chapter 4 –hydrostatics - · pdf file1 lecturenotes ttk 4190 guidance and control of...

39
1 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen) Chapter 4 – Hydrostatics 4.1 Restoring Forces for Underwater Vehicles 4.2 Restoring Forces for Surface Vessels 4.3 Load Conditions and Natural Periods 4.4 Ballast Systems Archimedes (287-212 BC) derived the basic laws of fluid statics which are the fundamentals of hydrostatics today. In hydrostatic terminology, the gravitational and buoyancy forces are called restoring forces, and they are equivalent to the spring forces in a mass-damper-spring system.

Upload: lynhu

Post on 08-Mar-2018

238 views

Category:

Documents


2 download

TRANSCRIPT

1 Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Chapter 4 – Hydrostatics

4.1RestoringForcesforUnderwaterVehicles4.2RestoringForcesforSurfaceVessels4.3LoadConditionsandNaturalPeriods4.4BallastSystems

Archimedes(287-212BC)derivedthebasiclawsoffluidstaticswhicharethefundamentalsofhydrostaticstoday.

Inhydrostaticterminology,thegravitationalandbuoyancyforcesarecalledrestoringforces,andtheyareequivalenttothespringforcesinamass-damper-springsystem.

2

M!! " C!!"! " D!!"! " g!"" " go # # " #wind " #wave

M ! MRB "MA - system inertia matrix (including added mass)C!!" ! CRB!!" " CA!!" - Coriolis-centripetal matrix (including added mass)D!!" - damping matrixg!"" - vector of gravitational/buoyancy forces and momentsgo - vector used for pretrimming (ballast control)# - vector of control inputs#wind - vector of wind loads#wave - vector of wave loads

6-DOFequationsofmotion

Chapter 4 – Hydrostatics

BallastcontrolGravitational/buoyancyterms

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Inthederivationoftherestoringforcesandmomentswewilldistinguishbetweentwocases:

• Section4.1Underwatervehicles(ROVs,AUVsandsubmarines)• Section4.2Surfacevessels(ships,semi-submersiblesandhigh-speedcraft)

3

UnderwaterVehicles:AccordingtotheSNAME(1950)itisstandardtoexpressthesubmergedweight ofthebodyandbuoyancyforce as:

=waterdensity=volumeoffluiddisplacedbythevehicle

m =massofthevesselincludingwaterinfreefloodingspace

g =accelerationofgravity

z

fg

CGCB

fb

n

n

4.1 Restoring Forces for Underwater Vehicles

W ! mg, B ! !g!

fgn !

00W

fbn ! !

00B

TheweightandbuoyancyforcecanbetransformedfromNEDtoBODYby:

fgb ! Rbn!!"!1fg

n, fbb ! Rbn!!"!1fb

n

!

!

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

4

Thesignoftherestoringforcesandmomentsandmustbechangedwhenmovingthesetermstotheleft-handsideofNewton’s2nd law,e.g.ma=f⟹ma-f=0:

Wedenotethegeneralizedrestoringforces . Noticethattheforceandmomentvectorsaremultipliedwith-1.

Consequently,thegeneralizedrestoringforceinBODYwithcoordinateoriginCObecomes:

where

4.1.1 Hydrostatics of Submerged Vehicles

g!!" ! !fgb " fb

b

rgb ! fgb " rbb ! fb

b

! !Rbn!""!1!fg

n " fbn"

rgb ! Rbn!""!1fgn " rbb ! Rbn!""!1fb

n #

mib ! rib!f ibfi

b

g!!"

rbb ! !xb, yb, zb"! centerofbuoyancywithrespecttoCOcenterofgravitywithrespecttoCOrgb ! !xg, yg,zg"!

M!! " C!!"! " D!!"! " g!"" " go # # " #wind " #wave #

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

5

MainResult:UnderwaterVehicles:

The6-DOFgravityandbuoyancyforcesandmomentsaboutCOaregivenby:

4.1.1 Hydrostatics of Submerged Vehicles

g!!" !

