDGABb−248Micragone neonubifera|TDGABb−246Micragone neonubifera|TDGABb−245Micragone neonubifera|TDGABb−244Micragone agathylla|TDGABb−227Micragone agathylla|TDGABb−0192Micragone agathylla|TDGABb−0191Micragone agathylla|TDGABb−0190Micragone lichenodes|TDGABb−243Micragone lichenodes|TDGABb−242Micragone lichenodes|TDGAB−2429Micragone lichenodes|TDGAB−1751Dogoia mgab sp. 1|TDGABb−253Dogoia mgab sp. 1|TDGABb−252Dogoia mgab sp. 1|TDGABb−251Dogoia mgab sp. 1|TDGABb−250Dogoia obscuripennis|TDGABb−233Dogoia obscuripennis|TDGABb−232Goodia falcata|TDGABb−241Goodia falcata|TDGABb−240Goodia falcata|TDGABb−239Goodia falcata|TDGABb−238Goodia falcata|TDGABb−237Stenoglene|Lope11−0126Stenoglene|Lope11−0125Stenoglene fouassini|TDGAB−0891Stenoglene MGABsp3|TDGABb−315Stenoglene maculifera|TDGABb−364Stenoglene maculifera|TDGABb−362Stenoglene maculifera|TDGABb−336Stenoglene bimaculatus|TDGABb−363Epijana lanosa|TDGABb−319Noctuidae|Lope11−0093Acrojana MGABsp1|TDGABb−346Acrojana MGABsp1|TDGABb−343Acrojana MGABsp2|TDGABb−324Holocerina angulata|TDGABb−236Holocerina angulata|TDGABb−235Holocerina angulata|TDGABb−234Dactyloceras lucina|TDGABb−386Dactyloceras lucina|TDGABb−383Dactyloceras lucina|TDGABb−384Dactyloceras lucina|TDGABb−385Micragone joiceyi|TDGAB−1656

Cephonodes hylas virescens|Lope11−1002Lophostethus dumolinii congoicum|TDGABb−003Lophostethus dumolinii congoicum|TDGABb−001Lophostethus dumolinii congoicum|TDGABb−002Noctuidae|Lope11−0159Noctuidae|Lope11−0068Noctuidae|Lope11−0058Dasychira|Lope11−0850Dasychira|TDGAB−0221

Lymantriinae|Lope11−0652Lymantriinae|TDGAB−1902Lymantriinae|TDGAB−1761Lymantriinae|TDGAB−0529Lymantriinae|Lope11−0632Lymantriinae|Lope11−0619Lymantriinae|TDGAB−1185Lymantriinae|TDGAB−2211Lymantriinae|TDGAB−0579Lymantriinae|TDGAB−0884

Temnora scitula|Lope11−0995Temnora scitula|Lope11−0909Temnora scitula|Lope11−0675Temnora scitula|Lope11−0674Temnora scitula|Lope11−0424

Temnora scitula|TDGABb−0136Temnora scitula|Lope11−0079Temnora scitula|Lope11−0921Temnora scitula|Lope11−0905Temnora scitula|Lope11−0700Temnora scitula|Lope11−0694Temnora scitula|Lope11−0676Temnora scitula|Lope11−0423

Temnora scitula|TDGABb−0138Temnora scitula|TDGABb−0139Temnora scitula|TDGABb−0132

Temnora scitula|Lope11−0697Temnora scitula|Lope11−0673

Temnora scitula|TDGABb−0135Temnora scitula|TDGABb−0134Temnora scitula|TDGABb−0133

Temnora livida|Lope11−0709Temnora livida|TDGABb−033Temnora livida|TDGABb−032Temnora livida|TDGABb−031

