chapter 31- nuclear physics

52
Chapter 31- Nuclear Physics

Upload: finn

Post on 04-Jan-2016

56 views

Category:

Documents


3 download

DESCRIPTION

Chapter 31- Nuclear Physics. 31.1 Nuclear Structure. The atomic nucleus consists of positively charged protons and neutral neutrons. 31.1 Nuclear Structure. atomic mass number. atomic number. 31.1 Nuclear Structure. Nuclei that contain the same number of protons but a different - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chapter 31- Nuclear Physics

Chapter 31- Nuclear Physics

Page 2: Chapter 31- Nuclear Physics
Page 3: Chapter 31- Nuclear Physics

31.1 Nuclear Structure

The atomic nucleus consistsof positively charged protonsand neutral neutrons.

Page 4: Chapter 31- Nuclear Physics

31.1 Nuclear Structure

neutrons

ofNumber protons

ofNumber neutrons and

protons ofNumber

NZA

atomicnumber

atomic massnumber

Page 5: Chapter 31- Nuclear Physics

31.1 Nuclear Structure

Nuclei that contain the same number of protons but a differentnumber of neutrons are known as isotopes.

Page 6: Chapter 31- Nuclear Physics

The Strong ForceThe Strong Force

1. It is an attractive force between any two nucleons.

2. It does not act on electrons.

3. It is a short-range force, acting only over nuclear distances.

4. Over the range where it acts, it is stronger than the electrostatic force that tries to push two protons apart.

The strong force has four important properties:

Page 7: Chapter 31- Nuclear Physics

As the number of protons increase, the number of neutrons must increase even more for stabilityAll elements with >83 protons are unstable

Page 8: Chapter 31- Nuclear Physics

Radioactivity – the spontaneous disintegration or rearrangement of internal nuclear structure.

Page 9: Chapter 31- Nuclear Physics

• A nucleus is a bound system. You need to supply energy to separate a stable nucleus into separated nucleons.•This energy is called the binding energy.• Recall that E0 = mc2 • If the separated nucleons are also at rest, that energy is in the form of greater mass.

• Binding Energy (B) = mseparated c2 - mnuc c2

Page 10: Chapter 31- Nuclear Physics

31.3 The Mass Deficit of the Nucleus and Nuclear Binding Energy

22defect MassB cmc

Where Δm, the mass defect, is the difference between the nuclear mass and the mass of the separated nucleons.

Page 11: Chapter 31- Nuclear Physics

31.3 The Mass Deficit of the Nucleus and Nuclear Binding Energy

B = mseparated c2 - matom c2

•Use atomic mass units (amu) for the mass of the atom (matom ) when calculating the resting energy of the atom. Values in periodic table.•Use amu value for neutron (1.0087 u) for all neutrons (Nmn ).•Use atomic mass of 1hydrogen (1.0078 u) for all protons (ZmH ). Note that this is slightly different from the 1.00794 value given in the periodic table!

Page 12: Chapter 31- Nuclear Physics

31.3 The Mass Deficit of the Nucleus and Nuclear Binding Energy

1u of mass is equivalent to 931.5 MeV/c2

c2 = 931.5 MeV/u

B = mseparated c2 - matom c2

Page 13: Chapter 31- Nuclear Physics

31.3 The Mass Deficit of the Nucleus and Nuclear Binding Energy

Example 3 The Binding Energy of the Helium Nucleus Revisited

The atomic mass of helium is 4.0026u and the atomic mass of 1hydrogen isotope is 1.0078u. Using atomic mass units, instead of kilograms, obtain the binding energy of the helium nucleus.

Page 14: Chapter 31- Nuclear Physics

31.3 The Mass Deficit of the Nucleus and Nuclear Binding Energy

u 0304.0u 0026.4u 0330.4 m

MeV/u 5.931c2

MeV 3.28)/5.931)(03304.0(B 2 uMeVumc

Page 15: Chapter 31- Nuclear Physics

QUESTION

The atomic mass of this particular isotope of iron is 55.9349u.

