chapter 2 and 3 opamp imperfections + intro to semiconductors

Upload: sajuuk01

Post on 04-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    1/35

    Introduction to Electronics

    OpAmp Offset Voltage and Current

    Semiconductor Diodes

    R. Khazaka 2010 ECSE330 Introduction to Electronics

    Roni Khazaka

    Offset Voltage

    Ideal offset free opAmp

    0O

    v V=

    Practical OpAmp

    R. Khazaka 2010 ECSE330 Introduction to Electronics 2

    0Ov V+

    Is likely to at one of thevoltage supply levels

    (positive or negative).

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    2/35

    Offset Voltage

    Practical OpAmp

    0O

    v V

    Is likely to at one of the

    voltage supply levels(positive or negative).

    Practical OpAmp

    R. Khazaka 2010 ECSE330 Introduction to Electronics 3

    0Ov V=

    +

    OSV

    n or er o r ng e ou pu

    back to zero, we mustsupply a differential voltage

    at the input. This voltage is

    the offset voltage.

    Circuit Model for OpAmp with offset

    Actual OpAmp with offset

    T ical Values:

    OSVOffset-free

    OpAmp

    0Ov V=

    1 5OSV to mV =

    R. Khazaka 2010 ECSE330 Introduction to Electronics 4

    OSVOSV+

    at ne ative terminal

    Use practical opamp to implementideal one with offset voltage

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    3/35

    Virtual Short Principle

    2RO OS OS v V V =

    1R

    Ov+

    2 1

    OSV2 2 1

    O OS OS v V V

    R R R

    = +

    R. Khazaka 2010 ECSE330 Introduction to Electronics 5

    2

    1

    1O OSR

    v V R

    = +

    Inverting amplifier with zero input. V

    OS

    is amplified at the output. This Topology can be used to

    measure VOS. Measure vO, thencompute VOS

    Offset Nulling Terminals

    DDV

    +

    vo

    v+

    R. Khazaka 2010 ECSE330 Introduction to Electronics 6

    -v-

    SSV

    For ideal one or practical op amp with off set

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    4/35

    Eliminating dc offset throughcapacitive coupling.

    2R

    1

    IvO

    v

    C

    2R

    R. Khazaka 2010 ECSE330 Introduction to Electronics 7

    Eliminating dc offset through

    capacitive coupling.

    2R Analysis of amplifier with zero DC input

    2R

    OpAamp with offset2

    1

    1O OSR

    v VR

    = +

    Note: Without the capacitorwe would have had:

    R. Khazaka 2010 ECSE330 Introduction to Electronics 8

    OSV

    OSV

    Replace with model

    Offset free OpAmp

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    5/35

    Input Bias and Offset Currents

    -

    The OpAmp requires small DCbias currents at the inputs in

    +v-

    vo

    v+

    1BI

    2BI

    .

    R. Khazaka 2010 ECSE330 Introduction to Electronics 9

    e n ons:1 2

    2

    B BB

    I II

    +=Input Bias Current:

    Input Offset Current: 1 2OS B BI I I=

    Typical Values:

    100BI nA

    10OSI nA

    Effect of the input bias currents

    2R

    1R

    IvO

    v

    2R

    R. Khazaka 2010 ECSE330 Introduction to Electronics 10

    1

    0Ov V=

    Zero input

    Ideal Case

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    6/35

    Effect of Input Bias Point

    +

    -

    1BI

    1R

    Ov

    R. Khazaka 2010 ECSE330 Introduction to Electronics 11

    2BI

    1 2 2O B Bv I R I R=

    This puts an upper limit on thevalue of resistorR2.

    Modified Circuit

    2R

    1R

    IvO

    v

    2R3R

    R. Khazaka 2010 ECSE330 Introduction to Electronics 12

    1

    0Ov V=

    Zero input

    Ideal Case3RR

    3has a negligible effect on the signal.