!W ! B" sin!! !W ! B" cos! sin"! !W ! B" cos! cos"! !ygW ! ybB" cos ! cos" " !zgW ! zbB" cos! sin"

!zgW ! zbB" sin ! " !xgW ! xbB" cos! cos"

! !xgW ! xbB" cos ! sin" ! !ygW ! ybB" sin!

z

fg

CGCB

fb

n

n

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Copyright © Bjarne Stenberg/NTNU

6

Example4.1:NeutrallyBuoyantUnderwaterVehicles:LetthedistancebetweenthecenterofgravityCGandthecenterofbuoyancyCB bedefinedbythevector:

ForneutrallybuoyantvehiclesW=B,andthissimplifiesto:

AnevensimplerrepresentationisobtainedforvehicleswheretheCGandCB arelocatedverticallyonthez-axis,thatisxb =xg andyg =yb.Thisyields:

4.1.1 Hydrostatics of Submerged Vehicles

BG ! !BGx, BGy, BGz"! ! !xg ! xb, yg ! yb, zg ! zb"!

g!!" !

000

!BGyW cos! cos" "BGzW cos! sin"BGzW sin! "BGxW cos! cos"!BGxW cos ! sin" !BGyW sin !

g!!" ! 0, 0, 0, BGzW cos!sin", BGzW sin!, 0!

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

7

Forsurfacevessels,therestoringforceswilldependonthecraft'smetacentricheight,thelocationoftheCG andtheCB aswellastheshapeandsizeofthewaterplane.LetAwp denotethewaterplaneareaand:

GMT =transversemetacentricheight(m)GML =longitudinalmetacentricheight(m)

ThemetacentricheightGMi wherei={T,L}isthedistancebetweenthemetacenterMiandCG.

4.2 Restoring Forces for Surface Vessels

Definition4.1(Metacenter):ThetheoreticalpointMi atwhichanimaginaryverticallinethroughtheCBintersectsanotherimaginaryverticallinethroughanewCBcreatedwhenthebodyisdisplaced,ortilted,inthewater.

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

8

isthewaterplaneareaofthevesselasafunctionoftheheaveposition

Forafloatingvesselatrest,buoyancyandweightareinbalancesuchthat:

z=displacementinheavez=0 istheequilibriumposition

Thehydrostaticforceinheaveisrecognizedasthedifferenceofthegravitationalandbuoyancyforces:

4.2.1 Hydrostatics of Floating Vessels

mg ! !g!

Z ! mg ! !g!" " ""!z""! !!g""!z" #

wherethechangeindisplacedwateris:

!!!z" ! "0

z Awp!""d"

Awp!!"

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

B moves to B1 when the hullis rotated a roll angle f.G is fixed (rigid body).

9

Forconventionalrigsandshipswithbox-shapedwallsitcanbeassumedthat:

Thisexpressionisconstantforsmallperturbationsinz.Hence,therestoringforceZ willbelinear inz,thatis:

4.2.1 Hydrostatics of Floating Vessels

Z ! "!gAwp!0"Zzz

Awp!!" ! Awp!0"

Z

zAwp!z"

This is physically equivalent to a spring with stiffness Zz ! !!gAwp!0" and position z.

!frb ! Rbn!!"!1

00

!"g "0

z Awp!#"d#

TherestoringforcesandmomentsdecomposedinBODY:

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

10

Themomentarmsinrollandpitchare and,respectively.Weightandbuoyancyactinthe z-directionandtheyformaforcepair.Hence,

4.2.1 Hydrostatics of Floating VesselsGMT sin! GML sin !

W ! B ! !g!

rrb !

