chapter 20 petrucci

Upload: coppernitrate

Post on 15-Oct-2015

196 views

Category:

Documents


6 download

DESCRIPTION

General Chemistry

TRANSCRIPT

  • 5/26/2018 Chapter 20 Petrucci

    1/67

    Slide 1 of 53 Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20Slide 1 of 53

    PHILIP DUTTONUNIVERSITY OF WINDSOR

    DEPARTMENT OF CHEMISTRY ANDBIOCHEMISTRY

    TENTH EDITION

    GENERAL CHEMISTRYPrinciples and Modern Applications

    PETRUCCI HERRING MADURA BISSONNETTE

    Electrochemistry 20

  • 5/26/2018 Chapter 20 Petrucci

    2/67

    Slide 2 of 53

    Spontaneous Change:

    Entropy and Gibbs Energy

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20Slide 2 of 53

    ONTENTS19-1 Electrode Potentials and Their

    Measurement

    19-2 Standard Electrode Potentials

    19-3 Ecell, G, and K

    19-4 Ecellas a function of

    Concentrations

    19-5 Batteries: Producing ElectricityThrough Chemical Reactions

    19-6 Corrosion: Unwanted Voltaic

    Cells

    19-7 Electrolysis: Causing

    Nonspontaneous Reactions toOccur

    19-8 Industrial Electrolysis Processes

  • 5/26/2018 Chapter 20 Petrucci

    3/67

    Slide 3 of 53

    20-1 Electrode Potentials and Their Measurement

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20Slide 3 of 53

    FIGURE 20-1

    Behaviour of Ag+(aq) and Zn+(aq) in the presence of copper

    Cu(s) + 2Ag+(aq)

    Cu2+(aq) + 2 Ag(s)

    Cu(s) + Zn2+(aq)

    No reaction

  • 5/26/2018 Chapter 20 Petrucci

    4/67

    Slide 4 of 53

    An electrochemical half cell

    FIGURE 20-2

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    Anode

    Cathode

  • 5/26/2018 Chapter 20 Petrucci

    5/67

    Slide 5 of 53

    Measurement of the electromotive force of an electrochemical cell

    FIGURE 20-3

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

  • 5/26/2018 Chapter 20 Petrucci

    6/67

    Slide 6 of 53

    The reaction Zn(s) + Cu2+(aq) Zn2+(aq) + Cu(s) in an electrochemical cell

    FIGURE 20-4

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    Zn(s) + Cu2+(aq) Zn2+(aq) + Cu(s)

    Ecell= 1.103 V

  • 5/26/2018 Chapter 20 Petrucci

    7/67

    Slide 7 of 53

    Cell Diagrams and Terminology

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    Electromotive force, Ecell

    The cell voltage or cell potential.

    Cell diagram

    Shows the components of the cell in a symbolic way.

    Anode (where oxidation occurs) on the left.

    Cathode (where reduction occurs) on the right.

    Boundary between phases shown by |.

    Boundary between half cells(commonly a salt bridge) shown by ||.

  • 5/26/2018 Chapter 20 Petrucci

    8/67

    Slide 8 of 53

    The reaction Zn(s) + Cu2+(aq) Zn2+(aq) + Cu(s) in an electrochemical cell

    FIGURE 20-4

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    Zn(s) | Zn2+(aq) || Cu2+(aq) | Cu(s)

    Ecell= 1.103 V

  • 5/26/2018 Chapter 20 Petrucci

    9/67

    Slide 9 of 53

    Galvanic (or voltaic) cells

    Produce electricity as a result of spontaneous reactions.

    Electrolytic cells

    Non-spontaneous chemical change driven by electricity.

    Couple, M|Mn+

    A pair of species related by a change in number of e-.

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

  • 5/26/2018 Chapter 20 Petrucci

    10/67

  • 5/26/2018 Chapter 20 Petrucci

    11/67

  • 5/26/2018 Chapter 20 Petrucci

    12/67

    Slide 12 of 53

    20-2 Standard Electrode Potentials

    Cell voltages, the potential differences

    between electrodes, are among the most

    precise scientific measurements.

