chapter 5 revised august 2013 panko and panko business data networks and security, 9 th edition ©...

78
Chapter 5 Wired Ethernet LANs Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson

Upload: anastasia-higgins

Post on 15-Jan-2016

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Chapter 5

Wired Ethernet LANsChapter 5

Revised August 2013

Panko and PankoBusiness Data Networks and Security, 9th Edition© 2013 Pearson

Page 2: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Ethernet Basics

Physical Layer Ethernet Standards

Data Link Layer Ethernet Standards

Advanced Topics

Ethernet Security

2

Ethernet

© 2013 Pearson

Page 3: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Four Introductory Chapters

◦ Gave you the concepts and principles to apply for the rest of the term

◦ Chapter 1: Core concepts

◦ Chapter 2: Standards concepts

◦ Chapter 3: Security principles

◦ Chapter 4: Network management

Where We’ve Been

3© 2013 Pearson

Page 4: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Three Chapters on Local Area Networks◦Chapter 5: Wired Ethernet LANs

◦ Chapters 6 and 7: Wireless LANs

◦ Governed by Layer 1 and Layer 2 Standards

Remaining Chapters◦ Chapters 8 & 9: TCP/IP Internetworking (L1 &

L2)

◦ Chapter 10: Wide Area Networks (L1-L4)

◦ Chapter 11: Applications (L5)4

Where We Are Going

© 2013 Pearson

Page 5: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Characteristic

Local Area Network (LAN)

Wide Area Network (WAN)

Location Located entirely on customer’s premises

Must carry transmissions beyond customer’s premises

Consequence of Location

Owning company operates the LAN

User must contract with a carrier that has rights of way to carry wires between premises

5.1: LANs versus WANs

5© 2013 Pearson

Page 6: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Characteristic

Local Area Network (LAN)

Wide Area Network (WAN)

Technology and Service Consequence of Corporate versus Carrier Ownership

Owner can use any technology and service options it wishes

Customer is limited to technologies and service options offered by available carriers

5.1: LANs versus WANs

6© 2013 Pearson

Page 7: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Characteristic

Local Area Network (LAN)

Wide Area Network (WAN)

Labor Consequences of Corporate versus Carrier Ownership

Owner must do all operation and maintenance work

Operational and maintenance work is done by the carrier

5.1: LANs versus WANs

7© 2013 Pearson

Page 8: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Characteristic

Local Area Network (LAN)

Wide Area Network (WAN)

Economics Transmission distances are short, so the cost per bit carried is low

Transmission distances are long, so the cost per bit carried is high

5.1: LANs versus WANs

8© 2013 Pearson

Page 9: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Characteristic

Local Area Network (LAN)

Wide Area Network (WAN)

Speed Consequences of Economics

Very high speeds are affordable

Customers are content with lower speeds

Design Consequences of Economics

Optimization of transmission capacity is not pressing

Optimization of transmission capacity is critical

5.1: LANs versus WANs

9© 2013 Pearson

Page 10: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.2: Workgroup and Core Switches

Workgroup Switches Connect Hosts to the Network

10© 2013 Pearson

Page 11: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.2: Workgroup and Core Switches

Core Switches Connect Switches to Other Switches

11© 2013 Pearson

Page 12: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.2: Workgroup and Core Switches

Hosts Normally Connect to Workgroup Switches Through UTP Copper Wiring

12© 2013 Pearson

Page 13: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.2: Workgroup and Core Switches

Switches Often Connect to Other Switches Through Optical Fiber

13© 2013 Pearson

Page 14: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.3 Ethernet Workgroup Switch

14© 2013 Pearson

19 inches48 cm

Page 15: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.4: UTP and Optical Fiber

Characteristic Unshielded Twisted Pair

Optical Fiber

Medium Copper wire Glass

Signal Electrical Light

Maximum Distance in LANs

Usually 100 m For LANs, usually 200 to 500 m

Speed Similar Similar

Cost Lower Higher

15© 2013 Pearson

Page 16: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.5: Ethernet Standards Development

16© 2013 Pearson

Page 17: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.5: Ethernet Standards Development

