chapter 5access.ee.ntu.edu.tw/course/vlsi_design_92first/ppt/chapter5 10-29 … · objective of...

61
Inverter Chapter 5 Chapter 5 The Inverter The Inverter V1. April 10, 03 V1.1 April 25, 03

Upload: others

Post on 01-Feb-2021

13 views

Category:

Documents


0 download

TRANSCRIPT

  • Inverter

    Chapter 5Chapter 5

    The InverterThe InverterV1. April 10, 03V1.1 April 25, 03

  • Inverter

    Objective of This ChapterObjective of This Chapter

    Use Inverter to know basic CMOS Circuits OperationsWatch for performance Index such as

    Speed (Delay calculation)Optimal Transistor Sizing for speed and EnergyPower Consumption and Dissipation

  • Inverter

    The CMOS Inverter: A First GlanceThe CMOS Inverter: A First Glance

    Vin Vout

    CL

    VDD

  • Inverter

    CMOS InverterCMOS Inverter

    Polysilicon

    In Out

    VDD

    GND

    PMOS

    Metal 1

    NMOS

    OutIn

    VDD

    PMOS

    NMOS

    Contacts

    N Well

  • Inverter

    Two InvertersTwo Inverters

    Connect in Metal

    Share power and ground

    Abut cells

    VDD

    Vin Vout

    Vin

    Vout

  • Inverter

    CMOS InverterCMOS InverterFirstFirst--Order DC AnalysisOrder DC Analysis

    VOL = 0VOH = VDD

    VDD VDD

    Vin = VDD Vin = 0

    VoutVout

    Rn

    Rp

  • Inverter

    Delay DefinitionsDelay Definitions

    Vout

    tf

    tpHL tpLH

    trt

    Vin

    t

    90%

    10%

    50%

    50%

  • Inverter

    CMOS Inverter: Transient ResponseCMOS Inverter: Transient Response

    tpHL = f(Ron.CL)= 0.69 RonCL

    V outVout

    R n

    R p

    V DDV DD

    V in = V DDV in = 0

    (a) Low-to-high (b) High-to-low

    CLCL

    ln(2)=0.69

  • Inverter

    Voltage TransferVoltage TransferCharacteristicCharacteristic

  • Inverter

    PMOS Load LinesPMOS Load Lines

    VDS,p

    IDp

    VGSp=-2.5

    VGSp=-1VDS,p

    IDnVin=0

    Vin=1.5

    Vout

    IDnVin=0

    Vin=1.5

    V in = V DD +VGSpIDn = - I Dp

    Vout = V DD+VDSp

    Vout

    IDn

    V in= V DD+VGS,pID,n= - I D,p

    V out= V DD+VDS,p

    (Vdd = 2.5V in 0.25um CMOS Process)(Vt = 0.4V as shown in Table 3-2)

  • Inverter

    CMOS Inverter Load CharacteristicsCMOS Inverter Load Characteristics

    IDn

    Vout

    Vin = 2.5

    Vin = 2

    Vin = 1.5

    Vin = 0

    Vin = 0.5

    Vin = 1

    NMOS

    Vin = 0

    Vin = 0.5

    Vin = 1Vin = 1.5

    Vin = 2

    Vin = 2.5

    Vin = 1Vin = 1.5

    PMOS

  • Inverter

    CMOS Inverter VTCCMOS Inverter VTC

    Vout

    Vin0.5 1 1.5 2 2.5

    0.5

    11.

    52

    2.5

    NMOS resPMOS off

    NMOS satPMOS sat

    NMOS offPMOS res

    NMOS satPMOS res

    NMOS resPMOS sat

    VM: Vin = VoutSwitching Threshold Voltage

  • Inverter

    Switching Threshold as a Function of Switching Threshold as a Function of Transistor RatioTransistor Ratio

    NMOS and PMOS are in Saturation Modes

    For r = 1, and saturated velocity NMOS = 2 PMOS, Wp = 2Wn

    ),,when (1 TpTnDSATDD

    DDM VVVVr

    rVV >>+

  • Inverter

    Switching Threshold as a Function of Switching Threshold as a Function of Transistor RatioTransistor Ratio

    100

    101

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1.7

    1.8M

    V(V

    )

    W p/W n

  • Inverter

    Simulated VTCSimulated VTC

    0 0.5 1 1.5 2 2.50

    0.5

    1

    1.5

    2

    2.5

    Vin

    (V)

    Vou

    t(V)

  • Inverter

    Impact of Process VariationsImpact of Process Variations

    0 0.5 1 1.5 2 2.50

    0.5

    1

    1.5

    2

    2.5

    Vin (V)

    V out

    (V)