Temnora iapygoides|Lope11−0926

Temnora iapygoides|Lope11−0925Temnora griseata|Lope11−0902

Temnora griseata|TDGABb−089

Temnora griseata|TDGABb−0179

Temnora funebris|Lope11−0418

Temnora funebris|TDGABb−105

Temnora funebris|Lope11−0411

Temnora funebris|TDGABb−104

Temnora funebris|TDGABb−103

Temnora camerounensis|TDGABb−0131

Temnora fumosa|TDGABb−096

Temnora fumosa|TDGABb−094

Temnora spiritus|TDGABb−0148

Temnora eranga|TDGABb−0150

Atemnora westermannii|TDGABb−090

Temnora crenulata|Lope11−0054

Temnora crenulata|TDGABb−111

Temnora crenulata|TDGABb−110

Temnora crenulata|TDGABb−109

Temnora crenulata|TDGABb−108

Temnora crenulata|TDGABb−106

Temnora crenulata|TDGABb−107

Euchloron megaera|Lope11−0967

Euchloron megaera|Lope11−0864

Euchloron megaera|Lope11−0385

Euchloron megaera|Lope11−0383

Euchloron megaera|Lope11−0381

Euchloron megaera|TDGABb−013

Euchloron megaera|TDGABb−0166

Euchloron megaera|TDGABb−0165

Euchloron megaera|TDGABb−0164

Euchloron megaera|TDGABb−014

Euchloron megaera|TDGABb−015

Euchloron megaera|Lope11−0865

Euchloron megaera|Lope11−0688

Centroctena rutherfordi|TDGABb−063

Centroctena rutherfordi|TDGABb−061

Centroctena rutherfordi|TDGABb−062

Theretra jugurtha|Lope11−0413

Theretra jugurtha|Lope11−0396

Theretra jugurtha|Lope11−0394

Theretra jugurtha|TDGABb−073

Theretra jugurtha|TDGABb−054

Theretra jugurtha|TDGABb−053

Theretra jugurtha|TDGABb−074

Theretra jugurtha|TDGABb−052

Nephele funebris|Lope11−0894

Nephele funebris|TDGABb−060

Nephele funebris|TDGABb−056

Nephele funebris|TDGABb−0154

Nephele funebris|TDGABb−0153

Nephele rosae|Lope11−0856

Nephele rosae|Lope11−0414

Nephele rosae|Lope11−0405

Nephele rosae|TDGABb−043

Nephele rosae|TDGABb−044

Nephele rosae|TDGABb−045

Nephele rosae|TDGABb−0159

Nephele rosae|TDGABb−0160

Nephele accentifera|Lope11−0714

Nephele accentifera|Lope11−0402

Nephele accentifera|TDGABb−051

Nephele accentifera|TDGABb−050

Nephele maculosa|Lope11−0701

Nephele maculosa|Lope11−0692

Nephele maculosa|Lope11−0690

Nephele maculosa|Lope11−0412

Nephele maculosa|Lope11−0407

Nephele maculosa|Lope11−0393

Nephele maculosa|TDGABb−085

Nephele maculosa|TDGABb−084

Nephele maculosa|TDGABb−057

Nephele maculosa|TDGABb−055

Nephele maculosa|TDGABb−0161

Nephele aequivalens|Lope11−0422

Nephele aequivalens|Lope11−0403

Nephele aequivalens|TDGABb−0174

Nephele aequivalens|TDGABb−022

Nephele aequivalens|TDGABb−023

Nephele aequivalens|TDGABb−024

Nephele bipartita|Lope11−0406

Nephele bipartita|Lope11−0399

Nephele comma|Lope11−0395

Hippotion celerio|Lope11−0895

Basiothia medea|Lope11−0703

Basiothia medea|TDGABb−0144

Basiothia medea|TDGABb−0145

Hippotion gracilis|Lope11−0862

Hippotion gracilis|Lope11−0401

Hippotion gracilis|Lope11−0691

Hippotion eson|Lope11−0702

Hippotion eson|Lope11−0693

Hippotion eson|Lope11−0400

Hippotion eson|TDGABb−028

Hippotion eson|TDGABb−029

Hippotion eson|Lope11−0699

Hippotion eson|Lope11−0696

Hippotion eson|Lope11−0388

Hippotion eson|Lope11−0689

Hippotion balsaminae|TDGABb−018

Hippotion osiris|TDGABb−016

Theretra orpheus|TDGABb−113

Daphnis nerii|Lope11−0857

Daphnis nerii|Lope11−0698

Daphnis nerii|TDGABb−011

Daphnis nerii|TDGABb−010

Daphnis nerii|TDGABb−0155

Daphnis nerii|Lope11−0404

Daphnis nerii|TDGABb−012

Acherontia atropos|Lope11−0968

Acherontia atropos|TDGABb−0147

Coelonia fulvinotata|TDGABb−0168

Coelonia fulvinotata|TDGABb−046

Coelonia fulvinotata|TDGABb−047

Poliana buchholzi|TDGABb−093

Poliana buchholzi|TDGABb−092

Poliana buchholzi|TDGABb−091

Agrius convolvuli|Lope11−0671

Agrius convolvuli|Lope11−0670

Agrius convolvuli|Lope11−0398

Agrius convolvuli|TDGABb−0118

Agrius convolvuli|Lope11−0669

Agrius convolvuli|TDGABb−0119

Agrius convolvuli|TDGABb−0120

Polyptychus orthographus|Lope11−0896

Polyptychus orthographus|TDGABb−0173

Polyptychus orthographus|TDGABb−039

Polyptychus orthographus|TDGABb−0170

Polyptychus orthographus|TDGABb−0172

Polyptychus orthographus|TDGABb−038

Polyptychus orthographus|Lope11−0704

Polyptychus orthographus|TDGABb−0171

Polyptychus orthographus|TDGABb−037

Polyptychus thihongae|TDGABb−0143

Polyptychus thihongae|TDGABb−0142

Polyptychus thihongae|TDGABb−0141

Polyptychus bernardii|TDGABb−0130

Polyptychus bernardii|TDGABb−0129

Polyptychus carteri|Lope11−0866

Polyptychus carteri|Lope11−0707

Polyptychus carteri|TDGABb−065

Polyptychus carteri|TDGABb−064

Polyptychus carteri|TDGABb−066

Polyptychus paupercula|Lope11−0710

Polyptychus paupercula|TDGAB−1824

Polyptychus paupercula|Lope11−0397

Polyptychus paupercula|Lope11−0706

Polyptychus paupercula|Lope11−0420

Polyptychus paupercula|Lope11−0416

Polyptychus paupercula|Lope11−0391

Polyptychus hollandi|Lope11−0389

Polyptychus trisecta|TDGABb−080

Polyptychus trisecta|TDGABb−079

Polyptychus andosa|Lope11−0427

Polyptychus andosa|TDGABb−0152

Polyptychus andosa|TDGABb−0151

Polyptychus herbuloti|Lope11−0880

Polyptychus herbuloti|Lope11−0409

Polyptychus nigriplaga|Lope11−0668

Polyptychus nigriplaga|Lope11−0384

Polyptychus nigriplaga|TDGABb−069

Polyptychus nigriplaga|TDGABb−068

Polyptychus nigriplaga|TDGABb−067

Polyptychus murinus|Lope11−0712

Polyptychus murinus|Lope11−0711

Polyptychus murinus|Lope11−0419

Polyptychus murinus|Lope11−0415

Polyptychus murinus|Lope11−0386

Polyptychus murinus|TDGABb−0122

Polyptychus murinus|TDGABb−0121

Polyptychus murinus|TDGABb−0124

Polyptychus murinus|TDGABb−0123

Neopolyptychus spurrelli|Lope11−0708

Neopolyptychus spurrelli|TDGABb−0117

Neopolyptychus spurrelli|TDGABb−0116

Neopolyptychus spurrelli|TDGABb−0115

Neopolyptychus spurrelli|Lope11−0417

Neopolyptychus spurrelli|TDGABb−0114

Rufoclanis rosea|Lope11−0705

Rufoclanis rosea|Lope11−0666

Rufoclanis rosea|Lope11−0382

Rufoclanis rosea|Lope11−0410

Chloroclanis virescens|TDGABb−0157

Chloroclanis virescens|TDGABb−077

Chloroclanis virescens|TDGABb−0156

Chloroclanis virescens|TDGABb−075

Chloroclanis virescens|TDGABb−076

Pseudoclanis occidentalis|TDGABb−072

Pseudoclanis admatha|TDGABb−071

Pseudoclanis admatha|TDGABb−070

Falcatula cymatodes lemairei|TDGABb−017

Andriasa contraria|TDGAB−1838

Andriasa contraria|TDGAB−1132

Oplerclanis rhadamistus|TDGABb−099

Oplerclanis rhadamistus|TDGABb−098

Acanthosphinx guessfeldti|TDGABb−009

Acanthosphinx guessfeldti|TDGABb−008

Acanthosphinx guessfeldti|TDGABb−007

Phylloxiphia mpassa|Lope11−0901

Phylloxiphia mpassa|Lope11−0860

Phylloxiphia mpassa|TDGABb−036

Phylloxiphia mpassa|TDGABb−0176

Phylloxiphia mpassa|Lope11−0888

Phylloxiphia mpassa|Lope11−0861

Phylloxiphia mpassa|TDGABb−0175

Phylloxiphia mpassa|Lope11−0408

Phylloxiphia mpassa|TDGABb−035

Phylloxiphia mpassa|TDGABb−034

Phylloxiphia mpassa|Lope11−0863

Phylloxiphia oweni|Lope11−0859

Phylloxiphia oweni|Lope11−0667

Phylloxiphia formosa|TDGABb−082

Phylloxiphia formosa|TDGABb−081

Phylloxiphia oberthueri|Lope11−0858

Phylloxiphia oberthueri|TDGABb−088