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    7/35

    Effect of Input Bias Point

    2 31

    1

    BB

    I RI

    R

    +

    -

    1BI

    1R

    Ov

    2BI

    2 3

    1

    B

    R

    R. Khazaka 2010 ECSE330 Introduction to Electronics 13

    2BI

    2 32 3 2 1

    1

    BO B B

    I Rv I R R I R

    = +

    3R

    2 3BI R

    Effect of Input Bias Point

    2 3BI R

    v I R R I

    = + 1R

    1 2B B BI I I= =If

    ( )2 3 2 11O Bv I R R R R = +

    R. Khazaka 2010 ECSE330 Introduction to Electronics 14

    In order to set 2 3 2 11R R R R= +

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    8/35

    Silicon

    Silicon

    Atomic number 14electron

    .

    The material is the mostpurified substance man hasever attempted to produce.

    It has 4 valence electrons

    R. Khazaka 2010 ECSE330 Introduction to Electronics 15

    and if properly grown incrystal-form it takes on a

    face-body cubic crystalpattern.

    neutron

    proton

    Silicon Semiconductor.

    Intrinsic silicon has a regular crystal lattice of atoms

    held together by covalent bonds

    each atom has four valence electrons

    R. Khazaka 2010 ECSE330 Introduction to Electronics 16

    51022 atoms/cm3

    Rubber Silicon

    (semi-conductor)

    Copper

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    9/35

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    10/35

    Intrinsic Silicon

    The number of holes p and the number of electronsn increases equally with temperature.

    At room-temperature (T>273K), n = p = 1.51010

    carriers/cm3. pnni == npni =2

    R. Khazaka 2010 ECSE330 Introduction to Electronics 19

    Electron Hole Recombination

    Electrons in conduction band and holes in valence bandmay interact with each other.

    A free electron and a free hole interact and annihilate each other.

    R. Khazaka 2010 ECSE330 Introduction to Electronics 20

    Before After

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    11/35

    Semiconductor Doping

    Extra electron Phosphorous-doping

    This atom has 5 valence

    Extra FREE electron

    .

    This creates a N-typesemiconductor. It is alsocalled a DONOR atom.

    At room temperature, thereis an excess of FREE-electrons.

    R. Khazaka 2010 ECSE330 Introduction to Electronics 21

    If the doping is significant

    and T=273K, then:n = NDand p = n

    i

    2/ND

    N-Type Silicon

    In n-type silicon:

    electrons are majority carriers and holes are minority carriers

    phosphorous

    Majority

    carrier

    R. Khazaka 2010 ECSE330 Introduction to Electronics 22

    nor y

    carrier

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    12/35

    Semi Conductor Doping

    Extra hole Boron-doping

    This atom has 3 valence.

    This creates a P-typesemiconductor. It is alsocalled a ACCEPTOR.

    At room temperature, thereis an excess of FREE-holes.

    Extra FREE hole

    R. Khazaka 2010 ECSE330 Introduction to Electronics 23

    and T=273K, then:p = N

    A

    and n = ni2

    /NA

    P-Type Silicon

    In p-type silicon:

    holes are ma orit carriers and electrons are minorit carriers

    boron

    Minority

    carrier

    R. Khazaka 2010 ECSE330 Introduction to Electronics 24

    a or y

    carrier

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    13/35

    The PN Junction

    When a p-type material is brought into contact with an n-type material, the interface changes and creates a built-

    .

    R. Khazaka 2010 ECSE330 Introduction to Electronics 25

    Diffusion of holes and electrons

    The FREEelectrons

    The FREEholes from the

    from the n-type materialdiffuse to theright

    Diffusion is

    p-type materialdiffuse to theleft

    Just like theway perfume

    R. Khazaka 2010 ECSE330 Introduction to Electronics 26

    thermodynamic law ofMAXIMUMENTROPY

    diffuses acrossa room overtime

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    14/35

    Diffusion and Drift

    R. Khazaka 2010 ECSE330 Introduction to Electronics 27

    As the carriers diffuse across the junction, they recombine with themajority carriers on the opposite side, this creates local charge sitesand a depletion region.

    Diffusion Electrons Diffusion Holes

    Diffusion and Drift

    R. Khazaka 2010 ECSE330 Introduction to Electronics 28

    When the rate of Diffusion equals the rate of Drift a steady-statecondition is obtained and no more macroscopic changes occur.