    Good PMOSBad NMOS

    Good NMOSBad PMOS

    Nominal

    Good: Smaller oxide thickness, smaller L, higher W, smaller VT

  • Inverter

    Propagation DelayPropagation Delay

  • Inverter

    CMOS InvertersCMOS Inverters

    Polysilicon

    InOut

    Metal1

    VDD

    GND

    PMOS

    NMOS

    1.2 µm=2λ

  • Inverter

    CMOS Inverter Propagation DelayCMOS Inverter Propagation Delay

    VDD

    Vout

    Vin = VDD

    Ron

    CL

    tpHL = f(Ron.CL)= 0.69 RonCL

    t

    Vout

    VDD

    RonCL

    1

    0.5

    ln(0.5)

    0.36

  • Inverter

    The Transistor as a SwitchThe Transistor as a SwitchVGS ≥ VT

    RonS D

    ID

    VDS

    VGS = VD D

    VDD/2 VDD

    R0

    Rmid

  • Inverter

    The Transistor as a SwitchThe Transistor as a Switch

    0.5 1 1.5 2 2.50

    1

    2

    3

    4

    5

    6

    7x 10

    5

    VDD

    (V)

    Req

    (Ohm

    )

  • Inverter

    The Transistor as a SwitchThe Transistor as a Switch

  • Inverter

    0 0.5 1 1.5 2 2.5

    x 10-10

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    t (sec)

    Vou

    t(V)

    Transient ResponseTransient Response

    tp = 0.69 CL (Reqn+Reqp)/2

    ?

    tpLH tpHL

  • Inverter

    Design for PerformanceDesign for Performance

    Keep loading capacitances (CL) smallIncrease transistor sizes (add CMOS gain)

    Watch out for self-loading (for the previous stage)!

    Increase VDD (????) Power consumption??

  • Inverter

    Delay (speed degrade) as a function of VDelay (speed degrade) as a function of VDDDD

    0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.41

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    5.5

    VDD

    (V)

    t p(n

    orm

    aliz

    ed)

  • Inverter

  • Inverter

    Propagation delay v.s. Transistor Propagation delay v.s. Transistor sizesize

    NMOS-to-PMOS ratio: will symmetrical tpHL and tpLH have better propagation delay (tp), or a better ratio for overall tp can be found?

    Consider two identical cascaded CMOS inverters. The approximated load cap of the 1st gate is

    WgngpdndpL CCCCCC ++++= )()( 2211

  • Inverter

    Propagation delay v.s. Transistor sizePropagation delay v.s. Transistor size

    When the PMOS device is made β times larger than the NMOS ThenCL becomes From (5.20), we have

    where is the resistance ratio of equal-size NMOS

    and PMOS

    n

    p

    LWLW

    )/()/(

    2211 and gngpdndp CCCC ββ ≈≈WgndnL CCCC +++= ))(1( 21β

    [ ]

    [ ] )1())(1(345.0

    )())(1(269.0

    21

    21

    βγβ

    ββ

    ++++=

    ++++=

    eqnWgndn

    eqpeqnWgndnp

    RCCC

    RRCCCt

    eqn

    eqp

    RR

  • Inverter

    1 1.5 2 2.5 3 3.5 4 4.5 53

    3.5

    4

    4.5

    5x 10

    -11

    β

    t p(s

    ec)

    NMOS/PMOS ratioNMOS/PMOS ratio

    tpLH tpHL

    tp β = Wp/Wn

    (See pp. 204)

    Fig. 5-18

    )(1(21 gndn

    Wopt CC

    C+

    += γβ

  • Inverter

    2 4 6 8 10 12 142

    2.2

    2.4

    2.6

    2.8

    3

    3.2

    3.4

    3.6

    3.8x 10

    -11

    S

    t p(s

    ec)

    Device SizingDevice Sizing

    (for fixed load)

    Self-loading effect:Intrinsic capacitancesdominate

    (Fig. 5-19)

  • Inverter

    Inverter SizingInverter Sizing

  • Inverter

    Inverter ChainInverter Chain

    CL

    If CL is given:- How many stages are needed to minimize the delay?- How to size the inverters?

    May need some additional constraints.

    In Out

    1 f2f1

  • Inverter

    Inverter DelayInverter Delay• Minimum length devices, L=0.25µm• Assume that for WP = 2WN =2W

    • same pull-up and pull-down currents• approx. equal resistances RN = RP• approx. equal rise tpLH and fall tpHL delays

    • Analyze as an RC network

    WNunit

    Nunit

    unit

    PunitP RRW

    WRWWRR ==

    =

    −− 11

    tpHL = (ln 2) RNCL tpLH = (ln 2) RPCLDelay (D):

    2W

    W

    unitunit

    gin CWWC 3=Load for the next stage:

  • Inverter

    Inverter with LoadInverter with Load

    Load (CL)

    Delay

    CL

    tp = k RWCL

    RW

    RW

    •k is a constant, equal to 0.69•Assumptions: no load zero delay

    2W

    W

  • Inverter

    Inverter with Load and Para. Cap.Inverter with Load and Para. Cap.