Phylloxiphia oberthueri|TDGABb−087

Phylloxiphia oberthueri|TDGABb−086

Phylloxiphia oberthueri|Lope11−0672

Rhadinopasa hornimani|Lope11−0890

Rhadinopasa hornimani|TDGABb−005

Rhadinopasa hornimani|Lope11−0392

Rhadinopasa hornimani|TDGABb−006

Rhadinopasa hornimani|TDGABb−004

Phylloxiphia illustris

|Lope11−0713

Phylloxiphia illustris

|TDGABb−102

Phylloxiphia illustris

|TDGABb−101

Phylloxiphia illustris

|TDGABb−100

Platysphinx vicaria|TDGABb−021

Platysphinx vicaria|TDGABb−020

Platysphinx vicaria|TDGABb−019

Xanthopan morganii|Lope11−0390

Xanthopan morganii|Lope11−0387

Xanthopan morganii|TDGABb−0163

Xanthopan morganii|TDGABb−027

Xanthopan morganii|TDGABb−025

Xanthopan morganii|TDGABb−0162

Xanthopan morganii|TDGABb−026

Spilomelinae|TDGAB−0738

Lasiocampidae|Lope11−0948

Lasiocampidae|Lope11−0930

Lasiocampidae|TDGAB−1893

Lasiocampidae|Lope11−0940

Lasiocampidae|Lope11−0924

Lasiocampidae|Lope11−0720

Lasiocampidae|TDGAB−0728

Lasiocampidae|TDGAB−1395

Lasiocampidae|TDGAB−1454

Lasiocampidae|TDGAB−1702

Lasiocampidae|TDGAB−1948

Lasiocampidae|Lope11−0186

Lasiocampidae|Lope11−0576

Lasiocampidae|Lope11−0577

Lasiocampidae|Lope11−0791

Lasiocampidae|Lope11−0294

Lasiocampidae|Lope11−0174

Lasiocampidae|TDGAB−1727

Lasiocampidae|TDGAB−1576

Lasiocampidae|TDGAB−0143

Lasiocampidae|TDGAB−1523

Leptometa|Lope11−0788

Leptometa|TDGAB−1026

Leptometa|TDGABb−314

Leptometa|Lope11−0188

Leptometa|TDGAB−1855

Leptometa|TDGAB−1735

Leptometa|TDGAB−1650

Leptometa|TDGAB−1448

Leptometa|TDGAB−1019

Leptometa|TDGAB−0340

Lasiocampidae|Lope11−0574

Lasiocampidae|TDGAB−2238

Lasiocampidae|TDGAB−0554

Lasiocampidae|TDGAB−0402

Gastroplakaeis|TDGABb−329

Gastroplakaeis forfic

ulatus|TDGAB−0366

Gastroplakaeis|TDGAB−1776

Gastroplakaeis|TDGAB−0134

Lasiocampidae|TDGAB−1655

Lasiocampidae|TDGAB−1478

Lasiocampidae|TDGAB−1409

Lasiocampidae|TDGAB−1207

Lasiocampidae|Lope11−0908

Lasiocampidae|Lope11−0071

Lasiocampidae|Lope11−0583

Lasiocampidae|TDGAB−1886

Lasiocampidae|TDGAB−1646

Lasiocampidae|TDGAB−1423

Lasiocampidae|TDGAB−0017

Lasiocampidae|TDGAB−0003

Lasiocampidae|TDGAB−2129

Lasiocampidae|Lope11−0575

Mallocampa audea|TDGAB−0532

Lasiocampidae|TDGAB−0380

Lasiocampidae|Lope11−0573

Lasiocampidae|TDGAB−1746

Lasiocampidae|TDGAB−0373

Lasiocampidae|TDGAB−0370

Gonopacha|TDGABb−313

Gonometa|TDGABb−376

Gonometa|TDGABb−375

Gonometa|TDGABb−374

Gonometa|TDGAB−0893

Lasiocampidae|TDGABb−339

Lasiocampidae|TDGAB−0903

Lasiocampidae|TDGAB−0353

Lasiocampidae|TDGABb−341

Lasiocampidae|TDGAB−1173

Gonobombyx|TDGAB−1359

Gonobombyx|TDGAB−0585

Gastroplakaeis|Lope11−0452

Gastroplakaeis|TDGAB−1895

Gastroplakaeis|TDGAB−1030

Gastroplakaeis|TDGAB−0970

Gastroplakaeis|TDGAB−0192

Gastroplakaeis|TDGAB−1027

Gastroplakaeis|TDGAB−2159

Gastroplakaeis|TDGAB−1161

Gastroplakaeis|TDGAB−1620

Lasiocampidae|TDGAB−1698

Lasiocampidae|TDGAB−0944

Lasiocampidae|TDGAB−1336

Lasiocampidae|TDGAB−1877

Lasiocampidae|TDGAB−1880

Lasiocampidae|Lope11−0078

Lasiocampidae|TDGAB−1438

Lasiocampidae|TDGABb−382

Lasiocampidae|TDGABb−381

Lasiocampidae|Lope11−0939

Lasiocampidae|TDGAB−0365

Lasiocampidae|Lope11−0584

Lasiocampidae|TDGAB−0072

Lasiocampidae|TDGAB−0950

Lasiocampidae|Lope11−0581

Lasiocampidae|Lope11−0580

Lasiocampidae|Lope11−0562

Lasiocampidae|TDGAB−1975

Lasiocampidae|Lope11−0933

Lasiocampidae|Lope11−0339

Lasiocampidae|Lope11−0923

Lasiocampidae|TDGAB−1678

Lasioca

mpidae|TDGAB−24

07

Lasioca

mpidae|TDGAB−22

06

Lasioca

mpidae|TDGAB−20

85

Lasioca

mpidae|TDGAB−02

32

Lasioca

mpidae|TDGAB−24

06

Lasioca

mpidae|TDGAB−22

12

Lasioca

mpidae|TDGAB−02

82

Lasioca

mpidae|Lope1

1−00

12

Lasioca

mpidae|TDGAB−22

42

Lasioca

mpidae|TDGAB−12

04

Lasioca

mpidae|TDGAB−08

53

Lasioca

mpidae|TDGAB−05

31

Lasioca

mpidae|TDGAB−09

62

Lasioca

mpidae|TDGAB−03

38

Lasioca

mpidae|Lope1

1−08

89

Lasioca

mpidae|TDGABb−34

7

Lasioca

mpidae|Lope1

1−01

41

Lasioca

mpidae|Lope1

1−00

74

Lasioca

mpidae|TDGAB−16

94

Lasioca

mpidae|Lope1

1−09

14

Lasioca

mpidae|Lope1

1−00

84

Lasioca

mpidae|Lope1

1−01

21

Lasioca

mpidae|Lope1

1−00

44

Lasioca

mpidae|Lope1

1−04

46

Stoermeri

ana|T

DGAB−1322

Lasioca

mpidae|Lope1

1−08

34

Lasioca

mpidae|Lope1

1−08

27

Lasioca

mpidae|TDGAB−23

72

Lasioca

mpidae|TDGAB−16

70

Lasioca

mpidae|TDGAB−15

93

Lasioca

mpidae|TDGAB−2

178

Lasioca

mpidae|TDGAB−1

060

Lasioca

mpidae|TDGAB−0

750

Lasioca

mpidae|TDGAB−1

011

Lasioca

mpidae|Lope1

1−03

51

Lasioca

mpidae|TDGAB−1

337

Lasioca

mpidae|TDGAB−1

189

Lasioca

mpidae|TDGAB−0

578

Lasioca

mpidae|TDGAB−1

039

Pachy

pasa|L

ope11−

0900

Pachy

pasa|L

ope11−

0187

Pachy

pasa|T

DGAB−169

9

Pachy

pasa|L

ope11−

0567

Pachy

pasa|T

DGAB−135

2

Pachy

pasa|T

DGAB−136

5

Pachy

pasa|T

DGAB−138

3

Pachy

pasa|T

DGAB−146

3

Pachy

pasa|T

DGAB−190

7

Pachy

pasa|T

DGABb−325

Pachy

pasa|L

ope11−

0438

Pachy

pasa|L

ope11−

0453

Pachy

pasa|L

ope11−

0563

Pachy

pasa|L

ope11−

0568

Pachy

pasa

|Lope

11−0

571

Pachy

pasa

|Lope

11−0

898

Pachy

pasa

|TDGAB−0

222

Lasio

campid

ae|Lo

pe11

−057

2

Lasio

campid

ae|Lo

pe11

−056

9

Lasio

campid

ae|TD

GAB−175

3

Lasio

campid

ae|TD

GABb−07

8

Lasio

campid

ae|TD

GABb−37

3

Lasio

campid

ae|TD

GAB−136

7

Lasio

campid

ae|TD

GABb−37

2

Lasio

campid

ae|Lo

pe11

−043

9

Lasio

campid

ae|TD

GAB−211

5

Lasio

campid

ae|Lo

pe11

−089

9

Lasio

campid

ae|Lo

pe11

−056

4

Lasio

campid

ae|Lo

pe11

−044

8

Lasio

campid

ae|TD

GAB−169

2

Lasio

campid

ae|TD

GAB−148

7

Lasio

campid

ae|TD

GAB−001

9

Pachy

pasa

recti

linea

ta|Lo

pe11

−079

9

Pachy

pasa

recti

linea

ta|Lo

pe11

−057

9

Pachy

pasa

recti

linea

ta|TD

GAB−072

9

Pachy

pasa

recti

linea

ta|TD

GAB−048

2

Lasio

campid

ae|Lo

pe11

−065

9

Lasio

campid

ae|TD

GAB−188

4

Lasio

campid

ae|TD

GAB−054

3

Lasio

campid

ae|Lo

pe11

−045

1

Lasio

campid

ae|TD

GABb−32

3

Lasio

campid

ae|TD

GAB−096

0

Lasio

campid

ae|TD

GAB−037

6

Lasio

campid

ae|TD

GAB−183

4

Lasio

campid

ae|TD

GAB−036

7

Lasio

campid

ae|TD

GAB−016

7

Lasio

campid

ae|Lo

pe11

−056

6

Lasio

campid

ae|Lo

pe11

−056

5

Lasio

campid

ae|Lo

pe11

−004

9

Lasio

campid

ae|TD

GAB−060

8

Lasio

campid

ae|TD

GAB−240

4

Lomad

onta

obsc

ura|L

ope1

1−09

43

Lomad

onta

obsc

ura|L

ope1

1−00

70

Lomad

onta

obsc

ura|L

ope1

1−08

37

Lomad

onta

obsc

ura|L

ope1

1−03

14

Lomad

onta

obsc

ura|T

DGAB−176

7

Lomad

onta

obsc

ura|T

DGAB−149

0

Lyman

triina

e|TDGAB−1

105

Lyman

triina

e|TDGAB−0

862

Lyman

triina

e|TDGAB−0

193

Lasio

campid

ae|TD

GAB−236

1

Lasio

campid

ae|TD

GAB−124

1

Zamar

ada|T

DGAB−223

2

Theti

dia|TD

GAB−068

0

Lasio

campid

ae|Lo

pe11

−065

3

Lasio

campid

ae|Lo

pe11

−006

2

Lasio

campid

ae|Lo

