chapter 10 lecture notes - youngstown state...

9
BIOL 3702: Chapter 10 AY 2015-2016 Dr. Cooper 1 Slide No. 1 BIOL 3702: Chapter 10 Introduction to Metabolism B IOL 3702: Microbiology (2015) Portions Copyright © The McGrawHill Companies, Inc. and Copyright © C. R. Cooper, Jr. Metabolism Metabolism is the sum total of all the chemical reactions occurring in a cell Two major parts of metabolism: Catabolism Large, more complex molecules are broken down into smaller, simpler molecules with the release of energy Fueling reactions Energy conserving reactions Provide ready source or reducing power (electrons) Generate precursors for biosynthesis Slide No. 2 B IOL 3702: Microbiology (2015) Portions Copyright © The McGrawHill Companies, Inc. and Copyright © C. R. Cooper, Jr. Metabolism (cont.) Anabolism The synthesis of complex organic molecules from simpler ones Requires energy from fueling reactions Slide No. 3 B IOL 3702: Microbiology (2015) Portions Copyright © The McGrawHill Companies, Inc. and Copyright © C. R. Cooper, Jr. http://antr anik.or g/anabolican dcat aboli cr eactio ns/ Energy and Work Energy the ability to do work Living organisms carry out three essential types of work using energy: Chemical synthesis of complex biological molecules Transport uptake of nutrients, elimination of wastes, and maintenance of internal ion balances Mechanical change the physical location of organisms, cells, or internal structures Slide No. 4 B IOL 3702: Microbiology (2015) Portions Copyright © The McGrawHill Companies, Inc. and Copyright © C. R. Cooper, Jr. Energy and Work (cont.) Biological energy comes from two main sources Photosynthesis process which uses the ultimate source of energy, visible light Aerobic respiration breakdown of complex molecules with oxygen as the terminal electron acceptor Anaerobic respiration and fermentation also contribute to energy production Slide No. 5 B IOL 3702: Microbiology (2015) Portions Copyright © The McGrawHill Companies, Inc. and Copyright © C. R. Cooper, Jr. Energy and Work (cont.) Much of the energy from these processes is transferred to the structure of adenosine 5’ triphosphate ( ATP ) which drives work Slide No. 6 Figur e 10.5 B IOL 3702: Microbiology (2015) Portions Copyright © The McGrawHill Companies, Inc. and Copyright © C. R. Cooper, Jr.

Upload: vanthu

Post on 19-Jul-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

BIOL 3702: Chapter 10 AY 2015-2016

Dr. Cooper 1

Slide  No.  1

BIOL  3702:  Chapter  10

Introduction  to  Metabolism

BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Metabolism

u Metabolism is  the  sum  total  of  all  the  chemical  reactions  occurring  in  a  cell

u Two  major  parts  of  metabolism:vCatabolism

Ø Large,  more  complex  molecules  are  broken  down  into  smaller,  simpler  molecules  with  the  release  of  energy  

Ø Fueling  reactionsØ Energy-­conserving  reactions  Ø Provide  ready  source  or  reducing  power  (electrons)Ø Generate  precursors  for  biosynthesis

Slide  No.  2BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Metabolism   (cont.)

vAnabolismØ The  synthesis  of  complex  organic  molecules  from  simpler  ones

Ø Requires  energy  from  fueling  reactions

Slide  No.  3BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

http://antranik.org/anabolic-­and-­cat aboli c-­reactions/

Energy  and  Work

u Energy  -­ the  ability  to  do  worku Living  organisms  carry  out  three  essential  types  of  work  using  energy:vChemical  -­ synthesis  of  complex  biological  molecules

vTransport  -­ uptake  of  nutrients,  elimination  of  wastes,  and  maintenance  of  internal  ion  balances

vMechanical  -­ change  the  physical  location  of  organisms,  cells,  or  internal  structures

Slide  No.  4BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Energy   and  Work   (cont.)

u Biological  energy  comes  from   two  main  sourcesvPhotosynthesis  -­ process  which  uses  the  ultimate  source  of  energy,  visible  light

vAerobic  respiration  -­ breakdown  of  complex  molecules  with  oxygen  as  the  terminal  electron  acceptor

vAnaerobic  respiration  and  fermentation  also  contribute  to  energy  production