!GML sin !GMT sin"

0

frb ! Rbn!!"!1

00

!#g"! !#g"

! sin!cos ! sin"cos ! cos"

#

#

Neglecting the moment contribution due to !frb (only considering fr

b!implies that the restoring moment becomes:

mrb ! rrb ! fr

b

! !"g"GMT sin#cos $cos#GML sin$ cos$ cos#

!!GML cos $ "GMT"sin#sin $ #

g!!" ! !!frb

mrb

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Copyright © Bjarne Stenberg/NTNU

11

4.2.1 Hydrostatics of Floating Vessels

g!!" !

!!g "0

zAwp!""d" sin #

!g "0

z Awp!""d" cos # sin$

!g "0

z Awp!""d" cos #cos$

!g#GMT sin$cos #cos$!g#GML sin# cos# cos$

!g#!!GML cos # "GMT" sin$ sin#

MainResult:SurfaceVessels:

6-DOFgeneralizedgravityandbuoyancyforces:

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

12

Linear(SmallAngle)TheoryforBoxed-ShapedVesselsAssumesthat aresmallsuchthat:

4.2.2 Linear (Small Angle) Theory for Boxed-Shaped Vessels

g!!" ! G!

g!!" !

"!gAwp!0" z"

!gAwp!0" z#

!gAwp!0" z

!g#GMT #

!g#GML "

!g#!"GML!GMT" #"

!

00

!gAwp!0"z

!g#GMT#

!g#GML"

0

sin! ! !, cos! ! 1sin" ! ", cos" ! 1

!0

z Awp!!"d! " Awp!0"z

!, ", z

G ! diag!0, 0, !gAwp"0#, !g!GMT, !g!GML, 0$

M!" #N! #G$ % & # go #w

Linearkinetics:

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

13

4.2.2 Linear (Small Angle) Theory for Boxed-Shaped VesselsThediagonalGmatrixisbasedontheassumptionofyz-symmetry(fore-aftsymmetry).IntheasymmetricalcaseG takestheform(noticethetwoadditionalcouplingtermsG35 =G53):

where

G ! G! !

0 0 0 0 0 00 0 0 0 0 00 0 !Zz 0 !Z! 00 0 0 !K" 0 00 0 !Mz 0 !M! 00 0 0 0 0 0

" 0

! Zz ! !gAwp!0"

! Z" ! !g " "AwpxdA

! Mz ! !Z"

! K# ! !g#!zg ! zg" " !g " "Awpy2dA ! !g#GMT

! M" ! !g#!zg ! zb" " !g " "Awpx2dA ! !g#GML

#

#

#

#

#

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

ThecouplingtermsdependonthelocationofCO

14

4.2.3 Computation of Metacenter Height for Surface Vessels

MetacenterM,centerofgravityG andcenterofbuoyancyB forasubmergedandafloatingvessel.ThereferenceisthekeellineK.

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

15

Forsmallrollandpitchanglesthetransverseandlongitudinalradiusofcurvaturecanbeapproximatedby:

wherethemomentsofareaaboutthewaterplanearedefinedas:

4.2.3 Computation of Metacenter Height for Surface Vessels

GMT ! BMT ! BG, GML ! BML ! BG

K

M

B

G

BMT ! IT! , BML ! IL

!

IL ! ! !Awpx2dA, IT ! ! !

Awpy2dA

ForconventionalshipsanupperboundontheseintegralscanbefoundbyconsideringarectangularwaterplaneareaAwp=BL whereB andL arethebeamandlengthofthehullupperboundedby:

IL ! 112 L

3B, IT ! 112 B

3L

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

ThemetacenterheightM canbecomputedbyusingbasichydrostatics:

16

Definition4.2(MetacenterStability):Afloatingvesselissaidtobe:

Transversemetacentrically stable ifGMT≥GMT,min >0

Longitudinalmetacentrically stable if GML≥GML,min >0

Thelongitudinalstabilityrequirementiseasytosatisfyforshipssincethepitchingmotionisquitelimited.ThiscorrespondstoalargeGMLvalue.

