ch19a oksidatif fosforilasyon ve fotofosforilasyon yonca duman

Upload: sezer-kurtuldu

Post on 06-Apr-2018

236 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    1/145

    OXIDATIVE PHOSPHORYLATION

    1

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    2/145

    2

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    3/145

    3

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    4/145

    4

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    5/145

    5

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    6/145

    Oxidative phosphorylation is the culmination of energy-yielding metabolism in aerobic organisms. All oxidative stepsin the degradation of carbohydrates, fats, and amino acidsconverge at this final stage ofcellular respiration, in whichthe energy of oxidation drives the synthesis ofATP.

    Photophosphorylation is the means by which photosyntheticorganismscapture the energy of sunlight -the ultimate sourceof energy in the biosphere- and harness it to make ATP.

    6

    In eukaryotes, oxidative phosphorylation occurs inmitochondria, but photophosphorylation in chloroplasts.

    Oxidative phosphorylation involves the reduction of O2 toH2O with electrons donated by NADH and FADH2; it

    occurs equally well in light or darkness.Photophosphorylation involves the oxidation of H2O to O2,with NADP+ as ultimate electron acceptor; it is absolutelydependent on the energy oflight.

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    7/145

    Kemiozmotik Teori

    Oksidatif fosforilasyon vefotosentetik fosforilasyon mekanizmalar asndan

    noktada birbirine benzer:

    1.

    Her iki sre te membran bal tama zinciri zerinden elektronlarnakn ierir,

    2. Elektonlarn yoku aa (down-hill) ya da ekzergonik akn salayanserbest ener i roton e ir en olma an bir membrana kar oku ukar

    (up-hill) ya da endergonik proton transportu ile balantldr. Bylelikleyakt molekl oksidasyonunun serbest enerjisi membranlararas

    (transmembran) elektokimyasal potansiyeli olarak korunur.

    3. Protonlarn zgn proton kanallarndan geerek aaya dorukonsantrasyon gradienti dorultusunda membranlar arasndaki ak ATP

    sentezi iin serbest enerji salar. Bu olay yani ATP sentezi; proton akn

    ADP nin fosforilasyonu ile balantlandran ATP sentaz tarafndan

    katalizienir.lenir.

    7

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    8/145

    8

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    9/145

    9

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    10/145

    10

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    11/145

    11

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    12/145

    12

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    13/145

    13

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    14/145

    14

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    15/145

    15

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    16/145

    + +

    Nikotinamit nkleotid bal dehidrojenazlarn katalizledii tepkimeler:

    ndirgenmi substrat + NAD Ykseltgenmi substrat + NADH + H

    + +ndirgenmi substrat + NADP Ykseltgenmi substrat + NADPH + H

    16

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    17/145

    17

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    18/145

    Nikotinamid nkleotid

    + +

    NADPH + NAD NADP + NADH

    18

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    19/145

    :H-

    NAD+ + 2e- + 2H+ NADH + H+

    NADP+ + 2e- + 2H+ NADPH + H+

    19

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    20/145

    20

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    21/145

    FAD + 2e- + 2H+ FADH2

    FMN + 2e- + 2H+ FMNH2

    21

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    22/145

    Oksidatif fosforilasyonda tip elektron transferi olur:

    1. Elektronlarn hidrid iyonu (:H-) olarak transferi,2.

    Elektronlarn hidrojen atomu olarak transferi (H

    +

    + e

    -

    )

    3. Fe+3 n Fe+2 ye indirgenmesinde olduu gibi elektronlarn dorudan transferi.

    22

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    23/145

    23

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    24/145

    24

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    25/145

    25

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    26/145

    26

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    27/145

    27

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    28/145

    28

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    29/145

    Fe - 4S

    29

    Three-dimensional structure of rubredoxin fromPyrococcus furiosus

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    30/145

    2Fe - 2S

    Ferredoxin of the cyanobacterium Anabaena

    30Ferredoxin of the cyanobacterium Anabaena

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    31/145

    Rieske iron-sulphur protein structure (2Fe 2S)

    31

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    32/145

    4Fe - 4S

    32

    Ferredoxin from Peptococcus aerogenes.

