# Chapter 31- Nuclear Physics

Post on 11-Feb-2016

30 views

Embed Size (px)

DESCRIPTION

Chapter 31- Nuclear Physics . 31.1 Nuclear Structure. The atomic nucleus consists of positively charged protons and neutral neutrons. 31.1 Nuclear Structure. atomic mass number. atomic number. 31.1 Nuclear Structure. Nuclei that contain the same number of protons but a different - PowerPoint PPT PresentationTRANSCRIPT

<ul><li><p>Chapter 31- Nuclear Physics </p></li><li><p>31.1 Nuclear StructureThe atomic nucleus consistsof positively charged protonsand neutral neutrons.</p></li><li><p>31.1 Nuclear Structureatomicnumberatomic massnumber</p></li><li><p>31.1 Nuclear StructureNuclei that contain the same number of protons but a differentnumber of neutrons are known as isotopes.</p></li><li><p>The Strong Force1. It is an attractive force between any two nucleons.2. It does not act on electrons.3. It is a short-range force, acting only over nuclear distances.4. Over the range where it acts, it is stronger than the electrostatic force that tries to push two protons apart.The strong force has four important properties:</p></li><li><p>As the number of protons increase, the number of neutrons must increase even more for stabilityAll elements with >83 protons are unstable</p></li><li><p>Radioactivity the spontaneous disintegration or rearrangement of internal nuclear structure.</p></li><li><p> A nucleus is a bound system. You need to supply energy to separate a stable nucleus into separated nucleons.This energy is called the binding energy. Experimental evidence shows that the mass of any nucleus is less than the mass of the same number and type of nucleons when they are separated, i.e. at rest and out of the range of the forces from other nucleons. Why is this?</p></li><li><p>According to Einstein, mass and energy are related. The energy of an object at rest is: E0 = mc2 The binding energy is transformed into the greater mass of the separated nucleons. </p><p> Binding Energy (B) = mseparated c2 - mnuc c2 </p></li><li><p>31.3 The Mass Deficit of the Nucleus and Nuclear Binding EnergyWhere m, the mass defect, is the difference between the nuclear mass and the mass of the separated nucleons.</p></li><li><p>31.3 The Mass Deficit of the Nucleus and Nuclear Binding Energy Values for binding energy are very small, when using SI units of Joules. Often the unit used is called the electron volt, where:1 eV = 1.60 x 10-19 J1 MeV = 1 x 106 eV</p></li><li><p>31.3 The Mass Deficit of the Nucleus and Nuclear Binding Energy1u of mass is equivalent to 931.5 MeV/c2</p><p>c2 = 931.5 MeV/u</p><p>B = mseparated c2 - matom c2 </p></li><li><p>31.3 The Mass Deficit of the Nucleus and Nuclear Binding EnergyB = mseparated c2 - matom c2 </p><p>Use atomic mass units (amu) for the mass of the atom (matom ) when calculating the resting energy of the atom. Values in periodic table.Use amu value for neutron (1.0087 u) for all neutrons (Nmn ).Use atomic mass of 1hydrogen (1.0078 u) for all protons (ZmH ). This accounts for the mass of the electrons. Note that this is slightly different from the 1.00794 value given in the periodic table!</p></li><li><p>31.3 The Mass Deficit of the Nucleus and Nuclear Binding EnergyExample 3 The Binding Energy of the Helium Nucleus Revisited</p><p>The atomic mass of helium is 4.0026u and the atomic mass of 1hydrogen isotope is 1.0078u. Using atomic mass units, instead of kilograms, obtain the binding energy of the helium nucleus.</p></li><li><p>31.3 The Mass Deficit of the Nucleus and Nuclear Binding Energy</p></li><li><p>QUESTIONThe atomic mass of this particular isotope of iron is 55.9349u. Recall that the neutron has a mass of 1.0087u and the 1hydrogen atom a mass of 1.0078u</p></li><li><p>Binding Energy per Nucleon Curve</p></li><li><p>31.4 RadioactivityWhen radioactive material disintegrates spontaneously, certain kinds of particles and/or high energy photons are released.These are called, respectively alpha () rays, beta () rays, and gamma() rays.A magnetic field can separate these three types of particles emitted byradioactive nuclei.