pe11

−005

0

Lasio

campid

ae|TD

GABb−34

4

Lasio

campid

ae|TD

GABb−33

1

Lasio

campid

ae|TD

GABb−33

0

Lasio

campid

ae|TD

GABb−35

4

Lasio

campid

ae|TD

GABb−35

3

Lasio

campid

ae|TD

GABb−35

2

Lasio

campid

ae|TD

GABb−35

1

Lasio

campid

ae|TD

GABb−35

0

Lasio

campid

ae|TD

GAB−141

0

Lasio

campid

ae|TD

GABb−33

5

Lasio

campid

ae|TD

GAB−183

9

Lasio

campid

ae|TD

GAB−174

3

Lasio

campid

ae|TD

GAB−141

1

Lasio

campid

ae|TD

GAB−161

5

Lasio

campid

ae|T

DGAB−140

4

Zamar

ada|L

ope1

1−07

96

Zam

arad

a|TDGAB−1

108

Zam

arad

a|Lop

e11−

0115

Zam

arad

a|TDGAB−2

304

Zam

arad

a|TDGAB−0

671

Zam

arad

a|TDGAB−1

956

Zam

arad

a|TDGAB−1

906

Zam

arad

a|TDG

AB−2

408

Zam

arad

a|TDG

AB−1

270

Zam

arad

a|TDG

AB−1

291

Zam

arad

a|TDG

AB−2

084

Zam

arad

a|TDG

AB−0

651

Zam

arad

a|TDG

AB−2

195

Zam

arad

a|TDG

AB−0

428

Zam

arad

a dol

oros

a|TDG

AB−1

484

Zam

arad

a dol

oros

a|TDG

AB−0

419

Zam

arad

a|TDG

AB−1

470

Zam

arad

a cor

robo

rata

|Lop

e11−

0345

Zam

arad

a cor

robo

rata

|Lop

e11−

0127

Zam

arad

a cor

robo

rata

|TDG

AB−0

079

Zam

arad

a cor

robo

rata

|TDG

AB−0

023

Zam

arad

a cor

robo

rata

|Lop

e11−

0003

Zam

arad

a cor

robo

rata

|TDG

AB−0

029

Zam

arad

a cor

robo

rata

|Lop

e11−

0119

Zam

arad

a cor

robo

rata

|TDG

AB−0

628

Zam

arad

a cor

robo

rata

|TDG

AB−0

644

Zam

arad

a cor

robo

rata

|TDG

AB−0

041

Zam

arad

a cor

robo

rata

|TDG

AB−2

268

Zam

arad

a cor

robo

rata

|TDG

AB−0

470

Zam

arad

a cor

robo

rata

|TDG

AB−2

193

Zam

arad

a|Lop

e11−

0365

Zam

arad

a|TDG

AB−0

229

Zam

arad

a|Lop

e11−

0131

Zam

arad

a|TDG

AB−2

287

Zam

arad

a|Lop

e11−

0128

Zam

arad

a|TDG

AB−2

314

Zam

arad

a|TDG

AB−2

168

Zam

arad

a|TDG

AB−0

625

Zam

arad

a|TDG

AB−2

100

Zam

arad

a|TDG

AB−2

209

Zam

arad

a|TDG

AB−2

182

Zam

arad

a|TDG

AB−1

491

Zam

arad

a|TDG

AB−2

188

Zam

arad

a|TDG

AB−1

574

Zam

arad

a|TDG

AB−1

229

Zam

arad

a|Lop

e11−

0772

Zam

arad

a|TDG

AB−2

096

Zam

arad

a|TDG

AB−1

245

Zam

arad

a|TDG

AB−1

442

Zam

arad

a|Lop

e11−

0477

Zam

arad

a|TDG

AB−0

228

Zam

arad

a|TDG

AB−2

410

Zam

arad

a|TDG

AB−2

319

Zam

arad

a|TDG

AB−2

247

Zam

arad

a|TD

GAB−

2187

Zam

arad

a|TD

GAB−

2169

Zam

arad

a|TD

GAB−

1277

Zam

arad

a|Lo

pe11

−051

1

Zam

arad

a|TD

GAB−

1531

Zam

arad

a|TD

GAB−

1481

Zam

arad

a|TD

GAB−

0055

Zam

arad

a|TD

GAB−

0059

Zam

arad

a|TD

GAB−

1822

Zam

arad

a|Lo

pe11

−047

6

Zam

arad

a|TD

GAB−

1962

Zam

arad

a|TD

GAB−

1502

Zam

arad

a|Lo

pe11

−051

4

Geom

etrid

ae|T

DGAB

−225

3

Geom

etrid

ae|T

DGAB

−204

1

Geom

etrid

ae|T

DGAB

−043

3

Geom

etrid

ae|T

DGAB

−128

7

Geom

etrid

ae|T

DGAB

−128

0

Geom

etrid

ae|T

DGAB

−031

5

Pycn

oste

ga fu

mos

a|TD

GAB−

1505

Pycn

oste

ga fu

mos

a|TD

GAB−

1116

Geom

etrid

ae|T

DGAB

−150

3

Geom

etrid

ae|T

DGAB

−224

3

Geom

etrid

ae|T

DGAB

−170

5

Geom

etrid

ae|T

DGAB

−049

6

Geom

etrid

ae|T

DGAB

−219

9

Geom

etrid

ae|T

DGAB

−129

7

Cram

bida

e|Lo

pe11

−082

6

Cram

bida

e|TD

GAB−

1612

Cram

bida

e|TD

GAB−

1427

Cram

bida

e|TD

GAB−

0794

Cram

bida

e|TD

GAB−

0785

Cram

bida

e|TD

GAB−

0461

Thyr

idid

ae|T

DGAB

−017

8

Thyr

idid

ae|T

DGAB

−218

0

Anap

he p

anda

|TDG

AB−0

542

Pyra

lidae

|Lop

e11−

0605

Pyra

lidae

|TDG

AB−1

827

Pyra

lidae

|Lop

e11−

0122

Pyra

lidae

|TDG

AB−1

369

Geom

etrid

ae|L

ope1

1−04

79

Opis

thod

ontia

|TDG

AB−2

003

Opis

thod

ontia

|TDG

AB−0

762

Lasi

ocam

pida

e|TD

GAB−

0997

Cram

bida

e|Lo

pe11

−032

7

Cram

bida

e|TD

GAB−

0094

Thyr

idid

ae|T

DGAB

−047

5

Noto

dont

idae

|TDG

AB−2

368

Lepi

dopt

era|

TDGA

B−20

56

Napr

epa|

TDGA

B−03

74

Noto

dont

idae

|TDG

AB−1

086

Coss

idae

|Lop

e11−

0907

Psyc

hida

e|TD

GAB−

1010

Zeuz

erin

ae|L

ope1

1−06

87

Zeuz

erin

ae|T

DGAB

b−33

2

Zeuz

erin

ae|L

ope1

1−04

49

Met

arbe

linae

|TDG

AB−1

374

Met

arbe

linae

|Lop

e11−

0299

Met

arbe

linae

|TDG

AB−0

292

Met

arbe

linae

|TDG

AB−1

549

Met

arbe

linae

|TDG

AB−0

721

Lym

antri

inae

|Lop

e11−

0013

Mar

max

|TDG

AB−1

671

Mar

max

|TDG

AB−1

616

Mar

max

|TDG

AB−0

737

Mar

max

|TDG

AB−0

660

Mar

max

|TDG

AB−0

654

Mar

max

|TDG

AB−0

648

Mar

max

|TDG

AB−0

077

Mar

max

|TDG

AB−0

016

Mar

max

|TDG

AB−0

015

Mar

max

|TDG

AB−0

013

Mar

max

|TDG

AB−0

139

Mar

max

|TDG

AB−0

106

Mar

max

|TDG

AB−0

096

Mar

max

|TDG

AB−0

081

Mar

max

|TDG

AB−0

678

Mar

max

|TDG

AB−0

014

Mar

max

|TDG

AB−0

744

Mar

max

|TDG

AB−0

052

Geo

met

ridae

|Lop

e11−

0870

Geo

met

ridae

|Lop

e11−

0344

Phia

la M

GAB

sp1|

Lope

11−0

732

Phia

la M

GAB

sp1|

Lope

11−0

731

Phia

la M

GAB

sp1|

TDG

AB−1

930

Phia

la M

GAB

sp1|

TDG

AB−1

867

Phia

la M

GAB

sp1|

TDG

AB−1

850

Phia

la M

GAB

sp1|

TDG

AB−1

835

Phia

la M

GAB

sp1|

TDG

AB−1

765

Phia

la M

GAB

sp1|

TDG

AB−1

750

Phia

la M

GAB

sp1|

TDG

AB−1

731

Phia

la M

GAB

sp1|

TDG

AB−1

717

Phia

la M

GAB

sp1|

TDG

AB−0

799

Phia

la M

GAB

sp1|

TDG

AB−0

790

Phia

la M

GAB

sp1|

TDG

AB−0

627

Phia

la M

GAB

sp1|

TDG

AB−0

621

Phia

la M

GAB

sp1|

TDG

AB−0

056

Phia

la M

GAB

sp1|

TDG

AB−0

018

Phia

la M

GAB

sp1|

TDG

AB−0

011

Phia

la M

GAB

sp1|

TDG

AB−0

010

Phia

la M

GAB

sp1|

TDG

AB−0

610

Phia

la M

GAB

sp2|

TDG

ABb−

358

Phia

la M

GAB

sp2|

TDG

ABb−

356

Phia

la M

GAB

sp2|

TDG

ABb−

355

Phia

la M

GAB

sp2|

TDG

AB−1

744

Phia

la M

GAB

sp2|

TDG

ABb−

357

Mix

ocer

a|Lo

pe11

−099

6

Mix

ocer

a|Lo

pe11

−048

4

Geo

dena

|Lop

e11−

0816

Geo

dena

|Lop

e11−

0107

Enno

min

ae|T

DGAB

−152

4

Enno

min

ae|T

DGAB

−087

9

Pitth

ea|T

DGAB

−181

0

Pitth

ea|T

DGAB

−170

8

Pitth

ea|T

DGAB

−012

8

Pitth

ea|T

DGAB

−003

1

Pitth

ea|T

DGAB

−012

7

Pitth

ea|T

DGAB

−104

5

Pitth

ea|T

DGAB

−086

9

Geo

met

ridae

|Lop

e11−

0992

Geo

met

ridae

|Lop

e11−

0793

Geo

met

ridae

|Lop

e11−

0483

Geo

met

ridae

|TDG

AB−2

384

Geo

met

ridae

|TDG

AB−0

260

Geo

met

ridae

|TDG

AB−1

603

Geo

met

ridae

|TDG

AB−0

777

Geo

met

ridae

|Lop

e11−

0016

Geo

met

ridae

|TDG

AB−0

885

Geo

met

ridae

|TDG

AB−1

144

Geo

met

ridae

|TDG

AB−0

699

Anth

arm

oste

s|Lo

pe11

−077

5

Anth

arm

oste

s|Lo

pe11

−048

5

Anth

arm

oste

s|Lo

pe11

−002

5

Anth

arm

oste

s|TD

GAB

−229

4

Anth

arm

oste

s|TD

GAB

−218

3

Anth

arm

oste

s|Lo

pe11

−076

5

Anth

arm

oste

s|TD

GAB

−181

6

Anth