    The potential of an individual electrode is

    difficult to establish.

    Arbitrary zero is chosen.

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    The Standard Hydrogen Electrode (SHE)

  • 5/26/2018 Chapter 20 Petrucci

    13/67

    Slide 13 of 53

    The standard hydrogen electrode (SHE)

    FIGURE 20-5

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    2 H+(a = 1) + 2 e- H2(g, 1 bar) E= 0

    V

    Pt|H2(g, 1 bar)|H+(a = 1)

  • 5/26/2018 Chapter 20 Petrucci

    14/67

    Slide 14 of 53

    Standard Electrode Potential, E

    Ecell= Ecathode(right)Eanode,(left)

    The tendency for a reductionprocess to occur at an electrode.

    All ionic species present at a=1 (approximately 1 M).

    All gases are at 1 bar (approximately 1 atm).

    Where no metallic substance is indicated, the potential is

    established on an inert metallic electrode (ex. Pt).

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

  • 5/26/2018 Chapter 20 Petrucci

    15/67

    Slide 15 of 53 Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    Cu2+(1M) + 2 e- Cu(s) ECu2+/Cu= ?

    Pt|H2(g, 1 bar)|H+(a = 1) || Cu2+(1 M)|Cu(s) Ecell= 0.340 V

    Standard cell potential: the potential difference of a

    cell formed from twostandardelectrodes.

    E

    cell=E

    cathode -E

    anode

    cathodeanode

  • 5/26/2018 Chapter 20 Petrucci

    16/67

    Slide 16 of 53 Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    Pt|H2(g, 1 bar)|H+(a = 1) || Cu2+(1 M)|Cu(s) Ecell= 0.340 V

    Ecell=Ecathode -Eanode

    Ecell=ECu2+/Cu -EH+/H2

    0.340 V =ECu2+/Cu -0 V

    ECu2+/Cu = +0.340 V

    H2(g, 1 atm) + Cu2+(1 M) H+(1 M) + Cu(s) Ecell= 0.340

    V

  • 5/26/2018 Chapter 20 Petrucci

    17/67

    Slide 17 of 53

    Measuring standard reduction potential

    FIGURE 20-6

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    anodeanode cathode cathode

  • 5/26/2018 Chapter 20 Petrucci

    18/67

    Slide 18 of 53

    TABLE 20.1 Some Selected Standard Electrode (Reduction)

    Potentials at 25C

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20Slide 18 of 53

    Reduction Half-Reaction E, V

    Acidic Solution

  • 5/26/2018 Chapter 20 Petrucci

    19/67

    Slide 19 of 53

    TABLE 20.1 Some Selected Standard Electrode (Reduction)

    Potentials at 25C (continued)

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20Slide 19 of 53

    Reduction Half-Reaction E, V

    Acidic Solution

  • 5/26/2018 Chapter 20 Petrucci

    20/67

    Slide 20 of 53

    TABLE 20.1 Some Selected Standard Electrode (Reduction)

    Potentials at 25C (continued)

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20Slide 20 of 53

    Reduction Half-Reaction E, V

    Acidic Solution

    Basic Solution

  • 5/26/2018 Chapter 20 Petrucci

    21/67

  • 5/26/2018 Chapter 20 Petrucci

    22/67

  • 5/26/2018 Chapter 20 Petrucci

    23/67

    Slide 23 of 53

    20-3 Ecell, G, and Keq

    Faraday constant,

    F = 96,485 C mol-1

    When products are in their

    standard states

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    elec= -zFEcellG= -zFEcell

    G= -zFEcell

    Michael Faraday 1791-1867

  • 5/26/2018 Chapter 20 Petrucci

    24/67

    Slide 24 of 53

    Combining Reduction Half-Equations

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    Fe3+(aq) + 3e- Fe(s) EFe3+/Fe= ?