</p></li><li><p>Alpha () DECAYThe general form for decay is:</p><p>P is the parent nucleus, D is the daughter nucleus andHe is an alpha particle, which is a helium nucleus (2 protons and 2 neutrons)Since the daughter product has 2 less protons than the parent nucleus, it becomes another elementThe process whereby one element becomes another is called transmutation.</p></li><li><p> DECAYWhen alpha decay occurs, the daughter product and the alpha particle have less mass than the parent nucleus. This is in marked contrast to the separation of a stable nucleus, where the separated nucleons has a greater mass. The fact that the daughter nucleus plus alpha particle have less mass implies that alpha decay releases energy. Alpha decay occurs in some high-Z nuclei located beyond bismuth (Bi) on the binding energy curve.</p></li><li><p> DECAY and the release of energyPlutonium has a mass of 239.052 u, and undergoes decay to become with a mass of 235.043 u. The mass of a helium atom (used for the mass of the alpha particle) is 4.0026. Determine the energy released (in MeV) when Plutonium 239 undergoes decay.239.052u (235.043u + 4.0026u + E)</p><p>E = .0064 u (931.5 MeV/u) = 5.96 MeVThis energy manifests itself as kinetic energy of the alpha particle and daughter particle.</p></li><li><p>Beta Decay and QuarksNucleons are composed of elementary particles called quarks. There are 6 known types of quarks, but we will only consider 2 of these types:Up quarks have a charge of +2/3 eDown quarks have a charge of - 1/3 e</p></li><li><p>Beta Decay and QuarksIn the most common type of beta decay, ( known as - decay), one of the down quarks in the neutron decays into an up quark, by emitting a beta particle with a total charge of -1. This particle is indistinguishable from an orbital electron.</p></li><li><p>Beta Decay and QuarksIn the most common type of beta decay, ( known as - decay), one of the down quarks in the neutron decays into an up quark, by emitting a beta particle with a total charge of -1. This particle is indistinguishable from an orbital electron.In the process, an extremely small particle (0.0004% of the mass of the electron) called an antineutrino( ) is emitted.</p></li><li><p>- DECAYThe general form for - decay is:</p><p>- decay, like decay, results in transmutation of the parent nucleus into a different element and releases energy.This type of radioactivity occurs in unstable nuclei with more neutrons than protons.14C decays into 14N due to this mechanism.</p></li><li><p>- DECAYThe radioactive isotope of carbon, Carbon 14, has an atomic mass of 14.003241 u. It is converted by - decay into Nitrogen 14 (atomic mass= 14.003074 u).What is the energy (in MeV) released in this process?</p></li><li><p>- DECAYThe radioactive isotope of carbon, Carbon 14, has an atomic mass of 14.003241 u. It is converted by - decay into Nitrogen 14 (atomic mass= 14.003074 u).C 14 N 14 + EE = (14.003241-14.003074) u x 931.5 MeV/uE = .1556 MeVNote that the mass of the - particle and the antineutrino is included in the atomic mass of the nitrogen.</p></li><li><p>+ DECAY plus decay also occurs, but is a much less common phenomenon. In this case a proton decays into a neutron, a neutrino, and positron, which has the same mass as an electron, but a positive charge.</p></li><li><p>+ DECAY plus decay requires energy, it does not release it. Therefore it does not happen spontaneously</p></li><li><p>31.4 Radioactivity DECAYexcited energystatelower energystate decay occurs when a nucleus in a higher energy state spontaneously jumps to a lower energy state. The result is emission of a very high frequency photon.Note that decay does not result in transmutation. </p></li><li><p>31.4 RadioactivityGamma knife surgery I hope I never see you here!