17© 2013 Pearson

Page 18: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Ethernet Basics

Physical Layer Ethernet Standards

Data Link Layer Ethernet Standards

Advanced Topics

Ethernet Security

18

Ethernet

© 2013 Pearson

Page 19: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.6: Binary and Digital

19© 2013 Pearson

Page 20: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.6: Binary and Digital

20© 2013 Pearson

Page 21: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.7: Binary Resistance to Error

21© 2013 Pearson

Page 22: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.7: Binary Resistance to Error

22© 2013 Pearson

Page 23: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.8: UTP Cord

23© 2013 Pearson

Page 24: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.9: RJ-45 Connector and Jack

24© 2013 Pearson

Page 25: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.10: Serial versus Parallel Transmission

25

NOT just 4 pairs!

© 2013 Pearson

Page 26: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.11: Propagation Effects

Propagation Effect(s)

Impact Installation Discipline

Attenuation Signal may become too low to be received properly.

Limit cord distance to 100 m

Noise Random electromagnet energy in the wire (noise) adds to the signal and may produce errors.

Terminal crosstalk interference

Interference by other wire pairs in the cord is crosstalk interference.

Crosstalk interference at the two ends where the wires are untwisted is terminal crosstalk interference. Major problem

Limit untwisting of the wires to 1.25 cm (0.5 in)

26© 2013 Pearson

Page 27: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.12: Internet Signaling Standards and UTP Quality Levels

Ethernet Signaling Standard

Transmission Speed

UTP Quality Category

Maximum Cord Length

100BASE-TX 100 Mbps Category 5e, 6, or higher

100 meters

1000BASE-T 1 Gbps Category 5e, 6, or higher

100 meters

10GBASE-T 10 Gbps Category 6 55 meters

10GBASE-T 10 Gbps Category 6A 100 meters

27Category is a measure of UTP QUALITY

© 2013 Pearson

Page 28: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

28

5.13: Optical Fiber Transmission

© 2013 Pearson

Page 29: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.13: Optical Fiber Transmission

29© 2013 Pearson

Page 30: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

When modes arrive at different times, this is called modal dispersion.

If light rays from different clock cycles overlap, modal dispersion may make the signal unreadable.

5.13: Optical Fiber Transmission

30© 2013 Pearson

Page 31: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.14: Optical Fiber Cord and Connections

31© 2013 Pearson

Page 32: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.15: Modal Bandwidth

Wavelength

Core Diameter

Modal Bandwidth

Maximum Propagation Distance

850 nm 62.5 microns

160 MHz-km 220 m

850 nm 62.5 microns

200 MHz-km 270 m

850 nm 50 microns 500 MHz-km 500 m

32© 2013 Pearson

Page 33: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Medium Quality

UTP Optical Fiber

UTP wire quality is indicated by a cord’s category number (5e, 6, etc.).

Multimode optical fiber quality is indicated by a cord’s modal bandwidth.

33© 2013 Pearson

Page 34: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.16: Wavelength

34© 2013 Pearson

Page 35: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Wavelength is the physical distance between comparable points on adjacent cycles.

Optical fiber transmission is described in terms of wavelength.

Wavelengths for optical fiber are measured in nanometers (nm).

For LANs, 850 nm light is used almost exclusively.

5.16: Wavelength

35© 2013 Pearson

Page 36: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.17: LAN versus Carrier Fiber

Characteristic LAN Fiber Carrier WAN Fiber

Required Distance Span

200 to 300 m 1 to 40 km

Light Wavelength

850 nm 1,310 or 1,550 nm

Type of Fiber Multimode (“Thick” Core)

Single-Mode (“Thin” Core)

Core Diameter 50 or 62.5 microns

8.3 microns

36© 2013 Pearson

Page 37: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.17: LAN versus Carrier Fiber

Characteristic LAN Fiber Carrier WAN Fiber

Primary Distance Limitation

Modal Dispersion

Absorptive Attenuation

Quality Metric Modal Bandwidth (MHz-km)

Not Applicable

37© 2013 Pearson

Page 38: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.18: Link Aggregation

38© 2013 Pearson

Page 39: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

© 2013 Pearson 39

5.19: Data Link Using Multiple Switches

The first physical link is 100BASE-TX,so the maximum physical span is 100 meters.

