chapter3 note

Upload: saleh1978

Post on 14-Apr-2018

239 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Chapter3 Note

    1/29

    Chapter 3 Modeling of Physical Systems

    3.1 Foundation of Modeling 3.2 Method in Dynamic Modeling 3.3 Classification of Dynamic Model

    3.4 Mathematical Representation

  • 7/27/2019 Chapter3 Note

    2/29

    3.1 Foundation of Modeling (1) Role & Use of Model:

    Eykhoff

    A representation of the essential aspects of an existing

    object (system) which presents knowledge of that object

    (system) in a usable form.

    Websters dictionary

    A description or analogy used to help visualize something

    (as a system) that cant be directly observed.

  • 7/27/2019 Chapter3 Note

    3/29

    3.1 Foundation of Modeling (2) Model ing is an art rather than a techn ique

    Beh av io r Ob jec tiv e

    Representat ion

    Opt imal Model

  • 7/27/2019 Chapter3 Note

    4/29

    3.1 Foundation of Modeling (3) Principles of Model ing:

    Principle of resemblance error tolerance

    Principle of parsimony as simple as possible

    Principle of objective use of information

  • 7/27/2019 Chapter3 Note

    5/29

    3.1 Foundation of Modeling (4) Method of Model ing:

    Real

    System

    Model of Real

    System

    Information

    UtilizationExperimental

    Testing

    Model

    Building

    System

    Realization

    Problem

    Solving

    Solution

    Interpretation

    Information

    Processing

    Behavior Representation Objective

  • 7/27/2019 Chapter3 Note

    6/29

    3.1 Foundation of Modeling (5) Types of Model:

    Conceptual model

    Analog model

    Graphical model

    Solid model

    Physical model

    Mathematical model

  • 7/27/2019 Chapter3 Note

    7/29

    3.2 Method in Dynamic Modeling (1) Method in Dynamic Modeling:

    Actua l

    System

    Physical

    Modeling

    Mathematical

    Modeling

    Dynamic

    Prediction & Analysis

    Error

    AcceptanceTest

    No

    Yes

    Dynamic

    Behavior

  • 7/27/2019 Chapter3 Note

    8/29

    3.2 Method in Dynamic Modeling (2) Phys ical Model:

    An idealized physical system which resembles an actual system in its

    salient features but which is more amenable to system analysis and synthesis.

    Idealization Techniq ues:

    Neglect small effect

    Independent environment

    Lumped characteristics

    Linear relationships

    Constant parameters

    Neglect uncertainty and noise

  • 7/27/2019 Chapter3 Note

    9/29

    3.2 Method in Dynamic Modeling (3)Ex:

    particle model

    Newtonian particle

    Fluid particle

    Ideal gas

    Photon

    field model

    Gravitational field

    Flow field

    Electromagnetic field

  • 7/27/2019 Chapter3 Note

    10/29

    3.2 Method in Dynamic Modeling (4) Mathematic al Model:

    The description of object behavior by means of suitably chosenmathematical realizations.

    Idealization:

    Continuity

    Directionality

    Uniformity

    Additivity

    Constancy

    Certainty

  • 7/27/2019 Chapter3 Note

    11/29

    3.2 Method in Dynamic Modeling (5) Model Verif ication:

    Prediction error and acceptance criteria

    Error Qualitative

    Quantitative

    Qualitative error phase plane portrait

    Quantitative error e(t) (Well-controlled I.C.)

    T

    0

    2

    rmrm

    dt(t)eT

    1:RMS,)t(e:Ex

    (t)eoffunctionNorm:(t)e

    statereal:x,statemodel:x,)t(x)t(x)t(e

  • 7/27/2019 Chapter3 Note

    12/29

    3.3 Classification of Dynamic Model (1)

    Model Ass umpt ions in th is course:

    Deterministic, Lumped, Linear, Time-invariant (Constant coeff.), and Continuous.