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    33/145

    NADH Q Cyt b Cyt c1 Cyt c Cyt a Cyt a3 O2

    33

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    34/145

    34

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    35/145

    35

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    36/145

    2 Cyt b-Fe+2 2 Cyt c1-Fe+3 2 Cyt c-Fe+2 2 Cyt a-Fe+3 2 Cyt a3-Fe

    +2 1/2 O2 + 2 H+

    2 Cyt b-Fe+3 2 Cyt c1-Fe+2

    2 Cyt c-Fe+3 2 Cyt a-Fe+2 2 Cyt a3-Fe+3

    H2O

    36

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    37/145

    37

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    38/145

    38

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    39/145

    39

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    40/145

    40

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    41/145

    41

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    42/145

    42

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    43/145

    43

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    44/145

    44

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    45/145

    45

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    46/145

    46

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    47/145

    47

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    48/145

    Complex I : NADH dehydrogenase

    Complex II : Succinate dehydrogenase

    Fatty acyl-CoA dehaydrogenase

    Glycerol-3-phosphate dehydrogenase 48

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    49/145

    49

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    50/145

    ElectronTrans ort

    50

    Chain

    Complex I NADH : Ubiquinone oxido reductase

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    51/145

    Complex I NADH : Ubiquinone oxido reductase

    NADH + H+

    + Q NAD+

    + QH251

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    52/145

    52

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    53/145

    Kompleks Ideki proton aknailikin toplam reaksiyon

    NADH + 5HN+ + Q NAD+ + QH2 + 4HP

    +

    53

    Complex II Succinate CoQ oxidoreductase

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    54/145

    54

    Structure of Complex II( i t d h d )

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    55/145

    (succinate dehydrogenase).Porcine heart enzyme

    55

    Structure of Complex II (succinate dehydrogenase) of Escherichia coli

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    56/145

    56

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    57/145

    57

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    58/145

    58

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    59/145

    Succinate

    Fumarate

    FAD

    FADH2

    Succinate dehydrogenase

    59

    Glycerol-3-phosphate Shuttle

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    60/145

    60

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    61/145

    61

    Complex III Cytochrome bc1 complex Ubiquinone : cytochrome c oxidoreductase

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    62/145

    62

    Cytochrome bc1 complex Ubiquinone : cytochrome c oxidoreductase

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    63/145

    63

    Cytochrome bc1 complex Ubiquinone : cytochrome c oxidoreductase

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    64/145

    64

    Cytochrome bc1 complex Ubiquinone : cytochrome c oxidoreductase

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    65/145

    65

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    66/145

    66

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    67/145

    67

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    68/145

    68

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    69/145

    69

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    70/145

    70

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    71/145

    71

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    72/145

    Q.HL

    Q.HL

    72

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    73/145

    Antimycin Ablocks electrontransfer from theheme bH ofcytochrome b to

    cytochrome c1.

    Antifungal agentsm xothiazoland

    73

    stigmatellin

    which both blockelectron flow from

    QH2 to RieskeFe-S protein atQP site and the

    heme bL ofcytochrome b.

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    74/145

    74

    Critical subunits of cytochromeoxidase (Complex IV).

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    75/145

    75

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    76/145

    76The binuclear center of CuA.