Recall that the neutron has a mass of 1.0087u and the 1hydrogen atom a mass of 1.0078u

Page 16: Chapter 31- Nuclear Physics
Page 17: Chapter 31- Nuclear Physics

Binding Energy per Nucleon Curve

Page 18: Chapter 31- Nuclear Physics

31.4 Radioactivity

When radioactive material disintegrates spontaneously, certain kinds of particles and/or high energy photons are released.These are called, respectively alpha (α) rays, beta (β) rays, and gamma(γ) rays.A magnetic field can separate these three types of particles emitted byradioactive nuclei.

Page 19: Chapter 31- Nuclear Physics

α DECAYThe general form for α decay is:

where P is the parent nucleus, D is the daughter nucleus and The process whereby one element becomes another is called

transmutation.This reaction occurs when the mass of the parent nucleus is

greater than the mass of the daughter nucleus plus the mass of an alpha particle. This is the case for some high-Z nuclei located beyond Bi on the binding energy curve.

It is energetically favorable for these nuclei to eject an alpha particle, because the daughter is bound more tightly than the parent.

He D P 22

42

AZ

AZ

Page 20: Chapter 31- Nuclear Physics

α DECAY of Uranium

He D P 22

42

AZ

AZ

Page 21: Chapter 31- Nuclear Physics

α DECAY and the release of energy

The atomic mass of 238U is 238.0508 u, the atomic mass of 234Th is 234.0436 u and the atomic mass of a helium atom is 4.0026. Determine the energy released when uranium 238 undergoes α decay.

Since energy is released, the combined mass of thorium and the alpha particle should be less than that of the uranium .

238.0508u {234.0436u + 4.0026u}

238.0462

Page 22: Chapter 31- Nuclear Physics

31.4 Radioactivity

α DECAY of Uranium

∆E = ∆mc2 = (.0046u)(931.5)MeV/u = 4.3 MeV.

Most of this energy is in the form of kinetic energy of the recoiling particles.

238.0508u {234.0436u + 4.0026u}

238.0462

Page 23: Chapter 31- Nuclear Physics

β DECAYThe general form for β decay is:

β decay, like α decay, results in transmutation of the parent nucleus.In this case a neutron within the nucleus decays into a proton and a

negative particle that is indistinguishable from an orbital electron. 14C becomes 14N due to this mechanism.

β plus decay also occurs. In this case a proton decays into a neutron and positron, which has the same mass as an electron, but a positive charge.

e D P 011 A

ZAZ

e D P 011 A

ZAZ

Page 24: Chapter 31- Nuclear Physics

31.4 Radioactivity

γ DECAY

P P AZ

AZ

excited energystate

lower energystate

γ decay occurs when a nucleus in a higher energy state spontaneously jumps to a lower energy state. The result is emission of a very high frequency photon.

Page 25: Chapter 31- Nuclear Physics

31.4 Radioactivity

Gamma knife – I hope I never see you here!

Page 26: Chapter 31- Nuclear Physics

The cobalt isotope 60Co (Z = 27) decays to the nickel isotope 60Ni (Z = 28). The decay process is:

A.Alpha decay.B.Beta-plus decay.C.Beta-minus decay.D.Gamma decay.

Stop to think

Page 27: Chapter 31- Nuclear Physics

The cobalt isotope 60Co (Z = 27) decays to the nickel isotope 60Ni (Z = 28). The decay process is:

A.Alpha decay.B.Beta-plus decay.C.Beta-minus decay.D.Gamma decay.

Stop to think

Page 28: Chapter 31- Nuclear Physics

31.5 The Neutrino

During beta decay, energy is released. However, it is found that most beta particles do not have enough kinetic energy to account forall of the energy released.

The additional energy is carried away by a neutrino.

e Pa Th 01

23491

23490

Page 29: Chapter 31- Nuclear Physics

31.6 Radioactive Decay and Activity

Imagine tossing a coin. Will it be heads or tails? If you tossed 1000 coins, you’d very likely find 500 heads and 500 tails. If you tossed the 500 heads, you’d get about 250 heads, 250 tails. Tossing the 250 heads you’d get about 125 heads and so on.A graph of number of heads remaining vs. number of tosses would result in an exponential graph, like the one on the right.Tossing a single coin is a random process, but doing so repeatedly shows a definite pattern.Radioactive decay shows this same pattern.