    Load

    Delay

    Cint CL

    Delay = kRW (Cint + CL) = kRWCint + kRWCL = kRW Cint(1+ CL /Cint)= Delay (Internal) + Delay (Load)

    CN = Cunit

    CP = 2Cunit

    2W

    W

  • Inverter

    Delay FormulaDelay Formula( )

    ( ) ( )γ/1/1

    ~

    0int ftCCCkRt

    CCRDelay

    pintLWp

    LintW

    +=+=

    +

    Cint = γCgin with γ ≈ 1f = CL/Cgin : Effective fanout

    RW = Runit / W ; Cint =WCunittp0 = 0.69RunitCunit

  • Inverter

    Apply to Inverter ChainApply to Inverter Chain

    CL

    In Out

    1 2 N

    tp = tp1 + tp2 + …+ tpN

    + +

    jgin

    jginunitunitpj C

    CCRt

    ,

    1,1~γ

    LNgin

    N

    i jgin

    jginp

    N

    jjpp CC C

    Cttt =

    +== +

    =

    +

    =∑∑ 1,

    1 ,

    1,0

    1, ,1 γ

  • Inverter

    Optimal Tapering for Given NOptimal Tapering for Given NDelay equation has (N-1) unknowns, Cgin,2 ~ Cgin,N

    Minimize the delay, find (N – 1) partial derivatives

    Result: Cgin,j+1/Cgin,j = Cgin,j/Cgin,j-1

    Size of each stage is the geometric mean of two neighbors

    - Each stage has the same effective fanout (Cout/Cin)- Each stage has the same delay

    1,1,, +−= jginjginjgin CCC

  • Inverter

    Optimum Delay and Number of StagesOptimum Delay and Number of Stages

    1,/ ginLN CCFf ==

    When each stage is sized by f and has same effective fanout f

    N Ff =

    ( )γ/10 Npp FNtt +=Minimum path delay

    Effective fanout of each stage:

  • Inverter

    ExampleExample

    CL= 8 C1

    In Out

    C1 1 f f2

    283 ==f

    CL/C1 has to be evenly distributed across N = 3 stages:

  • Inverter

    Optimum Number of StagesOptimum Number of StagesFor a given load, CL and given input capacitance CinFind optimal sizing f

    ( )

    +=+=

    fffFtFNtt pNpp lnln

    ln1/ 0/10

    γγ

    γ

    0ln

    1lnln2

    0 =−−

    ⋅=∂

    fffFt

    ft pp γ

    γ

    For γ = 0, f = e, N = lnF

    fFNCfCFC in

    NinL ln

    ln with ==⋅=

    ( )ff γ+= 1exp

  • Inverter

    Optimum Effective Optimum Effective Fanout Fanout ffOptimum f for given process defined by γ

    ( )ff γ+= 1expfopt = 3.6for γ=1

    fopt = 2.718for γ=0

  • Inverter

    Normalized delay function of Normalized delay function of FF

    ( )γ/10 Npp FNtt +=

  • Inverter

    Buffer DesignBuffer Design

    1

    1

    1

    1

    8

    64

    64

    64

    64

    4

    2.8 8

    16

    22.6

    N f tp

    1 64 65

    2 8 18

    3 4 15

    4 2.8 15.3

    Without considering the internal capacitance

  • Inverter

    Power DissipationPower Dissipation

  • Inverter

    Where Does Power Go in CMOS?Where Does Power Go in CMOS?

    • Dynamic Power Consumption

    • Short Circuit Currents

    • Leakage

    Charging and Discharging Capacitors

    Short Circuit Path between Supply Rails during Switching

    Leaking diodes and transistors

  • Inverter

    Dynamic Power DissipationDynamic Power Dissipation

    Energy/transition = CL * Vdd2

    Power = Energy/transition * f = CL * Vdd2 * f

    Need to reduce CL, Vdd, and f to reduce power.

    Vin Vout

    CL

    Vdd

    Not a function of transistor sizes!