    Dynamic Model

    Determinst ic Chao ti c Stochas ti c

    Lumped parameters

    (ODE)

    Distributed parameters

    (PDE)

    Linear Non-linear

    Costant coefficient Variable coeffic ient

    Disc rete t ime Cont inuous t ime

  • 7/27/2019 Chapter3 Note

    13/29

    3.3 Classification of Dynamic Model (2) Various Phy sical and Mathematical Models of Real Pendulum :

    Joint w i th clearance

    Rod

    g

    m

  • 7/27/2019 Chapter3 Note

    14/29

    mg

    q

    2LA

    L

    3.3 Classification of Dynamic Model (3) Distr ibuted and Lumped Model :

    Distributed Model Lumped Model

    m

    mg

    qF

    rF

    q

    l

    0sing1

    e..i

    sinmgm

    Fm

    qq

    qq

    q q

    l

    l

    l

    A

    0singL)3/2(

    1e..i

    )2

    L(sinmg)mL

    3

    1(

    MI

    mL3

    1I

    2

    AA

    2

    A

    qq

    qq

    q

  • 7/27/2019 Chapter3 Note

    15/29

    3.3 Classification of Dynamic Model (4) Linear and Non-l inear Model:

    Non-linear Model Linear Model0sin

    gqq

    l

    qq

    qqqq

    q

    qq

    qq

    q

    q

    q

    qq

    g

    ge..i

    0)(g

    sin

    pointoperating

    pendulumInverted(2)

    0g

    sin

    0pointoperating

    pendulumRegular)1(

    .......53

    sin53

    ll

    l

    l

    m

    m

    g

    q

    qsin

    0 2

  • 7/27/2019 Chapter3 Note

    16/29

    3.3 Classification of Dynamic Model (5) Time-invariant and Time-varying Model:

    Time-invariant Model Time-varying Model

    Non-linear Model

    Linear Model

    0g

    qql

    0sing

    qql

    Non-linear Model

    Linear Model

    0sin)tcosyg

    1(g

    tcosy)t(ya,mI

    sinmgsinmaI

    oo

    2

    oo

    2

    oA2

    A

    AA

    q

    q

    qqq

    l

    l

    ll

    0)tcosyg

    1(g

    oo

    2

    q

    ql

    tcosy)t(y 0o

    A

    m

    mg

    qF

    rF

    q

    l

  • 7/27/2019 Chapter3 Note

    17/29

    3.4 Mathematical Representation (1)Dynam ic Representat ion

    Time Change

    Disc rete Con t inuous Discrete Cont inuous

    Dif ference

    Equat ion

    Differential

    Equat ion

    Fini te

    state

    machine

    Discrete

    event

    mode l

  • 7/27/2019 Chapter3 Note

    18/29

    3.4 Mathematical Representation (2) Nonl inear i ty and Linear izat ion:

    Nonlinearity in mechanical systems

    x

    FDry

    Frict ion

    x

    FHard

    Sof t

    Nonl inear

    Spr ing

    x

    FBacklashHysteres is s

    e

  • 7/27/2019 Chapter3 Note

    19/29

    3.4 Mathematical Representation (3) Linearization:

    Linear properties:Superposi t ion Output response of a system to the sum of inputs

    is the sum of the responses to the individual inputs.

    Input Output

    If r1 (t) c1(t)

    r2 (t) c2(t)r1(t) + r2(t) c1(t) + c2(t) Addi t ive Proper ty

    Homogenei ty The response of a system to a multiplication of the

    input by a scalar.

    Input Output

    If r1 (t) c1(t)

    r1(t) c1(t) Scal ing Property

  • 7/27/2019 Chapter3 Note

    20/29

    3.4 Mathematical Representation (4) Mathematical Method :

    Scalar functionTaylor series expansion

    Vector function

    xm)x(for

    )xx(dx

    df)x(f)x(fe..i

    )x(0)xx(dx

    df)x(f)x(f

    o

    o

    o

    xx

    o

    xx

    o

    2

    o

    xx

    o

    2

    0,nn

    xxn

    0,22

    xx2

    0,11

    xx1

    n,02,00,1n21

    )x(0)xx(x

    f......)xx(

    x

    f

    )xx(

    x

    f)x......,x,x(f)x......,x,x(fy

    0,nn0,22

    0,11

  • 7/27/2019 Chapter3 Note

    21/29

    3.4 Mathematical Representation (5)

    1x

    f

    )x,(f 0,2b

    )x,x(ff 0,20,10

    )x,(f 0,2a

    0,1x ab

    g2x

    h2x

    0,22 xx

    1x

    f

    ),x(f 0,1 g

    )x,x(f 0,20,1

    ),x(f 0,1 h

    0,1x

    g2x

    h2x

    0,22 xx

    For f=f(x1,x

    2)