    Complex IV Cytochrome oxidase

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    77/145

    +2 + +3 +N 2 P 2

    +2 + +3 +

    N 2 P 2

    4 Sit c-Fe + 8 H + O 4 Sit c-Fe + 4 H + 2 H O

    2 Sit c-Fe + 8 H + 1 2 O 2 Sit c-Fe + 2 H + H O

    4

    77

    Complex IV Cytochrome oxidase

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    78/145

    +2 + +3 +N 2 P 2

    +2 + +3 +

    N 2 P 2

    4 Sit c-Fe + 8 H + O 4 Sit c-Fe + 4 H + 2 H O

    2 Sit c-Fe + 8 H + 1 2 O 2 Sit c-Fe + 2 H + H O

    4

    78

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    79/145

    79

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    80/145

    80

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    81/145

    81

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    82/145

    82

    +2 + +3 +N 2 P 22 Sit c-Fe + 8 H + 1 2 O 2 Sit c-Fe + 2 H + H O4

    2e2 2

    o

    NADH H 1 2O NAD H O++ ++ + +

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    83/145

    2 2

    NAD / NADH

    oO / H O

    o

    o o

    o

    E 0.320VE 0.816V

    E 0.816 ( 0.320) 1.14V

    G nF E 2 96.5 kJ/V mol 1.14V

    G 220 kJ / mol

    + = =

    = =

    = =

    =

    2 2

    oFumarat /Sksinat

    oO / H O

    o

    E 0.031V

    E 0.816V

    E 0.816 0.031

    =

    =

    = o o

    o

    0.785VG nF E 2 96.5 kJ/V mol 0.785V

    G 151.5 kJ / mol

    =

    = =

    = 83

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    84/145

    84

    G = -151.5 kJ mol-1

    G = -220 kJ mol-1

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    85/145

    85

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    86/145

    Kompleks I: NADH + 5HN+ + Q NAD+ + QH2 + 4HP

    +

    Kompleks III: QH2 + 2Sit c1-Fe+3 + 2HN

    + Q + 2Sit c1-Fe+2 + 4HP

    +

    2 Sit c1-Fe+2 + 2 Sit c-Fe+3 2 Sit c1-Fe

    +3 + 2 Sit c-Fe+2

    Kompleks IV: 2Sit c-Fe+2 + 4HN+ + O2 + 2Sit c-Fe

    +3 +2HP+ + H2O

    Toplam: NADH + 11HN+ + O2 NAD

    + + 10HP+ + H2O

    86

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    87/145

    ( ) ( )+

    + +2 PN P+ P N

    1 N

    HCln = 2.303log = 2.303 log H log H = 2.303 pH pH = 2.303pHC H

    - -

    Bir H+ pompalanmasnda 0.15-0.20 V, pH = 0.75 , G = +20 kJ/mol

    87

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    88/145

    88

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    89/145

    89

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    90/145

    ADP + Pi + n HP+ ATP + H2O + n HN

    +90

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    91/145

    91

    Coupling of electron transfer and ATP synthesis in mitochondria. In experiments todemonstrate coupling, mitochondria are suspended in a buffered medium and an O2 electrode

    monitors O2 consumption. At intervals, samples are removed and assayed for the presence ofATP. Addition of ADP and Pi alone results in little or no increase in either respiration (O2consumption; black) or ATP synthesis (red). When succinate is added, respiration beginsimmediately and ATP is synthesized. Addition of cyanide (CN), which blocks electron

    transfer between cytochrome oxidase and O2, inhibits both respiration and ATP synthesis.

    Mitochondria provided with succinate respireand synthesize ATP only when ADP and Pi areadded. Subsequent addition of venturicidin

    or oligomycin inhibitors of ATP synthase

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    92/145

    or oligomycin, inhibitors of ATP synthase,blocks both ATP synthesis and respiration. Di-nitrophenol (DNP) is an uncoupler, allowingrespiration to continue without ATP synthesis.