Page 30: Chapter 31- Nuclear Physics

How often does alpha, beta, or gamma decay occur within a sample of radioactive material?

•We can define λ as the decay constant, the probability that a nucleus will decay in the next second. For example if λ=.01 s-1, it means that a nucleus has a 1% chance of decay in the next second.

•The probability that a nucleus will decay in a small time period, Δt, is:

λ Δt

•If there are N independent nuclei in a sample, the number of nuclei expected to decay in the time period, Δt:

Δ N = -N λ Δt

•And thereforeΔ N/ Δt = - λN

•The negative sign indicates that the ΔN is a loss of radioactive nuclei.

Page 31: Chapter 31- Nuclear Physics

How often does alpha, beta, or gamma decay occur within a sample of radioactive material?

•The activity (A) of a radioactive sample is defined as the number of disintegrations per second:

A = |Δ N/ Δt| We have shown that the activity is equal to λ N.

•The SI unit of activity is the becquerel (one Bq = 1 disintegration per second)

•A non-SI unit of activity often used in the medical industry is the Curie, where 1 Ci = 3.7 x 1010 Bq.

Page 32: Chapter 31- Nuclear Physics

toeNN

This is a graph of N, the number of radioactive nuclei in a sample, vs. time.It can be shown that the exponential graph, shown on the left, has the following equation:

where N is the number of radioactive or parent nuclei at a given time t, N0 is the number of parent nuclei at time t = 0, and λ is the decay constant.Since A = λN we can also say:

toeAA

Page 33: Chapter 31- Nuclear Physics

where T1/2 the half-life, is defined as the time in which ½of the radioactive nuclei disintegrate.

toeNN

212ln TTaking the natural log of both sides:

2/1

20 T

oeNN

2/1

2

1 Te

2ln

21 T

It is often convenient to know how long it will take for one-half the sample to decay.

Half- Life, T1/2

Page 34: Chapter 31- Nuclear Physics

31.6 Radioactive Decay and Activity

Page 35: Chapter 31- Nuclear Physics

A sample starts with 1000 radioactive atoms. How many half-lives have elapsed when 750 atoms have decayed?

A.2.5B.2.0C.1.5D.0.25

Page 36: Chapter 31- Nuclear Physics

A sample starts with 1000 radioactive atoms. How many half-lives have elapsed when 750 atoms have decayed?

A.2.5B.2.0C.1.5D.0.25

Page 37: Chapter 31- Nuclear Physics

Cesium activity

• The isotope 137Cs is a standard source of gamma rays. The half-life is 30.0 years.

a.How many 137Cs atoms are in a source that has an activity of 1.85 x 105 Bq?

b.What is the activity of the source 10 years later?

Page 38: Chapter 31- Nuclear Physics

Cesium activity

• The isotope 137Cs is a standard source of gamma rays. The half-life is 30.0 years.

a.How many 137Cs atoms are in a source that has an activity of 1.85 x 105 Bq?

A = λ N and we are looking for N. We can use the relationship between T1/2 and λ :

2ln

21 T

Page 39: Chapter 31- Nuclear Physics

Cesium activity

First, express T1/2 in terms of seconds:

T1/2 = 30.0 y(3.15 x 107 s/y) = 9.45 x 108 s

λ = (ln 2)/T1/2

λ = .693/9.45 x 108 s

λ = 7.33 x 10-10 s-1

Thus the number of 137 Cs is:

A/ λ = N

1.85 x 105 Bq/ 7.33 x 10-10 s-1 = 2.5 x 1014 atoms.