Thelateralrequirement,however,isanimportantdesigncriterionusedtoprescribesufficientstabilityinrolltoavoidthatthevesseldoesnotrollaround. Thevesselmustalsohavedamagestability(stabilitymargins)incaseofaccidents.

Typically,inroll GMT,min >0.5m whileinpitch GML,min ismuchlarger(morethan100.0m)

Atrade-offbetweenstabilityandcomfortshouldbemadesincealargestabilitymarginwillresultinlargerestoringforceswhichcanbequiteuncomfortableforpassengers(themechanicalequivalentisastiffspring).

4.2.3 Computation of Metacenter Height for Surface Vessels

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

17

Theloadcondition willdeterminetheheave,rollandpitchperiodsofamarinecraft.Theloadconditionvariesovertime(duetoloading,offloading,fuelburning,watertanks,etc.)

Inalinearsystem,thenaturalperiodswillbeindependentonthecoordinateoriginiftheyarecomputedusingthe6-DOFcoupledequationsofmotion.Thisisduetothefactthattheeigenvaluesofalinearsystemdonotchangewhenapplyingasimilaritytransformation!

1-DOFDecoupledAnalysis(NaturalPeriods)ThedecouplednaturalperiodsshouldbecomputedinCFusingthedecoupledequationsofmotion.Ifnot,theresultscanbeverywrongsincetheeigenvaluesofthedecoupledequationsdependonthecoordinateoriginasopposedtothe6-DOFcoupledsystem

4.3 Load Conditions and Natural Periods

!heave !C33

m " A33!!heave", Theave ! 2"

!heave

!roll !C44

Ix " A44!!roll", Troll ! 2"

!roll

!pitch !C55

Iy " A55!!pitch", Tpitch ! 2"

!pitch

#

#

#

Mustbesolvedbyiterationsinceaddedmassisafunctionoffrequency.Thisgivesanimplicitequationforfrequency.

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

18

4.3.1 Decoupled Computation of Natural PeriodsMSStoolbox:1-DOFDecoupledAnalysisfortheTankerModel(WAMITdata)

Theave ! 9. 68 sTroll ! 12. 84 sTpitch ! 9. 14 s

w_n ! natfrequency(vessel,dof,w_0,speed,LCF)

vessel ! MSS vessel data (computed in CO)

dof ! degree of freedom (3,4,5), use -1 for 6 DOF analysis

w_0 ! initial natural frequency (typical 0.5)

speed ! speed index 1,2,3...

LCF ! (optionally) longitudinal distance to CF from CO

load tanker

T_heave ! 2*pi/natfrequency(vessel,3,0.5,1)

T_roll ! 2*pi/natfrequency(vessel,4,0.5,1)

T_pitch ! 2*pi/natfrequency(vessel,5,0.5,1)

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

19

6-DOFCoupledAnalysis(NaturalPeriods)Inthe6-DOFcoupledcaseafrequency-dependentmodalanalysiscanbeusedtocomputethenaturalfrequencies:

Assumethatthefloatingvesselcarriesoutharmonicoscillations

Then

Theundamped system()representsafrequency-dependenteigenvalueproblem:

4.3.2 Computation of Natural Periods in a 6-DOF Coupled System

Theeigenvalues mustbecomputedforallfrequencies

! ! cos!!t"i, i ! #1,1,1,1,1,1$! #

! ! "2 #

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

M!!"!" ! D!!"!# ! G! " 0 # M!!" ! MRB " A!!"D!!" ! B!!" " BV!!" " Kd

G ! C " Kp

# # #

!G ! !2M"!# ! j!D"!#$a ! 0 #

D!!" ! 0

|G !! iM!""| ! 0 #

20

4.3.2 Computation of Natural Periods in a 6-DOF Coupled System

MSStoolbox:6-DOFDecoupledAnalysisfortheTankerModel(WAMITdata)

Theave ! 9. 68 sTroll ! 12. 84 sTpitch ! 9. 14 s

dof ! -1 % use -1 for 6 DOF analysis

load tanker

T ! 2*pi./natfrequency(vessel,dof,0.5,1)