    Fe2+(aq) + 2e- Fe(s) EFe2+/Fe= -0.440 V

    Fe3+

    (aq) + 1e-

    Fe2+

    (aq) E

    Fe3+/Fe2+= 0.771 V

    Fe3+(aq) + 3e- Fe(s)

    G= +0.880 J

    G

    = -0.771 J

    G= +0.109 JEFe3+/Fe= +0.331 V

    G= +0.109 J = -nFE

    EFe3+/Fe= +0.109 J /(-3F)= -0.0363 V

    but cannot simply add E

    can add G

  • 5/26/2018 Chapter 20 Petrucci

    25/67

    Slide 25 of 53

    Spontaneous Change in

    Oxidation-Reduction Reactions

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    G < 0 for spontaneous change.

    ThereforeEcell> 0 because Gcell= -nFEcell

    E cell> 0Reaction proceeds spontaneously as written.

    E cell= 0Reaction is at equilibrium.

    E cell< 0Reaction proceeds in the reversedirection spontaneously.

  • 5/26/2018 Chapter 20 Petrucci

    26/67

  • 5/26/2018 Chapter 20 Petrucci

    27/67

  • 5/26/2018 Chapter 20 Petrucci

    28/67

    Slide 28 of 53

    The Behavior or Metals Toward Acids

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    M(s) M2+(aq) + 2 e- E= -EM2+/M

    2 H+(aq) + 2 e- H2(g) EH+/H2= 0 V

    2 H+(aq) + M(s) H2(g) + M2+(aq)

    Ecell=EH+/H2-EM2+/M= -EM2+/M

    WhenEM2+/M < 0,Ecell> 0. Therefore G< 0.

    Metals with negative reduction potentials react with acids.

  • 5/26/2018 Chapter 20 Petrucci

    29/67

  • 5/26/2018 Chapter 20 Petrucci

    30/67

    Slide 30 of 53

    Relationship Between Ecelland Keq

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    G= -RTlnKeq= -zFEcell

    Ecell = zF

    RT

    lnKeq

    Ecell =z

    0.25693lnKeq

  • 5/26/2018 Chapter 20 Petrucci

    31/67

    Slide 31 of 53

    A summary of important thermodynamic, equilibrium and electrochemical

    relationships under standard conditions.

    FIGURE 20-8

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

  • 5/26/2018 Chapter 20 Petrucci

    32/67

  • 5/26/2018 Chapter 20 Petrucci

    33/67

    Slide 33 of 53

    20-4 Ecellas a Function of Concentration

    Copyright 2011 Pearson Canada Inc.

    General Chemistry: Chapter 20

    FIGURE 20-9

    Variation of Ecellwith ion concentrations

    G= G-RTln Q

    -zFEcell= -zFEcell-RTln Q

    Ecell=Ecell- ln QzF

    RT

    Convert to log10and calculate constants.

    Ecell=Ecell- log Qz

    0.0592 VThe Nernst Equation

  • 5/26/2018 Chapter 20 Petrucci

    34/67

    Slide 34 of 53

    Concentration Cells

    Copyright 2011 Pearson Canada Inc.

    General Chemistry: Chapter 20

    FIGURE 20-11

    A concentration cell

    Two half cells with identical electrodes but different ion concentrations.

    2 H+(1 M) 2 H+(xM)

    Pt|H2(1 atm)|H+(xM)||H+(1.0 M)|H2(1 atm)|Pt(s)

    2 H+(1 M) + 2 e- H2(g, 1 atm)

    H2(g, 1 atm) 2 H+(xM) + 2 e-

    Ecell=EH+/H2-EH+/H2

    = 0

  • 5/26/2018 Chapter 20 Petrucci

    35/67

    Slide 35 of 53Copyright 2011 Pearson Canada Inc.

    General Chemistry: Chapter 20Slide 35 of 54

    Ecell=Ecell- logz

    0.0592 V x2

    12

    Ecell= 0 - log2

    0.0592 V x2

    1

    Ecell= - 0.0592 V logx

    Ecell= (0.0592 V) pH

    2 H+(1 M) 2 H+(xM)

    Ecell=Ecell

    - log Qz

    0.0592 V

    Ecell=EH+/H2-EH+/H2

    = 0

    but we can calculateusing the Nernst Equation

  • 5/26/2018 Chapter 20 Petrucci

    36/67

  • 5/26/2018 Chapter 20 Petrucci

    37/67

  • 5/26/2018 Chapter 20 Petrucci

    38/67

    Slide 38 of 53

    Measurement of Ksp

    Copyright 2011 Pearson Canada Inc.