    Drift Holes Drift Electrons

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    15/35

    The pn Junction Equations

    =

    dx

    dnD

    dx

    dpDqAI pnDiffDiffusion current

    )EnpqAInpDrift

    +=

    DriftDiff II =

    Drift current

    When the externalcurrent I = 0

    This produces a

    R. Khazaka 2010 ECSE330 Introduction to Electronics 29

    = 2ln iDA

    Tbin

    NN

    VV

    q

    kTVwhere T =

    -

    The pn Junction Reverse Biase

    When a reverse-bias voltage is appliedto junction, depletion-region widens toaccommodate the hi her reverse-bias.

    As the majority carriers are depletedfrom the junction, the diffusion currentdecreases, and the drift current increasesuntil the junction voltage equals theapplied reverse-bias. This stops thecurrent.

    R. Khazaka 2010 ECSE330 Introduction to Electronics 30

    Note: explanation

    neglects

    saturation current IS

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    16/35

    The pn Junction Forward Bias

    Forward-bias voltage injects majoritycarrier electrons into n-type, majoritycarrier holes into -t e materialDominant current is the diffusion current.

    Diffusion of carriers across the junction,and the subsequent recombinationcompletes the circuit.

    The process takes-off after 0.7V andcollapses the built-in voltage to almost

    R. Khazaka 2010 ECSE330 Introduction to Electronics 31

    zero.

    1/ = TnVvS eII

    PN Junction Operational Summary

    Reverse bias operation dominated by: drift current

    minority carriers in majority type material(e.g. holes in n-type material)

    magnitude of current flow limited by abilityto reduce diffusion effects and onset of breakdown

    Forward bias operation dominated by:

    R. Khazaka 2010 ECSE330 Introduction to Electronics 32

    us on curren e ec s majority carriers in majority type material

    (e.g. holes in p-type material)

    magnitude of current flow limited by how manycarriers one can shove into the device before it melts

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    17/35

    PN Junction Physics Summary

    Lattice structure of intrinsic silicon

    Recombination

    Doping: n-type and p-type silicon

    Charge carrier motion: diffusion and drift

    Open-circuit p-n junction: diffusion, drift,

    R. Khazaka 2010 ECSE330 Introduction to Electronics 33

    eplet on reg on, u lt- n voltage

    Reverse-bias, reverse-breakdown andforward bias operation of pn junction

    Diode Symbol and Terminal

    Characteristics

    v

    anode

    (p)

    cathode

    (n)

    i

    v

    R. Khazaka 2010 ECSE330 Introduction to Electronics 34

    Exponential model:

    = 1TnV

    S eIi

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    18/35

    Characteristic Equation

    Y = (e(x) - 1)

    R. Khazaka 2010 ECSE330 Introduction to Electronics 35

    Exponential Model Definitions

    = 1TnVv

    S eIi

    S: reverse sa ura oncurrent VT: Thermal Voltage

    k: Boltzmann constant (1.38x10-23 J/K

    proportional to cross-sectional areaof current flow

    discrete Si devices:IS ~ 10

    -9-10-13 A

    IC Si devices: IS 10-15 A

    q

    TkV

    T

    =

    from device physics:

    R. Khazaka 2010 ECSE330 Introduction to Electronics 36

    n: fitting parameter T: Temperature (Kelvin) q: electron charge

    (1.6x10-19 C) normally between 1 and 2 for Si

    discrete Si devices: n ~ 2

    IC Si devices: n ~ 1 At room temperature,VT ~ 25 mV

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    19/35

    Forward Bias

    1exp >>

    TVnvAs V increases, When diode is fully

    conducting, V remains~

    The voltage at which thediode starts to conduct

    .for silicon diodes

    TnV

    v

    SeIi

    R. Khazaka 2010 ECSE330 Introduction to Electronics 37

    appreciably is called the

    cut-in voltage; value is ~.5V for silicon diodes

    Ideal Diode

    R. Khazaka 2010 ECSE330 Introduction to Electronics 38

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    20/35

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    21/35

    Example

    R. Khazaka 2010 ECSE330 Introduction to Electronics 41

    Example

    R. Khazaka 2010 ECSE330 Introduction to Electronics 42

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    22/35

    Logic Gates: OR and AND

    R. Khazaka 2010 ECSE330 Introduction to Electronics 43

    i-v Characteristic

    R. Khazaka 2010 ECSE330 Introduction to Electronics 44

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    23/35

    i-v Characterisitic

    R. Khazaka 2010 ECSE330 Introduction to Electronics 45

    Forward Bias Region

    v v

    In the order of1015 (strong function of temperature)