arm

oste

s|TD

GAB

−112

3

Geo

met

ridae

|TDG

AB−0

439

Geo

met

ridae

|Lop

e11−

0021

Geo

met

ridae

|TDG

AB−1

157

Geo

met

ridae

|Lop

e11−

0813

Geo

met

ridae

|TDG

AB−0

265

Geo

met

ridae

|Lop

e11−

0497

Geo

met

ridae

|TDG

AB−2

181

Geo

met

ridae

|TDG

AB−1

265

Geo

met

ridae

|Lop

e11−

0815

Geo

met

ridae

|Lop

e11−

0478

Geo

met

ridae

|TDG

AB−2

307

Geo

met

ridae

|Lop

e11−

0020

Geo

met

ridae

|TDG

AB−2

235

Geo

met

ridae

|TDG

AB−2

192

Geo

met

ridae

|Lop

e11−

0482

Geo

met

ridae

|TDG

AB−1

310

Geo

met

ridae

|TDG

AB−0

991

Geo

met

ridae

|TDG

AB−1

526

Geo

met

ridae

|TDG

AB−2

348

Pras

inoc

yma

fusc

a|TD

GAB

−187

2

Pras

inoc

yma

fusc

a|TD

GAB

−075

7

Pras

inoc

yma

fusc

a|TD

GAB

−066

2

Pras

inoc

yma

fusc

a|TD

GAB

−061

7

Geo

met

rinae

|TDG

AB−0

700

Andr

ozeu

gma|

Lope

11−0

027

Andr

ozeu

gma|

TDG

AB−0

434

Loph

osto

la|T

DGAB

−220

4

Geo

met

ridae

|TDG

AB−1

426

Geo

met

ridae

|TDG

AB−0

381

Geo

met

ridae

|TDG

AB−1

274

Geo

met

ridae

|Lop

e11−

0017

Geo

met

ridae

|Lop

e11−

0015

Geo

met

ridae

|TDG

AB−2

200

Geo

met

ridae

|TDG

AB−1

056

Geo

met

ridae

|TDG

AB−1

651

Geo

met

ridae

|TDG

AB−2

234

Geo

met

ridae

|TDG

AB−1

259

Loph

orrh

achi

a|Lo

pe11

−001

4

Loph

orrh

achi

a pa

lliat

a|TD

GAB

−049

3

Loph

orrh

achi

a pa

lliat

a|TD

GAB

−007

4

Geo

met

ridae

|TDG

AB−2

184

Ping

asa|

Lope

11−0

766

Ping

asa|

TDG

AB−2

305

Ping

asa|

TDG

AB−0

191

Ping

asa|

Lope

11−0

496

Ping

asa|

TDG

AB−2

344

Ping

asa|

TDG

AB−0

596

Ping

asa|

TDG

AB−2

099

Ping

asa|

TDG

AB−0

384

Ping

asa|

TDG

AB−0

632

Ping

asa|

TDG

AB−0

535

Thal

asso

des|

Lope

11−0

026

Thal

asso

des|

Lope

11−0

024

Thal

asso

des|

Lope

11−0

023

Thal

asso

des|

TDG

AB−1

131

Geo

met

ridae

|TDG

AB−1

473

Geo

met

ridae

|Lop

e11−

0941

Geo

met

ridae

|Lop

e11−

0495

Geo

met

ridae

|Lop

e11−

0287

Geo

met

ridae

|Lop

e11−

0144

Geo

met

ridae

|TDG

AB−1

237

Geo

met

ridae

|TDG

AB−2

172

Geo

met

ridae

|TDG

AB−0

247

Geo

met

ridae

|TDG

AB−1

104

Geo

met

ridae

|Lop

e11−

0360

Meg

adre

pana

cin

erea

|Lop

e11−

0047

Meg

adre

pana

cin

erea

|TDG

ABb−

378

Meg

adre

pana

cin

erea

|TDG

AB−2

357

Meg

adre

pana

cin

erea

|TDG

AB−2

142

Meg

adre

pana

cin

erea

|TDG

AB−1

817

Sphi

ngom

ima|

TDG

ABb−

377

Sphi

ngom

ima|

TDG

AB−0

814

Sphi

ngom

ima|

TDG

AB−2

382

Sphi

ngom

ima|

TDG

AB−0

386

Sphi

ngom

ima|

TDG

AB−0

383

Sphi

ngom

ima|

TDG

AB−0

841

Sphi

ngom

ima|

TDG

AB−1

160

Mia

ntoc

hora

inte

rrup

ta|L

ope1

1−07

71

Mia

ntoc

hora

inte

rrup

ta|L

ope1

1−07

70M

iant

ocho

ra|T

DGAB

b−34

9M

iant

ocho

ra|T

DGAB

−089

8M

iant

ocho

ra|T

DGAB

−060

2M

iant

ocho

ra|T

DGAB

−023

0M

iant

ocho

ra|T

DGAB

−023

1M

iant

ocho

ra|T

DGAB

−047

8M

iant

ocho

ra|T

DGAB

−112

6G

eom

etrid

ae|T

DGAB

−109

2G

eom

etrid

ae|T

DGAB

−211

2G

eom

etrid

ae|T

DGAB

−005

8G

eom

etrid

ae|T

DGAB

−092

6G

eom

etrid

ae|T

DGAB

−113

5G

eom

etrid

ae|T

DGAB

−098

8G

eom

etrid

ae|T

DGAB

−098

0M

iant

ocho

ra v

ener

ata|

TDG

AB−1

120

Geo

met

ridae

|TDG

AB−2

291

Geo

met

ridae

|TDG

AB−2

402

Geo

met

ridae

|TDG

AB−2

337

Geo

met

ridae

|TDG

AB−2

335

Geo

met

ridae

|TDG

AB−0

846

Geo

met

ridae

|TDG

AB−1

115

Geo

met

ridae

|Lop

e11−

0498

Geo

met

ridae

|TDG

AB−1

100

Geo

met

ridae

|TDG

AB−0

587

Geo

met

ridae

|Lop

e11−

0488

Geo

met

ridae

|TDG

AB−1

069

Geo

met

ridae

|TDG

AB−0

820

Colo

cleo

ra in

divi

sa|T

DGAB

−039

2Co

locl

eora

indi

visa

|TDG

AB−0

196

Colo

cleo

ra|T

DGAB

−034

3Co

locl

eora

|TDG

AB−0

252

Bist

on|T

DGAB

−115

9Bi

ston

|TDG

AB−1

149

Bist

on|T

DGAB

−113

7Bi

ston

|TDG

AB−1

121

Bist

on|T

DGAB

−102

2Bi

ston

|TDG

AB−1

017

Bist

on|T

DGAB

−098

3B

isto

n|TD

GA

B−0

935

Bis

ton|

TDG

AB

−042

3B

isto

n|TD

GA

B−0

220

Bis

ton|

TDG

AB

−021

4B

isto

n|TD

GA

B−0

166

Enno

min

ae|T

DG

AB

−108

9En

nom

inae

|TD

GA

B−0

597

Enno

min

ae|T

DG

AB

−020

5En

nom

inae

|TD

GA

B−0

957

Geo

met

ridae

|TD

GA

B−1

048

Geo

met

ridae

|TD

GA

B−0

566

Geo

met

ridae

|TD

GA

B−1

296

Geo

met

ridae

|TD

GA

B−0

961

Geo

met

ridae

|TD

GA

B−1

090

Geo

met

ridae

|TD

GA

B−1

211 9870−11epoL|ai

mraobotcueZ6170−11epoL|ai

mraobotcueZ Zeuc

tobo

arm

ia|L

ope1

1−05

08Ze

ucto

boar

mia

|Lop

e11−

0500 5500−11epoL|ai

mraobotcueZ9580−

BA

GDT|ai

mraobotcueZ7310−11epoL|ai

mraobotcueZ9011−

BA

GDT|ai

mraobotcueZ2050−11epoL|ai

mraobotcueZ8110−11epoL|ai

mraobotcueZ3391−

BA

GDT|ai

mraobotcueZ2490−

BA

GDT|ai

mraobotcueZ1470−

BA

GDT|ai

mraobotcueZ4581−

BA

GDT|ai

mraobotcueZ2761−

BAG

DT|aimraobotcueZ

9321−B

AG

DT|aimraobotcueZ

5360−B

AG

DT|aimraobotcueZ

2341−B

AG

DT|aimraobotcueZ

7110−11epoL|aimraobotcueZ

2460−B

AG

DT|aimraobotcueZ

7922−B

AG

DT|aimraobotcueZ

3480−B

AG

DT|aimraobotcueZ Ze

ucto

boar

mia

|TD

GA

B−0

905

Cle

ora|

TDG

AB

−163

8Ze

ucto

boar

mia

|TD

GA

B−2

198Zeuctoboarm

ia|TDG

AB

−1323Zeuctoboarm

ia|TDG

AB

−0650Zeuctoboarm

ia|TDG

AB

−0481 2610

−B

AG

DT|a

imr

aobo

tcue

Z86

70−1

1epo

L|ai

mrao

botc

ueZ

6930

−B

AG

DT|a

imr

aobo

tcue

Z72

20−

BA

GDT

|iht

or se

dond

oroh

C77

32−

BA

GDT

|ead

irte

moe

G15

01−

BA

GDT

|ead

irte

moe

G49

50−

BA

GDT

|ead

irte

moe

G70

50−

BA

GDT

|ead

irte

moe

G00

20−

BA

GDT

|ead

irte

moe

G30

12−

BA

GDT

|ead

irte

moe

G55

50−

BA

GDT

|ead

irte

moe

G92

91−

BA

GDT

|ead

irte

moe

G33

11−

BA

GDT

|ead

irte

moe

G15

80−

BA

GDT

|ead

irte

moe

G76

50−

BA

GDT

|ead

irte

moe

G26

50−

BA

GDT

|ead

irte

moe

G96

10−

BA

GDT

|ead

irte

moe

G70

12−

BA

GDT

|ead

irte

moe

G67

21−

BA

GDT

|ead

irte

moe

G63

02−

BA

GDT

|ead

irte

moe

G64

21−

BA

GDT

|ead

irte

moe

G95

10−

BA

GDT

|ead

irte

moe

G27

10−

BA

GDT

|ead

irte

moe

G28

30−

BA

GDT

|ead

irte

moe

G40

40−

BA

GDT

|ead

irte

moe

G08

40−

BA

GDT

|ead

irte

moe

G48

50−

BA

GDT

|ead

irte

moe

G82

80−

BA

GDT

|ead

irte

moe

G78

70−1

1epo

L|no

tsi

B Biston|TDG

AB

−1176B

iston|Lope11−0778B

iston|Lope11−0504B

iston|Lope11−0503B

iston|Lope11−0111B

iston|TDG

AB

−0130 3060

−B

AG

DT|n

otsi

B33

60−

BA

GDT

|not

siB

6470

−B

AG

DT|n

otsi

B Biston|TDGAB−1456

Biston|TDGAB−1501

Biston|Lope11−0028Biston|Lope11−0051Biston|Lope11−0067Biston|Lope11−0109Biston|Lope11−0110Biston|Lope11−0494Biston|Lope11−0493Buzura|Lope11−0112Buzura|TDG