    General Chemistry: Chapter 20Slide 38 of 54

    FIGURE 20-12

    A concentration cell for determining Kspof AgI

    Ag+(0.100 M) Ag+(satd M)

    Ag|Ag+(satd AgI)||Ag+(0.10 M)|Ag(s)

    Ag+(0.100 M) + e- Ag(s)

    Ag(s) Ag+(satd) + e-

    Work Example 20-11 as an exerciseto understand the process.

  • 5/26/2018 Chapter 20 Petrucci

    39/67

  • 5/26/2018 Chapter 20 Petrucci

    40/67

    Slide 40 of 53

    Schematic diagrams of some common electrodes

    FIGURE 20-13

    Copyright 2011 Pearson Canada Inc.

    General Chemistry: Chapter 20Slide 40 of 54

    0.22233 V

    0.2680 V (satd KCl)

    or

    0.2412 V (1 M KCl)

    Th Gl El t d d th El t h i l

  • 5/26/2018 Chapter 20 Petrucci

    41/67

    Slide 41 of 53

    The Glass Electrode and the Electrochemical

    Measurement of pH

    Copyright 2011 Pearson Canada Inc.

    General Chemistry: Chapter 20

    Ag|AgCl(s)|Cl-(1.0M),H+(1.0M)|glass membrane|H+(unknown)|| Cl-(1.0 M)|AgCl(s)|Ag(s)

    Ag(s) + Cl- AgCl(s) + e-

    H+(1.0 M) H+(unknown)

    AgCl(s) + e- Ag(s) + Cl-(aq)

    G = G(unknown) G(1.0M)

    = G+ RTln[unknown]G- RTln(1.0)

    =RTln[unknown]

    Ecell= -RTln[unknown]/zF

    pH = -log[unknown]=zFEcell/RT

  • 5/26/2018 Chapter 20 Petrucci

    42/67

    Slide 42 of 53

    20-5 Batteries: Producing Electricity Through

    Chemical Reactions

    Primary Cells (or batteries).

    Cell reaction is not reversible.

    Secondary Cells.Cell reaction can be reversed by passing

    electricity through the cell (charging).

    Flow Batteries and Fuel Cells.

    Materials pass through the battery which converts

    chemical energy to electric energy.

    Copyright 2011 Pearson Canada Inc.

    General Chemistry: Chapter 20

  • 5/26/2018 Chapter 20 Petrucci

    43/67

    Slide 43 of 53

    The Leclanch (dry) cell

    FIGURE 20-14

    Copyright 2011 Pearson Canada Inc.

    General Chemistry: Chapter 20

  • 5/26/2018 Chapter 20 Petrucci

    44/67

    Slide 44 of 53

    The Leclanch Dry Cell

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    Zn(s) Zn2+(aq) + 2 e-Oxidation:

    2 MnO2(s) + H2O(l) + 2 e- Mn2O3(s) + 2 OH

    -Reduction:

    NH4+ + OH- NH3(g) + H2O(l)Acid-base reaction:

    NH3 + Zn2+(aq)+ Cl- [Zn(NH3)2]Cl2(s)

    Precipitation reaction:

  • 5/26/2018 Chapter 20 Petrucci

    45/67

    Slide 45 of 53 Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    Zn2+(aq)+ 2 OH- Zn (OH)2(s)

    Zn(s) Zn2+(aq) + 2 e-

    Oxidation reaction can be thought of in two steps:

    2 MnO2(s) + H2O(l) + 2 e- Mn2O3(s) + 2 OH-Reduction:

    Zn(s)+ 2 OH- Zn (OH)2(s) + 2 e-

    The alkaline cell

  • 5/26/2018 Chapter 20 Petrucci

    46/67

    Slide 46 of 53

    The Lead-Acid(Storage) Battery

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    FIGURE 20

    The lead-acid (storage) cell

  • 5/26/2018 Chapter 20 Petrucci

    47/67

    Slide 47 of 53 Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    PbO2(s) + 3 H+(aq) + HSO4