</p></li><li><p>The cobalt isotope 60Co (Z = 27) decays to the nickel isotope 60Ni (Z = 28). The number in the rh corner is A, atomic mass. The decay process is:Alpha decay.Beta-plus decay.Beta-minus decay.Gamma decay.Stop to think</p></li><li><p>31.6 Radioactive Decay and ActivityImagine tossing a coin. Will it be heads or tails? If you tossed 1000 coins, youd very likely find 500 heads and 500 tails. If you tossed the 500 heads, youd get about 250 heads, 250 tails. Tossing the 250 heads youd get about 125 heads and so on.A graph of number of heads (N) remaining vs. number of tosses (T) would result in an exponential graph, like the one on the right.</p></li><li><p>31.6 Radioactive Decay and ActivityTossing a single coin is a random process, but tossing many coins results in a definite pattern.Each time you toss, about the coins will be heads, and will be tails. Radioactive decay shows this exact same pattern.</p></li><li><p>How often does the radioactive decay occur within a sample of radioactive material?We can define as the decay constant, the probability that a nucleus will decay in the next second. has units of inverse seconds (s-1)</p><p>For example if =.01 s-1, it means that a nucleus has a 1% chance of decay in the next second.</p><p>The probability that a nucleus will decay in a small time period, t, is: t</p><p>If there are N independent nuclei in a sample, the number of nuclei expected to decay in the time period, t: N = -N t</p><p>And therefore N/ t = - N</p><p>The negative sign indicates that the N is a loss of radioactive nuclei.</p></li><li><p>How often does alpha, beta, or gamma decay occur within a sample of radioactive material?The activity (A) of a radioactive sample is defined as the number of disintegrations per second: A = | N/ t| We have shown that the activity is equal to N.The SI unit of activity is the becquerel (one Bq = 1 disintegration per second)A non-SI unit of activity often used in the medical industry is the Curie, where 1 Ci = 3.7 x 1010 Bq. Activity can be determined by direct measurement.</p></li><li><p>This is a graph of N, the number of radioactive nuclei in a sample, vs. time.It can be shown that the exponential graph, shown on the left, has the following equation:</p><p>where N is the number of radioactive or parent nuclei at a given time t, N0 is the number of parent nuclei at time t = 0, and is the decay constant.Since A = N we can also say:</p></li><li><p>where T1/2 the half-life, is defined as the time in which of the radioactive nuclei disintegrate.Taking the natural log of both sides:It is often convenient to know how long it will take for one-half the sample to decay. Half- Life, T1/2</p></li><li><p>31.6 Radioactive Decay and Activity</p></li><li><p>A sample starts with 1000 radioactive atoms. How many half-lives have elapsed when 750 atoms have decayed?2.52.01.50.25</p></li><li><p>Cesium activityThe isotope 137Cs is a standard source of gamma rays. The half-life is 30.0 years.How many 137Cs atoms are in a source that has an current activity of 1.85 x 105 Bq?What is the activity of the source 10 years later? </p></li><li><p>Cesium activity, part AThe isotope 137Cs is a standard source of gamma rays. The half-life is 30.0 years.How many 137Cs atoms are in a source that has a current activity of 1.85 x 105 Bq?KnownFindT1/2 = 30.0 yearsN, number of Cs atomsA = N = 1.85 x 105 Bq</p><p>: To find , the decay constant, we can use the relationship between it and half-life </p></li><li><p>Cesium activity, part A How many 137Cs atoms are in a source that has a current activity of 1.85 x 105 Bq? A = N = 1.85 x 105 Bq</p><p> = 7.33 x 10-10 s-1 N = A/ = 2.53 x 1014 atoms </p></li><li><p>Cesium activityb. What is the activity of the source 10 years later? </p><p>A0 = 1.85 x 105 Bq = 7.33 x 10-10 s-1t = 10 yrs converted to secondst= 3.15 x 108 s</p><p>A= 1.47 x 105 BqActivity decreases over time.