AB−0568Buzura|TDG

AB−0385G

eometridae|TDG

AB−2329G

eometridae|TDG

AB−2300G

eometridae|TDG

AB−2102G

eometridae|Lope11−0491

Geom

etridae|Lope11−0492G

eometridae|TDG

AB−0565G

eometridae|TDG

AB−0414G

eometridae|TDG

AB−0268G

ongropteryx|TDGAB−2336

Gongropteryx|TDG

AB−0170G

ongropteryx|TDGAB−0618

Gongropteryx|TDG

AB−0255G

eometridae|TDG

AB−1806G

eometridae|TDG

AB−1766G

eometridae|TDG

AB−0786Eulycia|TDG

AB−1778Eulycia|TDG

AB−1775Eulycia|TDG

AB−0118Eulycia|TDG

AB−0097Eulycia|TDG

AB−1514Eulycia|TDG

AB−0708Eulycia|TDG

AB−0123G

eometridae|TDG

AB−1283G

eometridae|TDG

AB−2312G

eometridae|TDG

AB−0498G

eometridae|TDG

AB−0974G

eometridae|TDG

AB−0484G

eometridae|TDG

AB−0412G

eometridae|TDG

AB−0271G

eometridae|TDG

AB−0202G

eometridae|TDG

AB−0593G

eometridae|TDG

AB−0518G

eometridae|TDG

AB−2303G

eometridae|TDG

AB−1275G

eometridae|TDG

AB−0190G

eometridae|TDG

AB−2290G

eometridae|Lope11−0507

Geom

etridae|Lope11−0506G

eometridae|TDG

AB−2266

Geom

etridae|TDGAB−2281

Geom

etridae|TDGAB−2205

Geom

etridae|TDGAB−0491

Geom

etridae|TDGAB−1118

Geom

etridae|TDGAB−2383

Geom

etridae|TDGAB−1328

Comibaena|TDG

AB−1916

Geom

etridae|Lope11−0844

Cleora|Lope11−0761G

eometridae|Lope11−0134

Geom

etridae|TDGAB−1099

Dorsifulcrum|TDG

AB−2147

Geom

etridae|TDGAB−2092

Geom

etridae|TDGAB−2387

Geom

etridae|TDGAB−2227

Geom

etridae|TDGAB−0413

Geom

etridae|TDGAB−1315

Geom

etridae|TDGAB−1251

Geom

etridae|TDGAB−0263

Geom

etridae|TDGAB−2301

Geom

etridae|TDGAB−2269

Geom

etridae|TDGAB−0469

Geom

etridae|TDGAB−0185

Geom

etridae|TDGAB−2288

Geom

etridae|TDGAB−1747

Geom

etridae|TDGAB−0287

Geom

etridae|TDGAB−0212

Acrostatheusis|Lope11−0781

Acrostatheusis|TDGAB−0638

Acrostatheusis|Lope11−0779

Acrostatheusis|TDGAB−2355

Geom

etridae|Lope11−0501

Geom

etridae|TDGAB−2318

Geom

etridae|TDGAB−2164

Geom

etridae|TDGAB−2091

Geom

etridae|TDGAB−2216

Geom

etridae|TDGAB−2111

Geom

etridae|TDGAB−0977

Chiasmia albivia|TDG

AB−0436

Cleora boetschi|Lope11−0934

Cleora boetschi|TDGAB−0674

Cleora boetschi|TDGAB−0477

Cleora boetschi|Lope11−0512

Cleora boetschi|TDGAB−0925

Cleora boetschi|TDGAB−0735

Cleora boetschi|TDGAB−2233

Cleora boetschi|TDGAB−0557

Cleora boetschi|Lope11−0773

Cleora boetschi|Lope11−0767

Cleora boetschi|TDGAB−2148

Cleora boetschi|TDGAB−0755

Cleora|Lope11−0769

Cleora|Lope11−0762

Cleora|TDGAB−1887

Cleora|TDGAB−0165

Cleora oculata|Lope11−0764

Cleora oculata|TDGAB−2177

Cleora oculata|TDGAB−2150

Cleora oculata|TDGAB−0804

Cleora oculata|TDGAB−1504

Cleora oculata|TDGAB−2104

Cleora oculata|TDGAB−2229

Cleora oculata|TDGAB−1467

Cleora oculata|TDGAB−1268

Cleora oculata|TDGAB−1106

Cleora oculata|TDGAB−0667

Cleora|TDGAB−2088

Cleora|TDGAB−1146

Cleora|TDGAB−0604

Cleora|TDGAB−2039

Cleora|Lope11−0838

Cleora|Lope11−0499

Cleora|Lope11−0114

Cleora|TDGAB−1460

Cleora|TDGAB−2186

Cleora|TDGAB−1858

Cleora|TDGAB−0749

Cleora|TDGAB−0796

Cleora|TDGAB−0781

Cleora|TDGAB−0620

Cleora|TDGAB−0945

Cleora|TDGAB−1226

Cleora|TDGAB−1551

Cleora|TDGAB−1112

Cleora|TDGAB−0788

Cleora|TDGAB−1479

Cleora|TDGAB−2338

Cleora|TDGAB−2137

Cleora|TDGAB−0723

Cleora|TDGAB−0773

Cleora|TDGAB−0050

Cleora|TDGAB−0042

Cleora|TDGAB−2313

Cleora|TDGAB−0787

Cleora|TDGAB−0088

Cleora|TDGAB−1900

Cleora|TDGAB−1449

Cleora|TDGAB−1709

Cleora radula leptopasta|TDGAB−1721

Cleora dargei|TDGAB−2359

Cleora dargei|TDGAB−0075

Cleora rostella|Lope11−0539

Cleora rostella|Lope11−0509

Cleora rostella|TDGAB−1474

Cleora rostella|TDGAB−1431

Cleora rostella|Lope11−0095

Cleora rostella|TDGAB−0634

Cleora rostella|TDGAB−0078

Zeuctoboarmia|Lope11−0795

Zeuctoboarmia|Lope11−0794

Zeuctoboarmia|Lope11−0783

Zeuctoboarmia|Lope11−0780

Zeuctoboarmia|Lope11−0763

Zeuctoboarmia|Lope11−0116

Zeuctoboarmia|Lope11−0113

Zeuctoboarmia|Lope11−0065

Zeuctoboarmia|Lope11−0019

Zeuctoboarmia|Lope11−0010

Zeuctoboarmia|TDG

AB−2425

Zeuctoboarmia|TDG

AB−2285

Zeuctoboarmia|TDG

AB−1860

Zeuctoboarmia|TDG

AB−1617

Zeuctoboarmia|TDG

AB−1381

Zeuctoboarmia|TDGAB−0805

Zeuctoboarmia|TDGAB−0789

Zeuctoboarmia|TDGAB−0640

Zeuctoboarmia|TDGAB−0600

Zeuctoboarmia|TDGAB−0410

Geometridae|Lope11−0305

Geometridae|TDGAB−0067

Zeuctoboarmia|TDGAB−2165

Geometridae|TDGAB−0823

Zeuctoboarmia|TDGAB−0492

Zeuctoboarmia|TDGAB−0406

Geometridae|TDGAB−0224

Zeuctoboarmia|TDGAB−1286

Zeuctoboarmia|TDGAB−0824

Zeuctoboarmia|TDGAB−0157

Zeuctoboarmia|TDGAB−0815

Zeuctoboarmia|TDGAB−1113

Zeuctoboarmia|TDGAB−1124

Zeuctoboarmia|TDGAB−1001

Geometridae|TDGAB−0864

Geometridae|TDGAB−0455

Geometridae|TDGAB−1340

Tortricidae|Lope11−0646

Ennominae|TDGAB−1641

Ennominae|TDGAB−1140

Amusaron kolga|TDGABb−334

Racinoa|TDGAB−1261

Geometridae|TDGAB−2223

Geometridae|TDGAB−1235

Geometridae|TDGAB−0296

Scopula lactaria|TDGAB−1964

Idaea pulveraria|TDGAB−1792

Somatina chalyboeata|TDGAB−0631

Anisodes diplosticta|TDGAB−0090

Lasiocampidae|Lope11−0570

Lasiocampidae|Lope11−0177

Lasiocampidae|Lope11−0561

Lasiocampidae|TDGAB−1143

Lasiocampidae|TDGAB−0868

Lasiocampidae|TDGAB−0223

Lasiocampidae|TDGAB−1194

Lasiocampidae|TDGAB−0352

Lasiocampidae|TDGAB−1175

Epiplema|TDGAB−0063

Pyralidae|Lope11−0950

Pyralidae|TDGAB−1619

Pyralidae|TDGAB−1560

Pyralidae|TDGAB−1360

Pyralidae|TDGAB−1622

Pyralidae|TDGAB−1073

Pyralidae|Lope11−0375

Pyralidae|Lope11−0947

Pyralidae|TDGAB−2224

Pyralidae|Lope11−0820

Pyralidae|Lope11−0656

Pyralidae|Lope11−0626

Pyralidae|Lope11−0306

Pyralidae|TDGAB−0716

Pyralidae|TDGAB−1679

Pyralidae|TDGAB−1329

Pyralidae|TDGAB−1543

Pyralidae|TDGAB−1853

Pyralidae|TDGAB−1624

Pyralidae|TDGAB−1497

Pyralidae|TDGAB−0675

Pyralidae|TDGAB−0133

Pyralidae|TDGAB−1443

Pyralidae|TDGAB−0108

Pyralidae|TDGAB−1790

Pyralidae|TDGAB−1272

Pyralidae|TDGAB−1166

Pyralidae|TDGAB−0267

Pyralidae|TDGAB−0233

Pyralidae|Lope11−0822

Pyralidae|TDGAB−0607

Pyralidae|Lope11−0309

Pyralidae|Lope11−0372

Pyralidae|Lope11−0356

Pyralidae|TDGAB−2418

Pyralidae|TDGAB−2254

Pyralidae|TDGAB−2246

Pyralidae|TDGAB−2240

Pyralidae|TDGAB−2156

Pyralidae|TDGAB−2070

Pyralidae|TDGAB−2059

Pyralidae|TDGAB−0551

Pyralidae|TDGAB−0550

Pyralidae|TDGAB−0549

Pyralidae|TDGAB−0311

Pyralidae|TDGAB−0302

Pyralidae|TDGAB−2432

Pyralidae|TDGAB−2379

Pyralidae|TDGAB−1569

Pyralidae|TDGAB−0198

Pyralidae|TDGAB−0495

Pyralidae|TDGAB−0656

Pyralidae|TDGAB−0706

Pyralidae|TDGAB−1037

Pyralidae|TDGAB−1959

Pyralidae|TDGAB−2047

Pyralidae|TDGAB−2050

Pyralidae|TDGAB−2051

Pyralidae|TDGAB−2143

Pyralidae|TDGAB−2251

Pyralidae|TDGAB−1309

Pyralidae|TDGAB−0467

Pyralidae|TDGAB−0471

Pyralidae|Lope11−0617

Pyralidae|TDGAB−2250

Pyralidae|TDGAB−2079

Pyralidae|TDGAB−1952

Pyralidae|TDGAB−1660

Pyralidae|TDGAB−0792

Pyralidae|TDGAB−1951

Pyralidae|TDGAB−0119

Pyralidae|TDGAB−0099

Pyralidae|TDGAB−0084

Pyralidae|Lope11−0328

Pyralidae|TDGAB−2132

Pyralidae|TDGAB−1043

Pyralidae|TDGAB−0546

Pyralidae|TDGAB−1998

Pyralidae|TDGAB−1797

Pyralidae|TDGAB−0124

Pyralidae|TDGAB−2194

Pyralidae|TDGAB−2166

Pyralidae|TDGAB−2008

Pyralidae|TDGAB−0534

Pyralidae|TDGAB−1988

Pyralidae|TDGAB−1341

Pyralidae|TDGAB−2049

Pyralidae|TDGAB−1192