    -(aq) + 2 e- PbSO4(s) + 2 H2O(l)

    Oxidation:

    Reduction:

    Pb (s) + HSO4-(aq) PbSO4(s) + H

    +(aq) + 2 e-

    PbO2(s) + Pb(s) + 2 H+(aq) + HSO4

    -(aq) 2 PbSO4(s) + 2 H2O(l)

    Ecell=EPbO2/PbSO4-EPbSO4/Pb= 1.74 V(-0.28 V) =

    2.02 V

  • 5/26/2018 Chapter 20 Petrucci

    48/67

    Slide 48 of 53

    The Silver-Zinc Cell: A Button Battery

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    FIGURE 20-16

    The silver-zinc button (miniature) cell

    Zn(s) + Ag2O(s) ZnO(s) + 2 Ag(s) Ecell= 1.8 V

    Zn(s),ZnO(s)|KOH(satd)|Ag2O(s),Ag(s)

    The Nickel Cadmium Cell: A Rechargeable

  • 5/26/2018 Chapter 20 Petrucci

    49/67

    Slide 49 of 53

    The Nickel-Cadmium Cell: A Rechargeable

    Battery

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    Cd(s) + 2 NiO(OH)(s) + 2 H2O(L) 2 Ni(OH)2(s) + Cd(OH)2(s)

    A rechargeable nickel-cadmium cell, or nicad battery

  • 5/26/2018 Chapter 20 Petrucci

    50/67

    Slide 50 of 53

    The Lithium-Ion Battery

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20Slide 50 of 53

    FIGURE 20-17

    The electrodes of a lithium-ion battery

  • 5/26/2018 Chapter 20 Petrucci

    51/67

    The positive electrode consists of lithium cobalt(III) oxide, LiCoO2, and the

    negative electrode is highly crystallized graphite. To complete the battery an

    electrolyte is needed, which can consist of an organic solvent and ions, such as

    LiPF6. The structure of LiCoO2, and graphite electrode is illustrated in Figure 20-17.

    In the charging cycle at the positive electrode, lithium ions are released into

    the electrolyte solution as electrons are removed from the electrode. To

    maintain a charge balance, one cobalt(III) ion is oxidized to cobalt(IV) foreach lithium ion released.

    LiCoO2(s)+Li(1-x) = 2CoO2(s) + xLi+(solvent) + x e-

    C(s) + xLi+(solvent) + x e- = LixC(S)

    The layered graphite electrode is shown with lithium ions (violet) intercalated. The

    LiCoO2is shown as a face-centered cubic lattice, with the oxygen atoms (red)

    occupying the corners and the faces, the cobalt atoms (pink) occupying half of the

    edges, and the lithium atoms occupying half of the edges and the central octahedral

    hole. This arrangement leads to planes of oxygen, cobalt, oxygen, lithium, oxygen,

    cobalt, and oxygen atoms, as indicated in the figure.

  • 5/26/2018 Chapter 20 Petrucci

    52/67

    Slide 52 of 53

    Fuel Cells

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    FIGURE 20-18

    A hydrogen-oxygen fuel cell

    O2(g) + 2 H2O(l) + 4 e-

    4 OH-

    (aq)

    2{H2(g) + 2 OH-(aq) 2 H2O(l) + 2 e

    -}

    2H2(g) + O2(g) 2 H2O(l)

    Ecell=EO2/OH--EH2O/H2

    = 0.401 V(-0.828 V) = 1.229 V

    = G/ H=

    0.83

  • 5/26/2018 Chapter 20 Petrucci

    53/67

    Slide 53 of 53

    Air Batteries

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    FIGURE 20-19

    A simplified aluminum-air battery

    4 Al(s) + 3 O2(g) + 6 H2O(l) + 4 OH- 4 [Al(OH)4](aq)

  • 5/26/2018 Chapter 20 Petrucci

    54/67

    Slide 54 of 53

    20-6 Corrosion: Unwanted Voltaic Cells

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    O2(g) + 2 H2O(l) + 4 e- 4 OH-(aq)