Theave ! 9. 83 sTroll ! 12. 45 sTpitch ! 8. 95 s

CoupledAnalysisDecoupledAnalysis

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

21

4.3.2 Computation of Natural Periods in a 6-DOF Coupled System

MSStoolbox:

Theave ! 2! m " A33!"heave"#gAwp!0"

Troll ! 2! Ix " A44!"roll"#g!GMT

Tpitch ! 2! Ix " A55!"pitch"#g!GML

#

#

#

loadcond(vessel)

R55 ! R66 ! 0.25LppR44 ! 0.37B

Offshorevessels:

R55 ! R66 ! 0.27LppR44 ! 0.35BTankers:

Ix ! mR442

Iy ! mR552

Iz ! mR662

# # #

Therollperiodclearlydependontheloadcondition—thatis,addedmomentofinertiaA44,massm radiusofgyrationR44 andmetacentricheightGMT

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Radiusofgyration

Whathappensifyouincreasethemass?

22

Damped Harmonic Oscillator (Linear 2nd-order ODE without Forcing)

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Relative damping ratio

Solution:

1) Will a ship oscillate with ω0when excited by regular waves?

2) Will the ship oscillate at different frequencies in 6 DOF?

Natural frequency (undamped angular frequency)

For ships we add waves as forcing

23

Forced Harmonic Oscillator

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Comments: Resonance at ω/ω0 = 1.0

Marin craft oscillates at ω and not ω0 in all DOF when sufficient excited (fully developed sea with peak frequency ω)

Before “fully excited” the craft can oscillate with different frequencies in all DOF

Steady-state variation of amplitude with relative frequency ω/ω0 and damping ζ of a forced harmonic oscillator.

Phase:

Impedance:

24

4.3.2 Computation of Natural Periods in a 6-DOF Coupled SystemManyshipsareequippedliquidtankslikeballast andanti-rolltanks.Apartiallyfilledtankisknownasaslacktankandinthesetankstheliquidcanmoveandendangertheshipstability.

Thereductionofmetacentric heightGMT causedbytheliquidsinslacktanksisknownasthefree-surface-effect.

Themassoftheliquidorthelocationofthetanksplaynorole,onlythemomentofinertiaofthesurfaceaffectsstability.

The effectivemetacentric heightcorrectedforslacktanksfilledwithseawateris

Free-surface-correction(FSC)forNtanks

Rectangulartankwithlengthl inthex-directionandwidthb inthey-direction

GMT,eff ! GMT ! FSC #

FSC ! !r!1

N!m ir #

ir ! lb3

12 #

ir isthemomentofinertiaofthewatersurface

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

25

4.3.2 Computation of Natural Periods in a 6-DOF Coupled SystemThemetacentric heightGMT isreducedonboardashipifapayloadwithmassmp isliftedupandsuspendedattheendofaropeoflengthh.

The effectivemetacentric heightis

wherem isthemassofthevessel.

GMT,eff ! GMT ! hmpm #

Thedestabilizingeffectappearsimmediatelyafterraisingtheloadsufficientlytoletitmovefreely

p

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

26

M !! " C!!"! " D!!"! " g!"" " go # # " #wind " #wavew

#

Afloatingorsubmergedvesselcanbepretrimmed bypumpingwaterbetweentheballasttanksofthevessel.Thisimpliesthatthevesselcanbetrimmedinheave,pitchandroll:

4.4 Ballast Systems

z ! zd, ! ! !d, " ! "d 3modeswithrestoringforceandmoments

Steady-statesolution:

XX X

!d ! !!,!,!,zd,!d, "d,!"!where

Theballastvectorgo iscomputedbyusinghydrostaticanalyses(steady-statecondition).

mainequationforballastcomputationsg!!d" ! go " w #

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

27

Consideramarinecraftwithn ballasttanksofvolumesVi≤Vi,max (i=1,…,n)