</p></li><li><p>Cesium activity1. Express T1/2 in terms of seconds: T1/2 = 30.0 y(3.15 x 107 s/y) = 9.45 x 108 s2. Find decay constant, : = (ln 2)/T1/2 = .693/9.45 x 108 s = 7.33 x 10-10 s-1 3. Thus the number of 137 Cs atoms is:A/ = N 1.85 x 105 Bq/ 7.33 x 10-10 s-1 = 2.5 x 1014 atoms.</p></li><li><p>Formation of C-14Carbon 14 is produced in the upper atmosphere when energized neutrons form from interactions between high energy cosmic radiation and atmospheric gases. The energetic neutron is absorbed by a nitrogen 14 nucleus and a proton is ejected.Transmutation occurs and an unstable isotope of carbon (C-14) is created.</p></li><li><p>31.7 RadiocarbonDating visiting with OetziIn 1949, Willard Libby developed a method of using the radioactive isotope 14 C to determine the age of organic materials up to about 50,000 years old. Libby won a Nobel Prize for his work.. </p></li><li><p>31.7 RadiocarbonDating visiting with OetziThe concentration of 14 C in the is about 1 part per trillion (1 atom of 14 C for 8.3 x 1011 atoms of 12 C. This seems small, but is measurable by modern chemical techniques.Living organisms have an activity of 0.23 Bq per gram carbon. After death, this activity decreases.materials. </p></li><li><p>31.7 RadiocarbonDating visiting with OetziT1/2 = 5730 years for 14 C. It undergoes beta decay to 14 N.Other isotopes with longer half-lives are used to date geological materials. Uranium-Lead isotope dating was used to obtain a value for the age of the Earth (4.5 billion years). </p></li><li><p>Carbon datingArcheologists excavating a site have found a piece of charcoal from a fireplace. Lab measurements find the 14 C activity of the charcoal to be .07 Bq per gram. What is the radiocarbon age of the charcoal? KnownFindA= .07Bq/gtA0 = .23 Bq/gT1/2 = 5730 years = (ln 2)/T1/2 </p></li><li><p>Carbon datingFirst, find , the decay constant KnownFindA= .07Bq/gtA0 = .23 Bq/gT1/2 = 5730 yearsTip: If we leave in terms of the T1/2 , we can find t in years : = (ln 2)/T1/2 = .693/5730</p><p> = 1.209 x 10-4 y-1</p></li><li><p>Carbon datingKnownFindA= .07Bq/gtA0 = .23 Bq/gT1/2 = 5730 years = 1.209 x 10-4 y-1</p><p>Ln (A/A0) = - tLn (A/A0)/- = t</p><p>T = 9839 or 9800 years</p></li><li><p>Conceptual Example 12 Dating a Bottle of Wine</p><p>A bottle of red wine is thought to have been sealed about 5 years ago. The wine contains a number of different atoms, including carbon,oxygen, and hydrogen. The radioactive isotope of carbon is the familiar C-14 with life 5730 yr. The radioactive isotope of oxygen is O-15 with a life of 122.2 s. The radioactive isotope of hydrogen is called tritium and has a life of 12.33 yr. The activity of each of these isotopes is known at the time the bottle was sealed. However,only one of the isotopes is useful for determining the age of the wine. Which is it?A. C-14B. O-15C. H-3</p></li><li><p>EOC 47The practical limit to ages that can be determined by radiocarbon dating is about 41,000 years. In a sample of this age, what percentage of C-14 remains?</p></li><li><p>EOC 47The practical limit to ages that can be determined by radiocarbon dating is about 41,000 years. In as sample of this age, whatj percentage of C-14 remains?</p><p>0.70%</p></li><li><p>EOC #50 When a sample from a meteorite is analyzed, it is determined that 93.8% of the original mass of a certain radioactive isotope is still present. The age of the meteorite is calculated to be 4.51 x 109 yrs. What is T1/2 in years of this isotope?</p></li><li><p>EOC #50 When a sample from a meteorite is analyzed, it is determined that 93.8% of the original mass of a certain radioactive isotope is still present. What is T1/2 in years of this isotope?</p><p>Answer:4.88 x 1010 years</p></li><li><p>31.8 Radioactive Decay SeriesThe sequential decay of one nucleus after another is called a radioactive decay series.</p></li><li><p>31.8 Radioactive Decay Series</p></li><li><p>31.9 Radiation DetectorsA Geiger counter</p></li><li><p>31.9 Radiation DetectorsA scintillationcounter</p><p>STT42.5Answer: D*STT42.4Answer: B*</p></li></ul>