    2 Fe(s) 2 Fe2+(aq) + 4 e-

    2 Fe(s) + O2(g)+ 2 H2O(l)

    2 Fe2+(aq) + 4 OH-(aq)

    Ecell= 0.841 V

    EO2/OH-= 0.401 V

    EFe/Fe2+= -0.440 V

    I n neutral solution:

    I n acidic solution:

    O2(g) + 4 H+(aq) + 4 e- 4 H2O (aq) EO2/OH-= 1.229 V

  • 5/26/2018 Chapter 20 Petrucci

    55/67

    Slide 55 of 53

    Demonstration of corrosion and methods of corrosion protection

    FIGURE 20-20

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    The pink color

    results from the

    indicatorphenolphthalein in

    the presence of base.

    The dark blue color

    results from the

    formation of

    Turnbulls blue

    KFe[Fe(CN)6].

    Zn

    Cu

  • 5/26/2018 Chapter 20 Petrucci

    56/67

    Slide 56 of 53

    Protection of iron against electrolytic corrosion

    FIGURE 20-21

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

  • 5/26/2018 Chapter 20 Petrucci

    57/67

    Slide 57 of 53 Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    The small cylindrical bars of magnesium attached to the steel ship

    provide cathodic protection against corrosion.

    Magnesium sacrificial anodes

  • 5/26/2018 Chapter 20 Petrucci

    58/67

    Slide 58 of 53

    20-7 Electrolysis: Causing Non-spontaneous

    Reactions to Occur

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    Voltaic Cell :

    Zn(s) + Cu2+(aq) Zn2+(aq) + Cu(s) EO2/OH-= 1.103 V

    Electolytic Cell:

    Cu(s) + Zn2+(aq) Cu2+(aq) + Zn(s) EO2/OH-= -1.103 V

  • 5/26/2018 Chapter 20 Petrucci

    59/67

    Slide 59 of 53

    Predicting Electrolysis Reaction

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    FIGURE 20-22

    An electrolytic cell

    An Electrolytic Cell

    e- is the reverse of the

    voltaic cell.

    The battery must have a

    voltage in excess of 1.103V in order to force the

    non-spontaneous reaction.

  • 5/26/2018 Chapter 20 Petrucci

    60/67

    Slide 60 of 53

    Complications in Electrolytic Cells

    Overpotential.

    Competing reactions.

    Non-standard states.

    Nature of electrodes.

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    Q f

  • 5/26/2018 Chapter 20 Petrucci

    61/67

    Slide 61 of 53

    Quantitative Aspects of Electrolysis

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    ne-= It

    F

    1 mol e-= 96485 C

    Charge (C) = current (C/s) time (s)

  • 5/26/2018 Chapter 20 Petrucci

    62/67

  • 5/26/2018 Chapter 20 Petrucci

    63/67

    20 8 I d t i l El t l i P

  • 5/26/2018 Chapter 20 Petrucci

    64/67

    Slide 64 of 53

    20-8 Industrial Electrolysis Processes

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    The refining of copper by electrolysis.

  • 5/26/2018 Chapter 20 Petrucci

    65/67

    Slide 65 of 53

    Electrorefining

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    Electroplating

    Electrosynthesis

    A rack of metal parts being lifted from theelectrolyte solution after electroplating.

    Chl Alk li P

  • 5/26/2018 Chapter 20 Petrucci

    66/67

    Slide 66 of 53

    Chlor-Alkali Process

    Copyright 2011 Pearson Canada Inc.General Chemistry: Chapter 20

    FIGURE 20-24

    A diaphragm chlor-alkali cell

    FIGURE 20-25

    The mercury-cell chlor-alkali process

    E d f Ch t Q ti

  • 5/26/2018 Chapter 20 Petrucci

    67/67

    End of Chapter Questions

    Dont just read examples, workthem!!

    If you write:

    Information is going through your fingers,

    Your muscles,

    Your nerves,

    Directlyto your brain.

    Physically experience the solution.

    Your eyes and ears are not enough.