    2)(

    2

    00

    DDLout

    outLoutVDDC

    VCdtvdt

    dvCdtvtiE ∫∫∞∞

    === Energy in CL

  • Inverter

    Node Transition Activity and PowerNode Transition Activity and PowerConsider switching a CMOS gate for N clock cycles

    EN CL Vdd•2 n N( )•=

    n(N): the number of 0->1 transition in N clock cycles

    EN : the energy consumed for N clock cycles

    Pavg N ∞→lim

    ENN-------- fclk•=

    n N( )N------------N ∞→

    lim C•

    LVdd•

    2 fclk•=

    α0 1→n N( )

    N------------N ∞→lim=

    Pavg = α0 1→ C• LVdd•

    2 fclk•

    e)Capacitanc Effective:(

    )( 2210

    Eff

    CLKDDEffCLKDDLAVG

    C

    fVCfVCP ⋅⋅=⋅⋅⋅= →α

  • Inverter

    Switching Activity (Example 5.12)Switching Activity (Example 5.12)

    25.08/210 ==→α

  • Inverter

    Transistor Sizing for Minimum EnergyTransistor Sizing for Minimum EnergyGoal: Minimize Energy of whole circuit while maintaining the speed speed performance

    Design parameters: f and VDDtp ≤ tp,ref of referenced circuit with f=1 and Vdd =Vref

    1Cg1

    In

    fCext

    Out

    TEDD

    DDp

    pp

    VVVt

    fFftt

    −∝

    ++

    +=

    0

    0 11 γγ)/( 1gext CCF =

    )2/( DSATTTE VVV +=

  • Inverter

    Transistor Sizing (2)Transistor Sizing (2)Performance Constraint (γ=1) Vdd(f)

    Energy for single transition

    Energy ratio of the design and reference circuit

    ( ) ( ) 13

    2

    3

    2

    0

    0 =+

    ++

    −=

    +

    ++

    =F

    fFf

    VVVV

    VV

    FfFf

    tt

    tt

    TEDD

    TEref

    ref

    DD

    refp

    p

    pref

    p

    +++

    =

    FFf

    VfV

    EE

    ref

    DD

    ref 422)(

    2

    [ ] ])1)(1[(1 1212 FfCVFffCVE gDDgDD +++=++++= γγγ

  • Inverter

    1 2 3 4 5 6 70

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    f

    vdd

    (V)

    1 2 3 4 5 6 70

    0.5

    1

    1.5

    f

    norm

    aliz

    ed e

    nerg

    y

    Transistor Sizing (4)Transistor Sizing (4)

    F=1

    2

    5

    10

    20

    VDD=f(f) E/Eref=f(f)

    Required Supply Voltage Energy v.s. Sizing factor

  • Inverter

    Sizing factor for Speed and EnergySizing factor for Speed and Energy

    Device sizing, combined with supply voltage reduction, is a very effective way in reducing energy consumption of a logic network.

    The gain can be up to 10 for large fanout.

    Oversizing beyond the optimal value comes at a hefty price in energy.Optimal size for energy is smaller than the optimal sizing for performance.

    For example, f(energy) = 3.53, f(performance) = 4.47= , for F=20

    20

  • Inverter

    Short Circuit Currents (during switching)Short Circuit Currents (during switching)

    Vin Vout

    CL

    Vdd

    I VD

    D (m

    A)

    0.15

    0.10

    0.05

    Vin (V)5.04.03.02.01.00.0

  • Inverter

    Minimizing ShortMinimizing Short--Circuit PowerCircuit Power

  • Inverter

    Neil Weste Textbook

  • Inverter

    Leakage CurrentLeakage Current

    Vout = Vdd

    Vdd

    Sub-ThresholdCurrent

    Drain JunctionLeakage Current

    Sub-threshold current is one of most compelling issuesin low-energy circuit design!!

    Vdd

  • Inverter

    ReverseReverse--Biased Diode LeakageBiased Diode Leakage

    Np+ p

    +

    Reverse Leakage Current

    +

    -Vdd

    GATE

    IDL = JS × A

    JS = 10-100 pA/µm2 at 25 deg C for 0.25µm CMOSJS doubles for every 9 deg C!

  • Inverter

    SubthresholdSubthreshold Leakage ComponentLeakage Component

  • Inverter

    Static Power ConsumptionStatic Power Consumption

    Vin=5V

    Vout

    CL

    Vd d

    Istat

    Pstat = P(In=1).Vdd . Istat

    Wasted energy …Should be avoided in almost all cases.

  • Inverter

    Principles for Power ReductionPrinciples for Power ReductionPrime choice: Reduce voltage!

    Recent years have seen an acceleration in supply voltage reductionDesign at very low voltages still open question (0.6, … , 0.9 V by 2010!)

    Reduce switching activity (at different levels)Reduce physical capacitance

    Device Sizing: for example, for F = 20fopt(energy)=3.53, fopt(performance)=4.47.