    92

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    93/145

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    94/145

    94

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    95/145

    95

    Evidence for the role of a proton gradient

    in ATP synthesis. An artificially imposedelectrochemical gradient can drive ATP

    synthesis in the absence of an oxidizableb t t l t d I thi t t

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    96/145

    sy t es s t e abse ce o a o d ab esubstrate as electron donor. In this two-stepexperiment, (a) isolated mitochondria arefirst incubated in a pH 9 buffer containing 0.1M KCl. Slow leakage of buffer and KCI intothe mitochondria eventually brings the matrix

    into equilibrium with the surroundingmedium. No oxidizable substrates arepresent. (b) Mitochondria are now separatedfrom the pH 9 buffer and resuspended in pH

    96

    u er conta n ng valinomycin ut no .The change in buffer creates a difference of

    two pH units across the inner mitochondrialmembrane. The outward flow of K+, carried(by valinomycin) down its concentrationgradient without a counterion, creates acharge imbalance across the membrane(matrix negative). The sum of the chemical

    potential provided by the pH difference andthe electrical potential provided by theseparation of charges is a proton motive forcelarge enough to support ATP synthesis in theabsence of an oxidizable substrate.

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    97/145

    97

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    98/145

    98

    ATP SynthaseIn the laboratory, small membranevesicles formed from inner mitochon-

    drial membranes carry out ATP synthe-sis coupled to electron transfer When

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    99/145

    y ysis coupled to electron transfer. WhenF1is gently extracted, the "stripped"vesicles still contain intact respiratorychains and the Fo portion of ATP syn-thase. The vesicles can catalyze elec-

    tron transfer from NADH to O2 butcan not produce a proton gradient: Fohas a proton pore through which pro-

    99

    electron transfer, and without a proton

    gradient the F1-depleted vesicles cannot make ATP. Isolated F1 catalyzesATP hydrolysis (the reversal of syn-thesis) and was therefore originallycalled FiATPase. When purified F1 isadded back to the depleted vesicles, it

    reassociates with Fo, plugging itsproton pore and restoring the mem-brane's capacity to couple electrontransfer and ATP synthesis.

    Catalytic mechanism of

    F1. 18O-exchange experi-ment F solubilized from

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    100/145

    g pment. F1 solubilized frommitochondrial membranesis incubated with ATP inthe presence of18O-labe-

    led water. At intervals, asample of the solution iswithdrawn and analyzed

    100

    18O into the Pi produced

    from ATP hydrolysis. Inminutes, the Pi containsthree or four 18O atoms,indicating that both ATPhydrolysis and ATP syn-

    thesis have occurredseveral times during theincubation.

    The likely transition statecomplex for ATP hydro-lysis and synthesis in ATP

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    101/145

    synthase (derived fromPDB ID 1BMF). The subunit is shown in green, in gray. The positively

    charged residues -Arg182a2 and -Arg376 coordinatetwo oxygens of the penta-valent phosphate inter-

    101

    mediate; -Lys155 interactswith a third oxygen, andthe Mg2+ ion (greensphere) further stabilizesthe intermediate. The bluesphere represents theleaving group (H2O).

    These interactions result inthe ready equilibration ofATP and ADP + Pi in theactive site.

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    102/145

    102

    Reaction coordinate diagrams for ATP synthase and for a more typical enzyme. In a typical enzyme-catalyzed reaction (left), reaching the transition state () between substrate and product is the majorenergy barrier to overcome. In the reaction catalyzed by ATP synthase (right), release of ATP from theenzyme, not formation of ATP, is the major energy barrier. The free energy change for the formation of

    ATP from ADP and Pi in aqueous solution is large and positive, but on the enzyme surface, the very tightbinding of ATP provides sufficient binding energy to bring the free energy of the enzyme bound ATPclose to that of ADP + Pi, so the reaction is readily reversible. The equilibrium constant is near 1. Thefree energy required for the release of ATP is provided by the proton-motive force.

