chapter2 introduction to quantum mechanics

32
Microelectronics I Chapter 2: Introduction to Quantum Mechanics 2.1 Principles of Quantum Mechanics 2.2 Schrodinger’s Wave Equation 2.3 Applications of Schrodinger’s Wave equation 2.4 Extensions of the Wave Theory to Atoms

Upload: k-m

Post on 12-Feb-2017

90 views

Category:

Engineering


2 download

TRANSCRIPT

Page 1: Chapter2 introduction to quantum mechanics

Microelectronics I

Chapter 2: Introduction to Quantum Mechanics

2.1 Principles of Quantum Mechanics

2.2 Schrodinger’s Wave Equation

2.3 Applications of Schrodinger’s Wave equation

2.4 Extensions of the Wave Theory to Atoms

Page 2: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

Control electron in the solid (crystal)

�Position

�Velocity � device’s speed

I ∝ n x q x vCurrent,

Introduction 1

Need to know electron behavior in the crystal and

the material (energy band, etc)

�Velocity � device’s speed

�No. of electronDensity of electron velocity

Introduction of quantum mechanics (Defines electron with wave function)

� Schrodinger equation

Page 3: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

�Quantum mechanic becomes more significant as electronic device becomes smaller

Appearance of “quantum effect”

Introduction 2

Current, I

Voltage, V

Current, I

Width, W

I

Ohm’s law

“classical”

Smaller W I

?

Electron channel

V

“classical”

V

�Here, classical Physics no longer applicable !!

Page 4: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

Objective:

To understand the basic of quantum mechanics

�Wave-particle duality

�Schrodinger equation

- equation

- physical meaning

�Application:

-quantized energy

-tunneling effect

Chapter 3: energy band theory of solids

Page 5: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

propagates as wave (frequency, ν)Particle having energy, hν

*h, Planck's constant = 6.625 x 10-34 Js

light

1905, Einstein�Interference 1905, Einstein

“Photon (discrete packet)”

Explains the photoelectric effect

�Interference

�Refraction

�diffraction

light photoelectron

Max kinetic energy of photoelectron

Wave-Particle duality

frequencyνo

Page 6: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

Wave-Particle duality of electron

�Electron: charged particle (q=1.6 x 10-19 C)

�De Broglie (1924)

I ∝ n x q x vex:

�De Broglie (1924)

Particle with momentum, p has wavelength, λ

λ = h/p P: Planck’s constant

Ex:

e

Velocity, v=105 m/s

Wave nature

e

λ = h/p =h/m.v

=6.625 x 10-34/(105 x 9.11 x 10-31)

= 7.27 nm

Page 7: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

Electron gun

Double slit screen

e

Wave-particle duality : experiment

When electron hits the screen, a dot will appears

Particle naturee

① Shoot electron 4 times

Double slit screen

Particle nature

1st�Electron could go through the slit

Electron gun

e 2nd

3rd

4th�Electron could go through the slit�Position of electron was random

Page 8: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

② Shoot electron many time

Electron gun

slit screen

e

http://www.hitachi.com/rd/research/em/doubleslit.html

e

slit screena: 8 electrons, b: 270 electrons, c: 2000 electrons,d: 160,000 electrons

�Interference pattern

Wave nature

d: 160,000 electrons

Page 9: Chapter2 introduction to quantum mechanics

Interpretations

Microelectronics I : Chapter 2

1. Electron propagates in space like wave2. Each electron pass through both two open slit at the same time3. Electron interfere with itself

Electron gun

Double slit screen

e

e

The experimental results confirm the wave-particle duality of electron

Page 10: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

The Uncertainty principle (Heisenberg 1927)

∆p∆x ≥ ħ

Impossible to simultaneously describe with absolute accuracy the position and momentum of a particle

∆p∆x ≥ ħ

∆E∆t ≥ ħ

② Impossible to simultaneously describe with absolute accuracy the energy of particle and the instant of time the particle has this energy

∆p: uncertainty in momentum

∆x : uncertainty in position

∆E∆t ≥ ħ∆E: uncertainty in energy

∆t : uncertainty in time

�Cannot determine exact position of electron

use “probability”

Page 11: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

Schrodinger Wave Equation

Describe and discuss electron behavior

Wave function� sin, cos

k : wave numberΨ(x,t)= a.cos(kx-ωt+ε))