Foreachballasttankthewatervolumeisgivenbytheintegral

4.4 Ballast Systems

Vi!hi" ! !o

hi Ai!h"dh " Aihi, (Ai!h" ! constant)

Zballast ! !i!1n Wi ! !g!i!1

n Vi

ThegravitationalforceinheaveduetoWi is:

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)Copyright © Bjarne Stenberg/NTNU

28

4.4 Ballast Systems

RestoringmomentsduetotheheaveforceZballast

rib ! !xi, yi , zi"!, #i ! 1," ,n$BallasttanklocationswithrespecttoCO:

Kballast ! !g!i!1

n

y iVi

Mballast ! "!g!i!1

n

x iVi

#

#

m ! r ! f

!

xyz

!

00

Zballast

!

yZballast

!xZballast

0

#

go !

00

ZballastKballastMballast

0

! !g

00

! i!1n Vi

!i!1n yiVi

"!i!1n xiVi0

Resultingballastmodel:

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

29

G!3,4,5"!d!3,4,5" ! go!3,4,5" " 0

#

!Zz 0 !Z!0 !K" 0

!Mz 0 !M!

zd"d!d

! #g

!"i"1n Vi

!"i"1n yiVi

"i"1n xiVi

" 0

#

Trimmingisusuallydoneundertheassumptionsthatandaresmallsuch:

4.4.1 Conditions for Manual Pretrimming

Reduced-ordersystem(heave,roll,andpitch):

!d !d

g!!d" ! G!d

Steady-statecondition: Thisisasetoflinear

equationswherethevolumesVi canbefoundbyassumingthatw=0(zerodisturbances)

G!3,4,5" !

!Zz 0 !Z!0 !K" 0

!Mz 0 !M!

go!3,4,5" ! !g

!"i!1n Vi

!"i!1n yiVi

"i!1n xiVi

!d!3,4,5" ! #zd,!d,"d $!

w!3,4,5" ! #w3,w4,w5$!

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

30

Assumethatthedisturbancesinheave,roll,andpitchhavezeromeans.Consequently:

and

4.4.1 Conditions for Manual Pretrimming

!Zz 0 !Z!0 !K" 0

!Mz 0 !M!

zd"d!d

!

#g"i!1n Vi " w3

#g"i!1n yiVi " w4

!#g"i!1n xiVi " w5

! ! H!y ! H"!HH""!1y

ThewatervolumesVi isfoundbyusingthepseudo-inverse:

!g1 ! 1 1y1 ! yn!1 yn!x1 ! !xn!1 !xn

V1V2"

Vn

!

!Zzzd ! Z""d!K##d!Mzzd ! M""d

H! ! y"

#

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

w!3,4,5" ! #w3,w4,w5$! ! 0

Courtesy to SeaLaunch

31

Example4.3(Semi-SubmersibleBallastControl) Considerasemi-submersiblewith4ballasttankslocatedatInaddition,yz-symmetryimpliesthat

4.4.1 Conditions for Manual Pretrimming

P P

PP

P P

V1 V2

V4 V3

xb

yb

O

p1

p2

p3+

+

+

r1b ! !!x,!y", r2b ! !x, !y",r3b ! !x, y",r4b ! !!x,y"Z! ! Mz ! 0

H ! !g1 1 1 1!y !y y yx !x !x x

y !

!Zzzd!K""d!M##d

!

!gAwp!0"zd!g"GMT"d!g"GML#d

! "

V1V2V3V4

! 14!g

1 ! 1y 1x

1 ! 1y ! 1x1 1

y ! 1x1 1

y1x

!gAwp!0"zd!g"GMT"d!g"GML#d

! ! H!y ! H"!HH""!1y

Inputs: zd ,!d," d

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

32

4.4.2 Automatic Pretrimming using Feedback from z, φ and θInthemanualpretrimming caseitwasassumedthatw{3,4,5}=0.Thisassumptioncanberelaxedbyusingfeedback.