Slide  No.  5BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Energy   and  Work   (cont.)

u Much  of  the  energy  from  these  processes  is  transferred  to  the  structure  of  adenosine  5’-­triphosphate (ATP)  which  drives  work

Slide  No.  6

Figure   10.5

BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

BIOL 3702: Chapter 10 AY 2015-2016

Dr. Cooper 2

Energy   and  Work   (cont.)

u ATP  is  a  high-­energy  molecule  and  serves  as  the  energy  currency  of  the  cell

u ATP’s energy  is  “stored”  in  the  covalent  bonds  of  its  two  terminal  phosphate  groupsvTo  form  the  bonds,  energy  is  requiredvTo  break  the  bonds,  energy  is  released

Slide  No.  7BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.   Slide  No.  8

Figure   10.3a

BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Energy   and  Work   (cont.)

u Exergonic breakdown  of  ATP  is  coupled  with  endergonic reactions  to  make  them  more  favorable

Slide  No.  9

Figure   10.4

BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Oxidation-­Reduction  Reactions

u Many  metabolic  processes  involve  oxidation-­reduction  (“redox”)  reactions  (electron  transfers)

u Electron  carriers  are  often  used  to  transfer  electrons  from  an  electron  donor  to  an  electron  acceptor

Slide  No.  10BIOL  3702:  Microbiology   (2015)   Portions  Copyright  ©  The   McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,  Jr.  

Oxidation-­Reduction   Reactions   (cont.)

u Transfer  of  electrons  from  a  donor  to  an  acceptorvCan  result  in  energy  release,  which  can  be  conserved  and  used  to  form  ATP

vThe  more  electrons  a  molecule  has,  the  more  energy  rich  it  is

Slide  No.  11BIOL  3702:  Microbiology   (2015)   Portions  Copyright  ©  The   McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,  Jr.  

Oxidation-­Reduction   Reactions   (cont.)

u Redox  reactions  can  be  considered  two  half  reactionsvOne  is  electron  donating  (oxidizing  reaction)vOne  is  electron  accepting  reaction  (reducing  reaction)

vAcceptor  and  donor  are  conjugate  redox  pairØ Acceptor  +  e-­Ø Donor  -­ e-­

Slide  No.  12BIOL  3702:  Microbiology   (2015)   Portions  Copyright  ©  The   McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,  Jr.  

BIOL 3702: Chapter 10 AY 2015-2016

Dr. Cooper 3

Electron  Transport  Chain

u Electron  carriers  are  often  organized  into  an  electron  transport  chain  (ETC)vLocation

Ø Plasma  membranes  of  chemoorganotrophs in  bacteria  and  archaeal cells

Ø Internal  mitochondrial  membranes  in  eukaryotic  cellsvExamples  of  electron  carriers  include  NAD,  NADP,  and  others

vFirst  carrier  is  reduced  and  electrons  moved  to  the  next  carrier  and  so  on

Slide  No.  13BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.   Slide  No.  14BIOL  3702:  Microbiology   (2015)

Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Figure   10.7

Electron   Transport   Chain   (cont.)

u Some  common  electron  carrier  molecules  important  in  metabolism:vNicotinamide adenine  dinucleotide

Ø Oxidized  form  -­ NAD+Ø Reduced  form  -­ NADH

vNicotinamide adenine  dinucleotide phosphateØ Oxidized  form  -­ NADP+Ø Reduced  form  -­ NADPH

Slide  No.  15BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.   Slide  No.  16BIOL  3702:  Microbiology   (2015)

Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

To   view   this   video,   go   to   Chapter   10   Animations   of  Prescott's   Microbiology   Companion   Site   (9th ed.)   located   at   the   following   URL:  http://highered .mhe du cati on. com/si tes /0 073 40 24 00 /st ude nt _vie w0/i nd ex. ht ml

Slide  No.  17

Figure   10.8

BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Electron   Transport   Chain   (cont.)

vFlavin adenine  dinucleotideØ Oxidized  form  -­ FAD+Ø Reduced  form  -­ FADH

vOthers  involved  in  many  respiratory  electron  chainsØ Coenzyme  Q  (ubiquinone)Ø Various  cytochromesØ Nonheme iron  proteins,  e.g.,   ferredoxin