    = s e

    kT

    Temperature in KelvinBoltzmans constant

    R. Khazaka 2010 ECSE330 Introduction to Electronics 46

    T = q

    The magnitude of the charge of one electron

    vT = 0.0862T,mV

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    24/35

    Temperature Dependence

    R. Khazaka 2010 ECSE330 Introduction to Electronics 47

    Reverse Bias and Breakdown

    i IsReverse Bias Region

    R. Khazaka 2010 ECSE330 Introduction to Electronics 48

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    25/35

    Analysis (Exponential Model)

    ID =IsevD vT

    ID =vDD vD

    R

    R. Khazaka 2010 ECSE330 Introduction to Electronics 49

    Analysis (Exponential Model)

    ID =IsevD vT

    ID =vDD vD

    R

    R. Khazaka 2010 ECSE330 Introduction to Electronics 50

    IsevD vT =

    vDD vDR

    Nonlinear Equation

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    26/35

    Graphical Analysis

    ID =IsevD vT ID =

    vDD vDR

    R. Khazaka 2010 ECSE330 Introduction to Electronics 51

    Iterative Analysis

    ID =IsevD vTvDD = 5V R = 1k

    ID =vDD vD

    RvT = 26mV Is = 6.9 10

    16A

    Assume vD = 0.7V vD = vT lnID

    Is

    R. Khazaka 2010 ECSE330 Introduction to Electronics 52

    ID =vDD vD

    R= 4.3mA

    vD = vT lnID

    Is

    = 0.766V

    vD = 0.7V

    ID = 4.3mA

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    27/35

    Iterative Analysis

    ID =vDD vD

    R= 4.2mAvD = 0.766V

    vD = vT lnID

    Is

    = 0.7656VID = 4.2mA

    R. Khazaka 2010 ECSE330 Introduction to Electronics 53

    Constant Voltage Drop Model

    R. Khazaka 2010 ECSE330 Introduction to Electronics 54

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    28/35

    Constant Voltage Drop Model

    +5V

    1k

    +

    0.7V

    ii =

    5 0.71k

    = 4.3mA

    R. Khazaka 2010 ECSE330 Introduction to Electronics 55

    Example

    R. Khazaka 2010 ECSE330 Introduction to Electronics 56

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    29/35

    Small Signal Model

    v

    d= r

    did

    rd

    =v

    T

    ID

    R. Khazaka 2010 ECSE330 Introduction to Electronics 57

    Voltage Regulation

    R. Khazaka 2010 ECSE330 Introduction to Electronics 58

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    30/35

    Zener Diode: Reverse Breakdown

    R. Khazaka 2010 ECSE330 Introduction to Electronics 59

    = r

    z

    V

    Z = VZ0 + rzIz

    Model For Zener Diode

    R. Khazaka 2010 ECSE330 Introduction to Electronics 60

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    31/35

    Zener Diode as Shunt Regulator

    R. Khazaka 2010 ECSE330 Introduction to Electronics 61

    Half-Wave Rectifier

    R. Khazaka 2010 ECSE330 Introduction to Electronics 62

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    32/35

    Full-wave Rectifier

    R. Khazaka 2010 ECSE330 Introduction to Electronics 63

    Bridge Rectifier

    R. Khazaka 2010 ECSE330 Introduction to Electronics 64

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    33/35

    Rectifier with Filter Capacitor

    R. Khazaka 2010 ECSE330 Introduction to Electronics 65

    Rectifier with Filter Capacitor

    R. Khazaka 2010 ECSE330 Introduction to Electronics 66

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    34/35

    Full wave rectifier with filter

    R. Khazaka 2010 ECSE330 Introduction to Electronics 67

    Precision Rectifier (Super Diode)

    R. Khazaka 2010 ECSE330 Introduction to Electronics 68

  • 7/29/2019 Chapter 2 and 3 OpAmp imperfections + Intro to semiconductors

    35/35

    DC power supply

    R. Khazaka 2010 ECSE330 Introduction to Electronics 69