Ψ(x,t)= exp ( j(kx-ωt))= exp( jkx)exp(-jωt)

k : wave numberω : angular momentumε : initial phase

Ψ(x,t)= a.cos(kx-ωt+ε))

Use “exp”

exp(jθ)=cosθ+jsinθ

ε=0

= exp( jkx)exp(-jωt)

Ψ(x,t)= Φ(t)φ(x)

position-dependenttime-dependent

Page 12: Chapter2 introduction to quantum mechanics

Hφ(x)=Eφ(x)

Time-independent Schrodinger equation

Hamiltonian

Schrodinger Wave Equation2

Microelectronics I : Chapter 2

Energy of electronHamiltonian

Hamiltonian: total energy operator

H = kinetic energy + potential energy

)(2 2

22

xVxm

H +∂

∂−=h

Energy of electron

)()()(2 2

22

xExxVxm

ϕϕ =

+

∂−h

Page 13: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

Physical meaning of wave equation

φ(x): wave function

|φ(x)|2: probability of existence of electron at x

position of electron cannot be determined precisely

∫∫+∞

∞−

+∞

∞−

== 1)()(|)(| *2dxxxdxx ϕϕϕ

total probability=1

φ*(x): complex conjugate function

total probability=1

Page 14: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

Major quantities: energy, momentum, position of electron

)(

)(

xxi

xH

ϕ

ϕ

∂h

Energy,

Momentum, Result :equation

)(

)(

xx

xxi

ϕ

ϕ∂

Momentum,

Position,

Value of major quantities given by expected value in probability theory

∫+∞

∂* ϕϕh

∫+∞

ϕϕ ∫+∞

dxxxx )()(* ϕϕ

energy momentum position

∫∞+

∞−

∞−

dxxx

dxxxi

x

)()(

)()(

*

*

ϕϕ

ϕϕh

∫∞+

∞−

∞−

dxxx

dxxHx

)()(

)()(

*

*

ϕϕ

ϕϕ

∫∞+

∞−

∞−

dxxx

dxxxx

)()(

)()(

*

*

ϕϕ

ϕϕ

Result :real number

Page 15: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

Region I Region II

Boundary Condition

x=a

Condition 1: φ(x) must be finite, single-valued, and continuousCondition 1: φ(x) must be finite, single-valued, and continuousCondition 2: ∂φ(x)/∂x must be finite, single-valued and continuous

ax

II

ax

I

III

xx

aa

==∂

∂=

=

ϕϕ

ϕϕ )()( Condition 1

Condition 2

Page 16: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

Basic solution of Schrodinger equation

Consider V: constant

)()(2 2

22

xExVxm

ϕϕ =

+

∂−h

0)()(2)(

22

2

=−

−∂

∂x

EVm

x

ϕ

h

--eq.1

Second order differential equation

∂x h

constant

Page 17: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

1. if, E < V

0)(2 2

2>=

−α

h

EVm

eq.1ϕαϕ 2"

0=−

Solution: xx

BeAeααϕ −+= A,B: Coefficient

ϕαϕ

ϕαϕ2"

0

=

=−

∞∞

Condition 1( φ must be finite)

xBe

αϕ −=

Page 18: Chapter2 introduction to quantum mechanics

1. if, E > V

0)(2 2

2>−=

−− β

h

EVm

eq.1ϕβϕ =+

Microelectronics I : Chapter 2

Solution: xixiDeCe

ββϕ −+= C,D: Coefficient

eq.1

ϕβϕ

ϕβϕ2"

2"0

−=

=+

�Wave function is given by the combination of the two type solution

Page 19: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

Application 1: Potential well

∞ ∞

region I region II region III

region I and III

V(x)=∞

x=Lx=0

region I region II region IIIV(x)=∞

Electron cannot exist in the regions

region II (0<x<L)

−∂ ϕ

φ=0

……Time-independent equation

V=0

0)(2)(

22

2

=+∂

∂x

mE

x

ϕ

h

---eq. 1

0)()(2)(

22

2

=−

−∂

∂x

EVm

x

ϕ

h

Page 20: Chapter2 introduction to quantum mechanics

eq. 1

Microelectronics I : Chapter 2

)(2)(

22

2

xmE

x

ϕ

h−=

ϕβϕ 2" −= 2

2 2

h

mE=βϕβϕ −= 2

h

Solution ;xixi

BeAeββϕ −+=

Boundary condition;