Slide  No.  18BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

BIOL 3702: Chapter 10 AY 2015-2016

Dr. Cooper 4

Slide  No.  19

Figure   10.9

BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.   Slide  No.  20

Figure   10.10

BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Slide  No.  21BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

To   view   this   video,   go   to   Chapter   10   Animations   of  Prescott's   Microbiology   Companion   Site   (9th ed.)   located   at   the   following   URL:  http://highered .mhe du cati on. com/si tes /0 073 40 24 00 /st ude nt _vie w0/i nd ex. ht ml

Slide  No.  22BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

To   view   this   video,   go   to   Chapter   10   Animations   of  Prescott's   Microbiology   Companion   Site   (9th ed.)   located   at   the   following   URL:  http://highered .mhe du cati on. com/si tes /0 073 40 24 00 /st ude nt _vie w0/i nd ex. ht ml

Enzymes

u Enzymes  are  protein  catalysts  having  great  specificity  for  a  particular  reaction  and  its  reactantsvCatalyst increases  the  rate  of  a  reaction  without  being  permanently  altered  itself

vReacting  molecules  are  termed  substratesvThe  resulting  molecules  of  a  reaction  are  termed  products

Slide  No.  23BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.   Slide  No.  24

(Source:   Black  1999)

BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

BIOL 3702: Chapter 10 AY 2015-2016

Dr. Cooper 5

Enzymes   (cont.)

u Most  enzymes  are  pure  proteins  whereas  others  are  a  mixture  of  proteins  and  other  substances

u Holoenzyme -­ complete  enzyme  consisting  of  the  apoenzyme and  its  cofactorvApoenzyme -­ protein  portionvCofactor -­ non-­protein  portion

Ø Firmly  attached  -­ prosthetic  groupØ Loosely  attached  -­ coenzyme

Slide  No.  25BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.   Slide  No.  26

(Source:   Black  1999)

BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Enzymes   (cont.)

u Six  classes  of  enzymes  [Table  10.3]

Slide  No.  27BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Enzymes   (cont.)

u Mechanism  of  actionvEnzymes  increase  reaction  rates  without  altering  equilibrium  constants

v In  simplest  terms,  enzymes  lower  a  reaction’s  activation  energy -­ amount  of  energy  required  for  reacting  molecules  to  reach  the  transition  state

Slide  No.  28BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Slide  No.  29

Figure   10.15

BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Enzymes   (cont.)

vActivation  energy  is  lowered  through  bringing  reactants  into  close  proximity  with  one  another  and  in  the  proper  orientationØ Active  (catalytic)  site -­ special  location  on  the  enzyme  where  substrates  bind

Ø Enzyme-­substrate  complex is  formed  as  a  result  of  this  binding

Slide  No.  30BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

BIOL 3702: Chapter 10 AY 2015-2016

Dr. Cooper 6

Slide  No.  31

(Source:   Black  1999)

BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Enzymes   (cont.)

vEnzymes  use  two  models  to  perform  this  functionØ Lock-­and-­key  model  -­ rigid  and  specific  sites

Ø Induced  fit  model  -­wraps  around  substrate(s)

Slide  No.  32

Lock-­and-­key  model

BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Slide  No.  33

Induce  fit  model

BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.   Slide  No.  34

Induce  fit  model

BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Figure   10.16

Enzymes   (cont.)

u Factors  that  affect  enzyme  activity:vSubstrate  concentration

Ø Low  concentrations  -­ slow  reactionsØ Higher  concentrations  -­ increase  reaction  rates  until  saturation   is  achieved

vpH  and  temperatureØ Enzymes  have  pH  and  temperature  optima  at  which  they  have  maximum  activity  (often  reflects  their  environmental  habitat)

Ø Very  high  pH  levels  or  temperature  leads  to  denaturation of  the  enzyme,  i.e.,  destruction  of   the  peptide  structure

Slide  No.  35BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.   Slide  No.  36BIOL  3702:  Microbiology   (2015)

Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

BIOL 3702: Chapter 10 AY 2015-2016

Dr. Cooper 7

Enzymes   (cont.)