Pyralidae|TDGAB−1789

Pyralidae|TDGAB−0115

Pyralidae|TDGAB−0116

Pyralidae|TDGAB−0122

Pyralidae|TDGAB−1440

Pyralidae|TDGAB−1441

Pyralidae|TDGAB−0068

Pyralidae|Lope11−0374

Pyralidae|TDGAB−0684

Pyralidae|TDGAB−0073

Pyralidae|TDGAB−1647

Pyralidae|TDGAB−1304

Pyralidae|TDGAB−1980

Pyralidae|TDGAB−1545

Pyralidae|TDGAB−1871

Pyralidae|TDGAB−1862

Pyralidae|TDGAB−1802

Pyralidae|TDGAB−1496

Pyralidae|TDGAB−1663

Pyralidae|TDGAB−0703

Pyralidae|TDGAB−1430

Pyralidae|TDGAB−1799

Pyralidae|TDGAB−2133

Pyralidae|TDGAB−1101

Pyralidae|TDGAB−0188

Pyralidae|TDGAB−1301

Pyralidae|TDGAB−1530

Pyralidae|TDGAB−1480

Pyralidae|TDGAB−1796

Pyralidae|TDGAB−1447

Pyralidae|Lope11−0330

Pyralidae|TDGAB−0948

Pyralidae|TDGAB−1710

Pyralidae|TDGAB−0710

Pyralidae|TDGAB−0679

Pyralidae|TDGAB−0473

Pyralidae|Lope11−0332

Pyralidae|TDGAB−1726

Pyralidae|TDGAB−0474

Pyralidae|TDGAB−0146

Pyralidae|TDGAB−2421

Galleria mellonella|Lope11−0651

Pyralidae|Lope11−0543

Pyralidae|TDGAB−1076

Pyralidae|TDGAB−1009

Pyralidae|TDGAB−0992

Pyralidae|Lope11−0595

Pyralidae|Lope11−0022

Pyralidae|TDGAB−0144

Pyralidae|TDGAB−1712

Pyralidae|TDGAB−0615

Pyralidae|TDGAB−1415

Pyralidae|TDGAB−1575

Pyralidae|TDGAB−0126

Pyralidae|TDGAB−1894

Pyralidae|TDGAB−1495

Pyralidae|TDGAB−1769

Pyralidae|TDGAB−1689

Pyralidae|TDGAB−0719

Pyralidae|TDGAB−0437

Pyralidae|TDGAB−2316

Pyralidae|TDGAB−1711

Pyralidae|TDGAB−0751

Pyralidae|TDGAB−1202

Pyralidae|TDGAB−0261

Pyralidae|TDGAB−1184

Pyralidae|Lope11−0840

Pyralidae|TDGAB−1955

Pyralidae|TDGAB−1509

Pyralidae|TDGAB−0709

Pyralidae|TDGAB−0303

Pyralidae|TDGAB−1812

Pyralidae|Lope11−0322

Pyralidae|TDGAB−0695

Pyralidae|TDGAB−1969

Pyralidae|TDGAB−1967

Pyralidae|TDGAB−1965

Pyralidae|TDGAB−1899

Pyralidae|TDGAB−1420

Pardomima|Lope11−0853

Pardomima|TDGAB−0686

Crambidae|TDGAB−1724

Crambidae|Lope11−0550

Crambidae|Lope11−0063

Palpita bonjongalis|TDGAB−1844

Palpita bonjongalis|TDGAB−1613

Palpita bonjongalis|TDGAB−0748

Palpita bonjongalis|TDGAB−0100

Palpita bonjongalis|TDGAB−0025

Palpita bonjongalis|TDGAB−0026

Palpita bonjongalis|TDGAB−0030

Crambidae|Lope11−0545

Crambidae|TDGAB−2167

Crambidae|TDGAB−1997

Crambidae|TDGAB−1781

Agathodes|TDGAB−0797

Spilomelinae|TDGAB−1730

Spilomelinae|TDGAB−1609

Spilomelinae|TDGAB−0062

Crambidae|Lope11−0835

Crambidae|TDGAB−1203

Crambidae|TDGAB−1722

Crambidae|TDGAB−1706

Crambidae|TDGAB−1507

Crambidae|TDGAB−1354

Crambidae|TDGAB−0732

Crambidae|TDGAB−0623

Crambidae|TDGAB−1347

Crambidae|Lope11−0830

Crambidae|TDGAB−0643

Crambidae|Lope11−0829

Crambidae|Lope11−0547

Crambidae|TDGAB−1227

Crambidae|TDGAB−0309

Dolicharthria|Lope11−0373

Crambidae|TDGAB−2322

Crambidae|TDGAB−0698

Crambidae|TDGAB−0661

Crambidae|Lope11−0549

Crambidae|TDGAB−2385

Crambidae|Lope11−0548

Syllepte clementsi|TDGAB−1630

Syllepte clementsi|TDGAB−0647

Prophantis smaragdina|TDGAB−1425

Stemorrhages sericea|TDGAB−1686

Stemorrhages sericea|TDGAB−0889

Stemorrhages sericea|TDGAB−1044

Crambidae|Lope11−0082

Crambidae|TDGAB−0022

Crambidae|TDGAB−1841

Crambidae|TDGAB−0641

Crambidae|TDGAB−2069

Cadarena sinuata|TDGAB−2376

Cadarena sinuata|TDGAB−1598

Cadarena sinuata|TDGAB−0776

Crambidae|TDGAB−2284

Crambidae|TDGAB−1919

Crambidae|TDGAB−0024

Pleuroptya|Lope11−0551

Pleuroptya|TDGAB−1602

Pleuroptya|TDGAB−1542

Pleuroptya|TDGAB−0103

Pleuroptya|TDGAB−0653

Pleuroptya|TDGAB−0688

Pleuroptya|TDGAB−0727

Pleuroptya|TDGAB−0767

Pleuroptya|TDGAB−0769

Pleuroptya|TDGAB−1368

Pleuroptya|TDGAB−1413

Pleuroptya|TDGAB−1469

Pleuroptya|TDGAB−1437

Pleuroptya|TDGAB−0681

Pleuroptya|TDGAB−0652

Crambidae|TDGAB−2392

Crambidae|TDGAB−1842

Maruca vitrata|TDGAB−2369

Maruca vitrata|TDGAB−1375

Maruca vitrata|TDGAB−0609

Maruca vitrata|TDGAB−0860

Crambidae|Lope11−0831

Crambidae|Lope11−0555

Crambidae|TDGAB−1950

Crambidae|TDGAB−1625

Crambidae|TDGAB−0754

Crambidae|TDGAB−0701

Crambidae|TDGAB−0619

Crambidae|TDGAB−0087

Crambidae|Lope11−0007

Crambidae|Lope11−0006

Crambidae|TDGAB−1788

Crambidae|TDGAB−1462

Crambidae|TDGAB−0665

Crambidae|TDGAB−0720

Crambidae|TDGAB−1851

Crambidae|TDGAB−0676

Crambidae|TDGAB−1391

Thyrididae|TDGAB−0208

Crambidae|TDGAB−1338

Noctuidae|Lope11−0846

Noctuidae|Lope11−0358

Porthesaroa|Lope11−0634

Porthesaroa|Lope11−0350

Porthesaroa|Lope11−0297

Porthesaroa UD001|Lope11−0371

Noctuidae|TDGAB−1257

Noctuidae|Lope11−0823

Noctuidae|Lope11−0602

Noctuidae|Lope11−0311

Noctuidae|Lope11−0091

Noctuidae|TDGAB−1635

Noctuidae|TDGAB−0949

Noctuidae|TDGAB−2226

Noctuidae|TDGAB−1145

Noctuidae|TDGAB−1833

Noctuidae|TDGAB−1154

Noctuidae|TDGAB−0142

Noctuidae|Lope11−0348

Noctuidae|Lope11−0138

Noctuidae|Lope11−0132

Noctuidae|TDGAB−0778

Noctuidae|Lope11−0167

Noctuidae|TDGAB−0999

Noctuidae|TDGAB−0483

Noctuidae|TDGAB−0101

Noctuidae|TDGAB−2090

Noctuidae|TDGAB−2045

Noctuidae|TDGAB−0940

Noctuidae|TDGAB−0206

Noctuidae|TDGAB−0421

Stracena promelaena|Lope11−0061

Stracena promelaena|Lope11−0009

Stracena promelaena|TDGAB−1379

Stracena promelaena|TDGAB−2393

Stracena|TDGAB−2218

Stracena|TDGAB−1992

Stracena|TDGAB−2123

Stracena|TDGAB−1068

Stracena|TDGAB−1052

Stracena|TDGAB−0415

Stracena eximia|TDGAB−2412

Stracena eximia|TDGAB−2401

Stracena eximia|TDGAB−2363

Stracena eximia|TDGAB−1991

Stracena eximia|TDGAB−0588

Stracena eximia|TDGAB−0540

Stracena eximia|TDGAB−2217

Stracena eximia|TDGAB−0186

Noctuidae|TDGAB−1976

Noctuidae|TDGAB−1963

Noctuidae|TDGAB−1331

Lecithoceridae|Lope11−0647

Lecithoceridae|Lope11−0336

Lecithoceridae|TDGAB−1570

Drepanidae|TDGAB−1200

Opisthodontia superba|Lope11−0560

Opisthodontia superba|Lope11−0185

Opisthodontia superba|Lope11−0184

Opisthodontia superba|TDGAB−1418

Drepanidae|TDGAB−0505

Drepanidae|Lope11−0075

Drepanidae|TDGAB−2320

Drepanidae|TDGAB−0844

Drepanidae|TDGABb−320

Drepanidae|TDGAB−2098

Lepidoptera|TDGAB−1922

Cossidae|Lope11−0993

Cossidae|Lope11−0949

Cossidae|Lope11−0855

Cossidae|Lope11−0313

Cossidae|TDGAB−2323

Cossidae|TDGAB−1351

Cossidae|TDGAB−0939

Cossidae|TDGABb−316

Limacodidae|TDGAB−1879

Limacodidae|TDGAB−1700

Psychidae|Lope11−0578

Limacodidae|TDGAB−1220

Limacodidae|Lope11−0370

Limacodidae|Lope11−0362

Limacodidae|TDGAB−1979

Limacodidae|TDGAB−1614

Limacodidae|TDGAB−1512

Limacodidae|TDGAB−2163

Limacodidae|TDGAB−0712

Limacodinae|Lope11−0585

Limacodinae|Lope11−0295

Limacodinae|TDGAB−1752

Limacodinae|TDGAB−2154

Limacodinae|TDGAB−2222

Limacodinae|TDGAB−1278

Limacodinae|TDGAB−1258

Parasa|Lope11−0320

Parasa|TDGAB−1920

Parasa|TDGAB−1904

Parasa|TDGAB−2324

Parasa|TDGAB−0454

Parasa|TDGAB−2101

Parasa|TDGAB−2122

Parasa|TDGAB−1632

Parasa|TDGAB−0329

Limacodidae|TDGABb−367

Limacodidae|TDGAB−2428

Limacodidae|TDGAB−2006

Limacodidae|TDGAB−0816

Limacodidae|TDGAB−0770

Parasa|TDGAB−2419

Parasa|TDGAB−2358

Parasa|TDGAB−2326

Parasa|TDGAB−2149

Parasa|TDGAB−2022

Parasa|TDGAB−0887

Parasa|TDGAB−0391

Parasa|TDGAB−0277

Parasa|TDGAB−0194

Parasa|TDGAB−2414

Parasa|TDGAB−0819

Limacodidae|TDGAB−2350

Limacodidae|TDGAB−2349

Parasa|TDGAB−0760

Limacodidae|TDGAB−0821

Limacodidae|TDGAB−0725

Limacodidae|Lope11−0582

Limacodidae|Lope11−0355

Limacodidae|TDGAB−2157

Limacodidae|TDGAB−2023