    ba

    ba

    )x,(f)x,(f

    x

    f 0,20,2

    01

    hghg

    ),x(f),x(f

    x

    f 0,10,1

    02

    )xx(x

    f)xx(

    x

    f)x,x(ff 0,22

    02

    0,11

    01

    0,20,1

    Exper imental Method :

  • 7/27/2019 Chapter3 Note

    22/29

    3.4 Mathematical Representation (6) Dynam ic Linear Model:

    System

    Dynamics

    Linear

    Model

    Dynamic

    Informat ion

    Predict ion

    Error

  • 7/27/2019 Chapter3 Note

    23/29

    3.4 Mathematical Representation (7) Classic al I/O Model:

    Differential formEx: Vibration plant

    Integral form

    Key poin ts: Lin earity, Causality, Relaxation

    x(t)y(t)-Output

    f(t)-Input:I/O

    (0)xx(0),I.C.

    f(t)KxxCxM:System

    x(t)y(t)-Output

    f(t)-Input:I/O

    )-g(t:System

    d)(f)t(g)t(xt

    0

    y=xf(t)

    Input

    System

    Output

    C

    K M

    y=x

    f(t)

    f r ic t ionless

  • 7/27/2019 Chapter3 Note

    24/29

    3.4 Mathematical Representation (8) Modern State-space Model:

    Define system states

    State equation

    )t(fM

    1

    xM

    K

    xM

    C

    x:Ex

    21

    1

    xx

    xx

    )t(f

    M

    1

    0

    x

    x

    M

    C

    M

    K

    10

    x

    x

    2

    1

    2

    1

    BfxAx

    (0)x

    I/O : Input

    01C,xCy

    i.e.

    System:

    I.C. :

    Output

    f(t)

    )x(x1

    )x(x2

    statespace

    x

  • 7/27/2019 Chapter3 Note

    25/29

    3.4 Mathematical Representation (9)In general

    State equation :

    Output equation :

    I.C. :

    : System states

    : Control input

    K: To be designed

    xK)x(u

    uDxCy

    uBxAx

    u

    x

    y

    uDxCy

    uBxAx

    (0)x

    u

    x

  • 7/27/2019 Chapter3 Note

    26/29

    3.4 Mathematical Representation (10) State-sp ace and I/O Model:

    State-space system model

    I/O system model

    ubxaxax

    ubxaxax

    22221212

    12121111

    u)baba(ubx)aaaa(x)aa(x

    variablexu)baba(ubx)aaaa(x)aa(x

    variablex

    2111212221122211222112

    2

    1222121121122211122111

    1

    )dimensionone(uu,bbB,

    aaaaA,

    xxx.e.i

    ub

    b

    x

    x

    aa

    aa

    x

    xor

    2

    1

    2221

    1211

    2

    1

    2

    1

    2

    1

    2221

    1211

    2

    1

    Output x1 and / or x2

  • 7/27/2019 Chapter3 Note

    27/29

    3.4 Mathematical Representation (11) Impu lse Respons e:

    Unit impulse function

    Impulse at t=a

    Shifting property

    0,1dt)t(

    0t,0)t(

    0e

    e

    )at(

    f(b)

    cba,dt)t(f)bt(c

    a

    e

    e

    1

    t

    ta

    Area=1

  • 7/27/2019 Chapter3 Note

    28/29

  • 7/27/2019 Chapter3 Note

    29/29

    3.4 Mathematical Representation (13)r(t)

    t

    d

    1 t

    Arb itrary Input Respons e:

    r(t) is composed of many impulses

    Ex: Step response of 1st order system

    r(t)

    t

    x(t)

    )t(raxx