u Enzyme  Inhibition  -­ activity  can  be  stopped  by  two  distinct  mechanisms:vCompetitive  inhibition -­ a  molecule  closely  resembling  the  true  substrate  competes  with  it  for  binding  at  the  active  site

vNoncompetitive  inhibition -­ a  molecule  binds  to  the  enzyme  at  some  other  portion  other  than  the  active  site,  inducing  a  conformational  (shape)  change  to  the  enzyme  rendering  it  inactive  or  less  active

Slide  No.  37BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.   Slide  No.  38

Competitive  Inhibition

Figure   9.18

BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Slide  No.  39

Non-­competitive  Inhibition

(Source:   Black  1999)

BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Enzymes   (cont.)

u Thomas  Cech and  Sidney  Altman  discovered  that  some  RNA  molecules  also  can  catalyze  reactionsvCatalyze  peptide  bond  formationvSelf-­splicingv Involved  in  self-­replication  

Slide  No.  40BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Metabolic  Regulation

u Microbes  must  coordinate  metabolism  to  conserve  energy  and  resources,  as  well  as  to  maintain  metabolic  balance

u Carbon  flow  is   regulated  in  three  ways:vControlling  the  number  of  enzyme  molecules  present

vMetabolic  channeling  -­ localization  of  enzymes  and  metabolites

vPost-­translational  control  of  enzyme  activity  -­stimulating  or  inhibiting  enzymatic  function

Slide  No.  41BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Metabolic   Regulation   (cont.)

u Metabolic  channelingvMicrobes  utilize  compartmentation to  segregate  particular  enzymes  and  metabolites  into  different  organelles  or  cell  structures  to  regulate  metabolismØ Provides  simultaneous,  but  separate  operation  and  regulation  of  similar  pathways

Ø Coordinates  pathways  via  transport  of  metabolites  and  cofactors  between  cellular  compartments

vChanneling  may  occur  in  compartments

Slide  No.  42BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

BIOL 3702: Chapter 10 AY 2015-2016

Dr. Cooper 8

Metabolic   Regulation   (cont.)

u Post-­translational  control  of  enzyme  activity  regulates  many  metabolic  pathways  using  several  different  mechanisms:vAllosteric  regulationvCovalent  modificationvFeedback  inhibition[each  of  these  mechanisms  is  described  in  further  detail  on  the  following  slides]  

Slide  No.  43BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Metabolic   Regulation   (cont.)

vAllosteric  regulationØ Activity  of  regulatory  enzymes,  known  as  allostericenzymes,  altered  by  a  small  molecules  (effector[modulator] molecule)

Ø Effector binds  to  a  site  (regulatory  site)  separate  from  the  catalytic  site  changing  the  enzyme’s  shape  and  either§ Substrate  affinity,  or§ Velocity  of  the  reaction

Slide  No.  44BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Slide  No.  45

Figure   10.19

BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Metabolic   Regulation   (cont.)

vCovalent  modification  Ø Some  of   these  same  enzymes  are  allosteric,  thereby  adding  a  second  level  of  regulation  and  giving  the  enzyme  more  dynamic  properties

Ø Also,  regulation  of  enzymes  that  catalyze  the  covalent  modification  can  occur,  further  adding  another   layer  of  regulation  to  a  metabolic  pathway

Slide  No.  46BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Slide  No.  47BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

Figure   10.20

Metabolic   Regulation   (cont.)

vFeedback  inhibitionØ Reversible  inhibition  of  a  key  regulatory  enzyme  (pacemaker)  in  a  pathway  that  usually  catalyzes  the  slowest  or  rate-­limiting  reaction

Ø Typically  regulated  by  the  end-­product  of  the  pathway   in  a  process  known  as  feedback  (end  product)  inhibition

Slide  No.  48

Figure   10.21

BIOL  3702:  Microbiology   (2015)Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

BIOL 3702: Chapter 10 AY 2015-2016

Dr. Cooper 9

Slide  No.  49BIOL  3702:  Microbiology   (2015)  Portions  Copyright   ©  The  McGraw-­Hill  Companies,  Inc.   and  Copyright  ©  C.  R.  Cooper,   Jr.  

To   view   this   video,   go   to   Chapter   10   Animations   of  Prescott's   Microbiology   Companion   Site   (9th ed.)   located   at   the   following   URL:  http://highered .mhe du cati on. com/si tes /0 073 40 24 00 /st ude nt _vie w0/i nd ex. ht ml