Page 40: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

© 2013 Pearson 40

5.19: Data Link Using Multiple Switches

The switch regenerates the received signal.On a 1000BASE-SX link, the clean new signal

can travel up to another 220 meters.

Page 41: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

41

5.19: Data Link Using Multiple Switches

The second switch also regenerates the signal.The clean regenerated signal goes on.

© 2013 Pearson

Page 42: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.19: Regeneration

42© 2013 Pearson

Page 43: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Ethernet Basics

Physical Layer Ethernet Standards

Data Link Layer Ethernet Standards

Advanced Topics

Ethernet Security

43

Ethernet

© 2013 Pearson

Page 44: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

44

5.20: The Ethernet Frame

© 2013 Pearson

Page 45: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.20: The Ethernet Frame

45© 2013 Pearson

Page 46: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

46

5.21: Hexadecimal Notation4 Bits Decimal

(Base 10)Hexadecimal

(Base 16)

0000 0 0 hex0001 1 1 hex0010 2 2 hex0011 3 3 hex0100 4 4 hex0101 5 5 hex0110 6 6 hex0111 7 7 hex

What is 0101 in hex?What is 0000 in hex?

© 2013 Pearson

Page 47: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

47

5.21: Hexadecimal Notation

What is 1001 in hex?What is 1111 in hex?

4 Bits* Decimal(Base 10)

Hexadecimal(Base 16)

1000 8 8 hex1001 9 9 hex1010 10 A hex1011 11 B hex1100 12 C hex1101 13 D hex1110 14 E hex1111 15 F hex

© 2013 Pearson

Page 48: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Converting a 48-bit MAC address to hex◦ Write down the 48-bit address in 12 four-bit

nibbles.

◦ Represent each nibble as a hex symbol.

◦ Pair the hex symbols and put a dash between the 6 pairs.

◦ Try these four nibbles: 0000111101011010

48

5.21: Hexadecimal Notation

© 2013 Pearson

Page 49: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

49

5.20: The Ethernet Frame

© 2013 Pearson

Page 50: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.20: The Ethernet Frame

© 2013 Pearson50

Page 51: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

51

5.20: The Ethernet Frame

© 2013 Pearson

Page 52: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.20: The Ethernet Frame

52© 2013 Pearson

Page 53: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.20: The Ethernet Frame

53© 2013 Pearson

Page 54: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

© 2013 Pearson 54

5.22: Multiswitch Ethernet LAN

A packet from A1… to E5… must pass through

Switches 1, 2, and 3.

Page 55: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

© 2013 Pearson55

5.22: Multiswitch Ethernet LANSwitch 1

sees that it should send the frame to E5 out Port

5.

Page 56: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

© 2013 Pearson 56

5.22: Multiswitch Ethernet LANSwitch 2

sees that it should send the frame to E5 out Port

7.

Page 57: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

© 2013 Pearson 57

5.22: Multiswitch Ethernet LAN

Switch 3 sees that it should send the frame to

E5 out Port 6.

Page 58: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Ethernet Basics

Physical Layer Ethernet Standards

Data Link Layer Ethernet Standards

Advanced Topics

Ethernet Security

58

Ethernet

© 2013 Pearson

Page 59: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

59

5-23: Hierarchical LAN

© 2013 Pearson

Page 60: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

60

5.24: Single Points of Failure

© 2013 Pearson

Page 61: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

61

5.25: Rapid Spanning Tree Protocol

Loops are not allowed in Ethernet.A strict hierarchy is required.

© 2013 Pearson

Page 62: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

62

5.26: Rapid Spanning Tree Protocol

© 2013 Pearson

Page 63: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

5.27: Virtual LANs (VLANs)

63© 2013 Pearson

Page 64: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Tag Control Information (TCI) Field◦ There are 12 bits for VLAN addresses.

◦ There are 3 bits for frame priority.

◦ This permits 23 = 8 different priority values.