0)0()0( ==III

ϕϕ 0)()( == LLIIIII

ϕϕ

0=+ BA 0=+ − LiLiBeAe

ββ...eq. 2 ...eq. 3

Page 21: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

From eq. 2 & 3

0)( =− − LiLieeA

ββ

A≠0

0=− −ee

LiLi ββregion II

0)sin(2

0

=

=− −

Li

eeLiLi

β

ββ

n; integer

2nL

mE

nL

=

=

π

πβ

x=Lx=0

En=1

En=2

En=3

2

22

2n

LmE

nL

=

=

π

π

h

hx=Lx=0

The energy of particle is quantized

Particular discrete values

Classical; continuous values

Page 22: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

Wave function

xixiBeAe

ββϕ −+=

= x

L

niA

πsin2

=

xL

nC

L

πsin

normalization

1sin0

22 =

∫ dxx

L

nC

L

πTotal probability=1

2

LC

2=

= x

L

n

L

πϕ sin

2n=1,2,3,4……

Page 23: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

Corresponding probability functionsWave functions

x=L x=L

Page 24: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

Application 2: Potential well

region I region II region III

V0

x=Lx=0

eRegion I

0)(2)(

22

2

=+∂

∂x

mE

x

x

I

I ϕϕ

h

Region II Region III

0)(2)(

22

2

=+∂

∂x

mE

x

x

III

III ϕϕ

h0)(

)(2)(2

0

2

2

=−

−∂

∂x

EVm

x

x

II

II ϕϕ

h

Page 25: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

Consider

E<V0, ,)(2

2

02

h

EVm −=α 2

2 2

h

mE=β

Solution; wave functionSolution; wave function

xixi

IBeAe

ββϕ −+=

xixi

IIIFeEe

ββϕ −+=

xx

IIDeCe

ααϕ −+=

region I region II region III

V0

A

B

C

D

E

F

x=Lx=0F=0

xi

IIIEe

βϕ =

Page 26: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

Boundary condition;

)()(

)0()0(

LLIIIII

III

ϕϕ

ϕϕ

=

=Continuous wave function

)()( LLIIIII

ϕϕ =

)()(

)0()0(

''

''

LL IIIII

III

ϕϕ

ϕϕ

=

=Continuous first derivative

4 equation

Can solve for the 4 coefficients B, C, D, E in term of A

Page 27: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

Parameter of interest; Transmission coefficient, T

region I region II region III

V0

A E *

*

AA

EET

⋅=

x=Lx=0

AA ⋅

)2exp(116 LEE

T β−

≈ )2exp(11600

LV

E

V

ET β−

�T is not zero Electron penetrate the barrier

“tunneling”

Page 28: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

L

Wave function through the potential barrier

Page 29: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

Extensions of the wave Theory to Atoms

Potential function (coulomb attraction)

e2−

=

+Nucleus; positively charged

r

erV

0

2

4)(

πε

−=

“Quantized

approximation

+Quantum well

Expected results

+Quantum well

“Quantized

energy”

= x

L

n

L

πϕ sin

2

n=1,2,3,…

Page 30: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

Solving Schrodinger equation

0),,())((2

),,(2

02 =−+∇ φθψφθψ rrVEm

rh

Wave function & energy of electron in the atomWave function & energy of electron in the atom

result

222

0

4

0 1

2)4( n

emE

n

hπε

−=

n; 1, 2, 3,…

(principal quantum number)

1. Energy of atom is quantized. The value is determined by a quantum number,n

2. Wave function of electron also determined by quantum numbers (n, l, m)

Page 31: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

�n: principal quantum number

(determine total electron energy)

Quantum number

Quantum states of electron

(determine total electron energy)

N=1, 2, 3,….

�l: azimuthal quantum number

(specifies the shape of atomic orbital)

l= n-1, n-2,……,0 (s,p,d,..)

�m: magnetic quantum number

( direction)

|m|=l,l-1,…0 S- orbital

z

y

x

z

y

xz

z

y

x

|m|=l,l-1,…0

�s: spin quantum number

( spin of electron)

S=1/2, -1/2

S- orbital

y

x

p- orbital

Page 32: Chapter2 introduction to quantum mechanics

Microelectronics I : Chapter 2

electron

energyex: C (no. of electron: 14)

l=2p+ n=1

n=2

l=1s

l=2sl=2p

n=1

n=2

As n increases, energy of

quantum state increases

m

+

+ n=1

Pauli Exclusion Principle

No two electrons may occupy the same quantum state

quantum state increases