Limacodidae|TDGAB−1406

Limacodidae|TDGAB−0135

Limacodidae|TDGAB−0993

Limacodidae|TDGAB−1843

Limacodidae|TDGAB−1779

Limacodidae|TDGAB−1071

Zygaenidae|TDGAB−2380

Lepidoptera|TDGAB−1813

Eriocottidae|TDGAB−1958

Eriocottidae|TDGAB−1954

Cossidae|TDGAB−1973

Cossidae|TDGAB−0460

Psychidae|Lope11−0927

Psychidae|TDGAB−1592

Psychidae|Lope11−0625

Psychidae|Lope11−0189

Psychidae|TDGAB−1808

Psychidae|Lope11−0640

Psychidae|Lope11−0317

Tineidae|TDGAB−1974

Tineidae|TDGAB−1573

Geometridae|Lope11−0553

Lepidoptera|TDGAB−1465

Lepidoptera|TDGAB−0704

Lymantriinae|Lope11−0833

Lymantriinae|Lope11−0076

Lymantriinae|Lope11−0073

Notodontidae|TDGAB−2026

Notodontidae|TDGAB−1405

Notodontidae|TDGAB−0138

Notodontidae|TDGAB−1917

Notodontidae|TDGAB−0837

Limacodidae|Lope11−0444

Tortricidae|TDGAB−2375

Tortricidae|TDGAB−2241

Tortricidae|TDGAB−0307

Tortricidae|TDGAB−2270

Tortricidae|TDGAB−2072

Parajana gabunica|Lope11−0978

Limacodidae|TDGAB−1760

Limacodidae|TDGAB−1676

Notodontidae|Lope11−0944

Notodontidae|TDGAB−1300

Notodontidae|TDGAB−1981

Notodontidae|TDGAB−1608

Notodontidae|TDGAB−0971

Notodontidae|Lope11−0931

Notodontidae|TDGAB−1794

Notodontidae|TDGAB−2162

Notodontidae|Lope11−0622

Notodontidae|TDGAB−2306

Notodontidae|TDGAB−1021

Notodontidae|TDGAB−0213

Notodontidae|Lope11−0045

Notodontidae|TDGAB−1050

Notodontidae|TDGAB−0888

Notodontidae|TDGAB−0994

Notodontidae|TDGAB−0995

Notodontidae|Lope11−0557

Notodontidae|Lope11−0182

Notodontidae|TDGAB−1928

Notodontidae|TDGAB−1999

Notodontidae|TDGAB−1918

Notodontidae|TDGAB−0254

Notodontidae|TDGAB−0239

Notodontidae|TDGAB−0284

Notodontidae|TDGAB−0334

Notodontidae|TDGAB−0488

Notodontidae|TDGAB−0803

Notodontidae|TDGAB−1033

Notodontidae|TDGAB−1102

Notodontidae|TDGAB−1172

Notodontidae|TDGAB−1174

Notodontidae|TDGAB−1811

Notodontidae|TDGAB−1058

Notodontidae|TDGAB−0976

Notodontidae|TDGAB−0269

Notodontidae|TDGAB−0827

Notodontidae|TDGAB−2130

Notodontidae|TDGAB−0954

Notodontidae|TDGAB−0501

Notodontidae|TDGAB−0969

Notodontidae|TDGAB−2422

Notodontidae|TDGAB−1307

Notodontidae|TDGAB−1095

Notodontidae|TDGAB−2282

Notodontidae|TDGAB−2146

Notodontidae|TDGAB−0592

Notodontidae|TDGAB−0403

Notodontidae|TDGAB−0389

Notodontidae|TDGAB−0582

Notodontidae|TDGAB−0989

Notodontidae|TDGAB−0526

Notodontidae|TDGAB−0771

Notodontidae|TDGAB−2040

Notodontidae|TDGAB−0462

Notodontidae|TDGAB−1720

Notodontidae|TDGAB−1303

Notodontidae|TDGAB−0937

Notodontidae|TDGAB−0357

Notodontidae|Lope11−0935

Notodontidae|TDGAB−1028

Notodontidae|TDGAB−0333

Notodontidae|TDGAB−2327

Notodontidae|TDGAB−2028

Notodontidae|TDGAB−1384

Notodontidae|TDGAB−0363

Notodontidae|TDGAB−0136

Notodontidae|TDGAB−1007

Notodontidae|Lope11−0170

Notodontidae|TDGAB−1435

Notodontidae|Lope11−0596

Notodontidae|TDGAB−2071

Notodontidae|TDGAB−2086

Notodontidae|TDGAB−1748

Notodontidae|TDGAB−0836

Notodontidae|TDGAB−1896

Notodontidae|TDGAB−0870

Notodontidae|TDGAB−1320

Notodontidae|TDGAB−1153

Notodontidae|TDGAB−1036

Notodontidae|TDGAB−1024

Notodontidae|TDGAB−1164

Notodontidae|TDGAB−1020

Notodontidae|TDGAB−0344

Notodontidae|TDGAB−1003

Notodontidae|Lope11−0104

Notodontidae|TDGAB−0091

Notodontidae|TDGAB−1658

Notodontidae|TDGAB−1472

Notodontidae|Lope11−0163

Notodontidae|Lope11−0161

Notodontidae|TDGAB−0574

Notodontidae|TDGAB−0286

Notodontidae|TDGAB−0107

Notodontidae|Lope11−0077

Notodontidae|TDGAB−1193

Notodontidae|TDGAB−2134

Notodontidae|TDGAB−1042

Notodontidae|TDGAB−1332

Notodontidae|TDGAB−1094

Notodontidae|TDGAB−1171

Notodontidae|TDGAB−1035

Notodontidae|TDGAB−1167

Notodontidae|TDGAB−1147

Notodontidae|TDGAB−0273

Notodontidae|TDGAB−1122

Notodontidae|TDGAB−1091Notodontidae|TDGAB−1136Arctiinae|Lope11−0819Arctiinae|TDGAB−1221Erebinae|Lope11−0777Notodontidae|Lope11−0589Notodontidae|TDGAB−1210Notodontidae|Lope11−0490Notodontidae|TDGAB−0083Notodontidae|TDGAB−1506Notodontidae|TDGAB−1005Notodontidae|Lope11−0123Notodontidae|TDGAB−1199Notodontidae|TDGAB−0838Notodontidae|TDGAB−0538Notodontidae|TDGAB−0524Notodontidae|TDGAB−0364Notodontidae|TDGAB−1666Notodontidae|TDGAB−1370Notodontidae|Lope11−0877Notodontidae|Lope11−0011Notodontidae|TDGAB−0553Notodontidae|TDGABb−345Notodontidae|TDGAB−0850Notodontidae|Lope11−0798Notodontidae|TDGAB−2033Notodontidae|Lope11−0048Notodontidae|TDGAB−0840Notodontidae|TDGAB−0533Notodontidae|TDGAB−1196Notodontidae|TDGAB−2308Notodontidae|TDGAB−2286Notodontidae|TDGAB−0968Notodontidae|TDGAB−0394Notodontidae|TDGAB−0865Notodontidae|TDGAB−0934Notodontidae|TDGAB−2097Notodontidae|TDGAB−1225Notodontidae|TDGAB−1191Notodontidae|TDGAB−0187Notodontidae|TDGAB−2048Notodontidae|TDGAB−0857Notodontidae|TDGAB−1156Notodontidae|Lope11−0797Notodontidae|TDGAB−0904Notodontidae|Lope11−0069Notodontidae|TDGAB−0910Notodontidae|TDGAB−0908Notodontidae|TDGAB−0897Notodontidae|TDGAB−0589Notodontidae|TDGAB−1492Notodontidae|TDGAB−1483Notodontidae|TDGAB−0915Notodontidae|TDGAB−0280Notodontidae|TDGAB−0354Antheua|Lope11−0854Antheua|TDGAB−0890Antheua|Lope11−0520Antheua|TDGAB−1683Antheua|TDGAB−0822Antheua|TDGAB−1741Antheua|TDGAB−1890Antheua|TDGAB−1866Antheua|TDGAB−1162Antheua|TDGAB−0839Phalerinae|TDGAB−0036Lechriolepis|TDGABb−380Lechriolepis|TDGABb−379Lechriolepis|TDGAB−0504Lechriolepis|TDGAB−0536Lechriolepis|TDGAB−0336Lechriolepis|TDGAB−0506Notodontidae|TDGAB−2024

5%

Noctuidae (224,397)

Geometridae (220,540)

Lymantriinae (164,346)

Arctiinae (113,404)

Notodontidae (104,272)

Lasiocampidae (101,242)

Erebinae (72,193)Pyralidae (70,172)

Sphingidae (66,267)

Crambidae (52,109)

Saturniidae (43,177)

Limacodidae (30,59)Eupterotidae (15,40)Cossidae (11,19)

Others (40,72)

5%

Page 42 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 44: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

BrahmaeidaeUraniidae

BombycidaeEriocottidae

LecithoceridaeTineidae

EuteliidaeTortricidaePsychidae

ZygaenidaeDrepanidae

CossidaeEupterotidae

NolidaeLimacodidae

ThyrididaeCrambidae

PyralidaeErebinae

Other_ErebidaeLasiocampidae

ArctiinaeSaturniidae

LymantriinaeSphingidae

NotodontidaeGeometridae

Noctuidae

Number of BINs/species0 50 100 150 2000 50 100 150 200

Number of species in AfroMothsNumber of BINs observed

Page 43 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.

Page 45: Characterization and comparison of poorly known moth ...jeremydewaard.com/wp-content/uploads/2009/09/Delabye-et...Draft 1 1 Characterization and comparison of poorly known moth communities

Draft

01000

20003000

0 200 400 600 800 1000 1200

A

# of individuals

# of BINs

IpassaLopéLopé W

SLopé D

S

01000

20003000

0.0 0.2 0.4 0.6 0.8

B

# of individuals

Sample coverage

0.00.2

0.40.6

0.8

0 200 400 600 800 1000 1200

C

Sample coverage

# of BINs

Page 44 of 45

https://mc06.manuscriptcentral.com/genome-pubs

GenomeG

enom

e D

ownl

oade

d fr

om w

ww

.nrc

rese

arch

pres

s.co

m b

y U

NIV

GU

EL

PH o

n 10

/05/

18Fo

r pe

rson

al u

se o

nly.

Thi

s Ju

st-I

N m

anus

crip

t is

the

acce

pted

man

uscr

ipt p

rior

to c

opy

editi

ng a

nd p

age

com

posi

tion.

It m

ay d

iffe

r fr

om th

e fi

nal o

ffic

ial v

ersi

on o

f re

cord

.