64

5.28: Priority and Overprovisioning

© 2013 Pearson

Page 65: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

65

5.29: Managed Switches

© 2013 Pearson

Page 66: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Ethernet Basics

Physical Layer Ethernet Standards

Data Link Layer Ethernet Standards

Advanced Topics

Ethernet Security

66

Ethernet

© 2013 Pearson

Page 67: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Power over Ethernet (POE)◦ Switches can supply power to devices via UTP.

◦ (Wired telephone systems and USB ports already do this.)

◦ Less expensive thansupplying powerseparately.

67

5.30: Power over Ethernet (POE)

© 2013 Pearson

Page 68: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Latest POE Standard◦ Provides up to 25 Watts to attached devices

◦ Sufficient for most wireless access points

◦ Sufficient for VoIP phones

◦ Sufficient for surveillance cameras

◦ Sufficient for tablets

Not sufficient for desktop or notebook PCs

68

5.30: Power over Ethernet (POE)

© 2013 Pearson

Page 69: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

The Future◦ Nonstandard products now supply 60 Watts of

power.

◦ May become a future standard.

◦ Still will not be enough for desktop or notebook PCs.

POE switches◦ New switches can be purchased with POE.

◦ Companies can also add POE equipment to an existing non-POE switch.

69

5.30: Power over Ethernet (POE)

© 2013 Pearson

Page 70: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

The Problem◦ Anyone can enter the building and plug their

computer into a switch or into a wall RJ-45 port, which connects to a switch.

This usually gives the attacker access to the network without going through a firewall.

Solution: access control at switch ports.◦ 802.1X Port Based Access Control can do this.

◦ Created by the 802.1 WG, not the 802.3 WG.

◦ 802.1 WG creates general standards, such as security standards. 70

5.31: Ethernet 802.1X Security

© 2013 Pearson

Page 71: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

71

5.31: Ethernet 802.1X Security

© 2013 Pearson

Page 72: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

72

5.31: Ethernet 802.1X Security

© 2013 Pearson

Page 73: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Advantages of a Central Authentication Server◦ Consistency: Attacker cannot find a

misconfigured switch.

◦ Rapid changes: When someone leaves, is hired, or needs credential changes.

◦ Switch cost: Authentication server does heavy work.

◦ Reduced management cost: Only one authentication database to maintain.

73

5.21: Ethernet 802.1X Security

© 2013 Pearson

Page 74: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

802.3ba governs Ethernet for both 40 Gbps and 100 Gbps

Virtual Lane◦ Entire 40 Gbps or 100 Gbps

Media Lane◦ Physical connection

◦ There may be several per virtual lane

◦ Essentially, built-in bonding

© 2013 Pearson 74

802.3ba Box

Page 75: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Example: 100GBASE-SR10◦ 100 Gbps virtual lane (total speed)

◦ S = 850 nm light

◦ R = How bits are processed (don’t ask)

◦ 10 = 10 Gbps media lanes

© 2013 Pearson 75

802.3ba Box

Page 76: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Media Lanes◦ Ten 10 Gbps

optical fiber pairs

◦ 2 extra pairs

◦ 24 optical fiberstrands in total

© 2013 Pearson 76

802.3ba Box

10 Gbps Media Lane (Fiber Pair)

10 Gbps Media Lane (Fiber Pair)

10 Gbps Media Lane (Fiber Pair)

10 Gbps Media Lane (Fiber Pair)

10 Gbps Media Lane (Fiber Pair)

10 Gbps Media Lane (Fiber Pair)

10 Gbps Media Lane (Fiber Pair)

10 Gbps Media Lane (Fiber Pair)

10 Gbps Media Lane (Fiber Pair)

10 Gbps Media Lane (Fiber Pair)

Backup Fiber Pair

Backup Fiber Pair100 Gbps Virtual Lane

Page 77: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

Ethernet Basics

Physical Layer Ethernet Standards

Data Link Layer Ethernet Standards

Advanced Topics

Ethernet Security

77

Ethernet

© 2013 Pearson

Page 78: Chapter 5 Revised August 2013 Panko and Panko Business Data Networks and Security, 9 th Edition © 2013 Pearson Panko and Panko Business Data Networks and

© 2013 Pearson