Page 40: Chapter 31- Nuclear Physics

Cesium activity

What is the activity of the source 10 years later?

toeAA

A= 1.47 x 105 Bq

Page 41: Chapter 31- Nuclear Physics

31.7 RadiocarbonDating – visiting with Oetzi

•In 1949, Willard Libby developed a method of using the radioactive isotope 14 C to determine the age of organic materials up to about 50,000 years old. Libby won a Nobel Prize for his work.•The concentration of 14 C in the is about 1 part per trillion (1 atom of 14 C for 8.3 x 1011 atoms of 12 C. This seems small, but is measurable by modern chemical techniques.•Living organisms have an activity of 0.23 Bq per gram carbon. After death, this activity decreases.•T1/2 = 5730 years for 14 C. It undergoes beta decay to 14 N.•Other isotopes with longer half-lives are used to date geological materials.

•. In particular Uranium was used to obtain an date for the age of the Earth (5.4 billion years)

Page 42: Chapter 31- Nuclear Physics

Carbon dating• Archeologists excavating a site have found a

piece of charcoal from a fireplace. Lab measurements find the 14 C activity to be .07 Bq per gram. What is the radiocarbon age of the charcoal?

Known Find

A= .07Bq/g t

A0 = .23 Bq/g

T1/2 = 5730 years

λ = (ln 2)/T1/2 t

oeAA

Page 43: Chapter 31- Nuclear Physics

Carbon dating• First, find λ, the decay constant

Known Find

A= .07Bq/g t

A0 = .23 Bq/g

T1/2 = 5730 years

Tip: If we leave λ in terms of the T1/2 , we can find t in years : λ = (ln 2)/T1/2 = .693/5730

λ = 1.209 x 10-4 y-1

Page 44: Chapter 31- Nuclear Physics

Carbon dating

Known Find

A= .07Bq/g t

A0 = .23 Bq/g

T1/2 = 5730 years = 1.807 x 1011 s

λ = 1.209 x 10-4 y-1 toeAA

Ln (A/A0) = - λt

Ln (A/A0)/- λ = t

T = 9839 or 9800 years

Page 45: Chapter 31- Nuclear Physics

Conceptual Example 12 Dating a Bottle of Wine

A bottle of red wine is thought to have been sealed about 5 years ago. The wine contains a number of different atoms, including carbon,oxygen, and hydrogen. The radioactive isotope of carbon is the familiar C-14 with ½ life 5730 yr. The radioactive isotope of oxygen is O-15 with a ½ life of 122.2 s. The radioactive isotope of hydrogen is called tritium and has a ½ life of 12.33 yr. The activity of each of these isotopes is known at the time the bottle was sealed. However,only one of the isotopes is useful for determining the age of the wine. Which is it?A. C-14 B. O-15 C. H-3

Page 46: Chapter 31- Nuclear Physics

Conceptual Example 12 Dating a Bottle of Wine

A bottle of red wine is thought to have been sealed about 5 years ago. The wine contains a number of different atoms, including carbon,oxygen, and hydrogen. The radioactive isotope of carbon is the familiar C-14 with ½ life 5730 yr. The radioactive isotope of oxygen is O-15 with a ½ life of 122.2 s. The radioactive isotope of hydrogen is called tritium and has a ½ life of 12.33 yr. The activity of each of these isotopes is known at the time the bottle was sealed. However,only one of the isotopes is useful for determining the age of the wine. Which is it?A. C-14 B. O-15 C. H-3

Page 47: Chapter 31- Nuclear Physics

31.8 Radioactive Decay Series

The sequential decay of one nucleus after another is called a radioactive decay series.

Page 48: Chapter 31- Nuclear Physics

31.8 Radioactive Decay Series

Page 49: Chapter 31- Nuclear Physics

31.9 Radiation Detectors

A Geiger counter

Page 50: Chapter 31- Nuclear Physics

31.9 Radiation Detectors

A scintillationcounter

Page 51: Chapter 31- Nuclear Physics

31.1 Nuclear Structure

3115 m102.1 Ar

Page 52: Chapter 31- Nuclear Physics

31.1 Nuclear Structure

3115 m102.1 Ar

Conceptual Example 1 Nuclear Density

It is well known that lead and oxygen contain different atoms andthat the density of solid lead is much greater than gaseous oxygen.Using the equation, decide whether the density of the nucleus in alead atom is greater than, approximately equal to, or less than thatin an oxygen atom.