Theclosed-loopdynamicsofaPIDcontrolledwaterpumpcanbedescribedbya1st-ordermodelwithamplitudesaturation:

Tj (s) isapositivetimeconstantpj (m³/s)isthevolumetricflowratepumpjpdj isthepumpset-point.

Thewaterpumpcapacityisdifferentforpositiveandnegativeflowdirections:

Tjp! j " pj # sat!pdj"

sat!pdj" !

pj,max" pj # pj,max"

pdj pj,max! " pdj " pj,max"

pj,max! pdj $ pj,max!

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

33

Example4.4(Semi-SubmersibleBallastControl,Continues):Thewaterflowmodelcorrespondingtothefigureis:

4.4.2 Automatic Pretrimming using Feedback from z, φ and θ

V! 1 " !p1V! 2 " !p3V! 3 " p2 # p3V! 4 " p1 ! p2

Tp! " p ! sat!pd"#! ! Lp

# #

! "

V1V2V3V4

, p "

p1p2p3

, L "

!1 0 00 0 !10 1 11 !1 0

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Copyright © Bjarne Stenberg/NTNU

34

4.4.2 Automatic Pretrimming using Feedback from z, φ and θFeedbackcontrolsystem:

Hpid!s" ! diag#h1,pid!s", h2,pid!s", . . . ,hm,pid!s"$

Tp! " p ! sat!pd"#! ! Lp

# #

Equilibriumequation:

Dynamics:

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

G!3,4,5"!!3,4,5" ! go!3,4,5"#"$ " w!3,4,5" #

pd ! Hpid!s"G#3,4,5$ !d#3,4,5$ ! !#3,4,5$ #

Courtesy to SeaLaunch

35

Anexampleofahighlysophisticatedpretrimming systemistheSeaLaunch trimand heelcorrectionsystem (THCS):

4.4.2 Automatic Pretrimming using Feedback from z, φ and θSeaLaunch:

Thissystemisdesignedsuchthattheplatformmaintainsconstantrollandpitchanglesduringchangesinweight.Themostcriticaloperationiswhentherocketistransportedfromthegarageononesideoftheplatformtothelaunchpad.Duringthisoperationthewaterpumpsoperateattheirmaximumcapacitytocounteracttheshiftinweight.

Afeedbacksystemcontrolsthepumpstomaintainthecorrectwaterlevelineachofthelegsduringtransportationoftherocket

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Courtesy to SeaLaunch

http://www.sea-launch.com

36

4.4.2 Automatic Pretrimming using Feedback from z, φ and θSeaLaunch Trim and Heel Correction System (THCS)

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)Courtesy to SeaLaunch

37

4.4.2 Automatic Pretrimming using Feedback from z, φ and θ

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)Courtesy to SeaLaunch

38

SMMarine Segment

4.4.2 Automatic Pretrimming using Feedback from z, φ and θ

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Courtesy to SeaLaunch

39

0 187.5 375 562.5 750 937.5 1125 1312.5 150021.5

10.5

00.5

11.5

22.5

33.5

44.5

55.5

6

Roll and pitch during launch time (secs)

roll

and

pitc

h (d

eg)

420 430 440 450 460 4702

0

2

4

6

Measured pitch during launch

time (secs)

Pitc

h ang

le (d

eg)

4.21

0.95

A 1< >jp

470420 jp20 10 0 10 20 30

2

0

2

4

6

Calculated pitch motionstime (secs)

pitch

angl

e (de

g)

4.326

0.202

Z 4< >l

180p

.

29.77515 Z 1< >l

roll

pitch

4.4.2 Automatic Pretrimming using Feedback from z, φ and θRollandpitchanglesduringlift-off

CNN10th October 1999

Lecture Notes TTK 4190 Guidance and Control of Vehicles (T. I. Fossen)

Courtesy to SeaLaunch