    Mitochondrial ATP Synthase Complex

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    103/145

    103

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    104/145

    104

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    105/145

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    106/145

    106

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    107/145

    107

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    108/145

    108

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    109/145

    109

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    110/145

    110

    When researchers crystallized the proteinin the presence of ADP and App(NH)p, a

    close structural analog of ATP that cannotbe hydrolyzed by the ATPase activity ofF1, the binding site of one of the three subunits was filled with App(NH)p, thesecond was filled with ADP, and the thirdwas empty. The corresponding subunitconformations are designated -ATP, -ADP, and -empty.

    http://www.iubmb-nicholson.org/swf/ATPSynthase.swf

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    111/145

    111

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    112/145

    112

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    113/145

    113

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    114/145

    114

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    115/145

    115

    Oksidatif fosforilasyon iin kemiosmotik model kabul edilmeden

    nce ATP oluumunun varsaylan toplam denklemi:

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    116/145

    x ADP +x Pi + O2 + H+ + NADH x ATP + H2O + NAD

    +

    x : P/O oran ya da P/2e oran.

    NADH elektron donr olduunda P/O (ATP/ O2) 2-3 arasnda,

    Sksinat elektron donr olduunda P/O 1-2 arasnda.

    P/O bir tam say olmak durumunda:

    NADH elektron donr olduunda (P/O) = 3Sksinat elektron donr olduunda (P/O) = 2

    116

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    117/145

    117

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    118/145

    118

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    119/145

    Kemiozmotik model sz konusu olduktan sonraATP sentazreaksiyonunun stokiometrisi ile ilgili olarak u sorular

    sorulmaldr:

    1. Bir NADH ten molekler O ne bir elektron iftinin transferi lemitokondriyel matriks dna ka tane proton pompalanr?

    2. Bir ATP sentezi iin F0F1 kompleksinden mitokondriyel matrikseka tane proton geer?

    119

    KONSENSS

    Elektron ifti bana darya pompalanan proton says:

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    120/145

    NADH iin :10

    Sksinat iin : 6

    1 ATP retimi i in matriks i ine iren roton sa s : 4

    (1 tanesi mitokondriyel membrandan adenin nkleotid ve fosfat translokazlarla Pi ,

    ATP ve ADP tanmasnda kullanlr)

    Proton tabanl P/O oran:

    NADH iin : (10/4) = 2.5

    Sksinat iin : (6/4) = 1.5120

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    121/145

    121

    The Proton-Motive Force EnergizesActive Transport

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    122/145

    Active Transport

    Although the primary role of the protonradient in mitochondria is to furnish

    122

    energy for the synthesis of ATP, theproton-motive force also drives severaltransport processes essential to

    oxidative phosphorylation.

    The adenine nucleotide

    translocase,antiporter movesfour negative charges out forevery three moved in, its

    i i i f d b h

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    123/145

    33 H+ +

    activity is favored by thetransmembrane electroche-mical gradient, which gives

    the matrix a net negativecharge; the proton-motiveforce drives ATP-ADP

    123

    .

    The phosphate translocase,which promotes symport ofone H2PO4 and one H

    + intothe matrix. This transportprocess, too, is favored bythe transmembrane protongradient.

    Shuttle Systems Indirectly Convey Cytosolic

    NADH into Mitochondria for Oxidation

    The NADH dehydrogenase of the innermitochondrial membrane of animal cells can

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    124/145

    mitochondrial membrane of animal cells canaccept electrons only from NADH in the matrix.

    Given that the inner membrane is not permeableto NADH, how can the NADH generated by

    124

    glycolysis in the cytosol be reoxidized to NAD+

    by O2 via the respiratory chain?

    Yet the inner mitochondrial membrane lack anNADH transport protein. Only the electrons from

    cytosolic NADH are transported into themitochondrion by one of theseveral ingenious

    shuttle systems.

    The most active NADH shuttle, which functions in liver, kidney, and heart mitochondria, is the malate-aspartate shuttle which is mediated by two membrane carriers and four enzyme.

    This process occurs in two phases of thteereactions each:

    Phase A (transport of electrons into thematrix)

    1 In the cytosol NADH reduces oxaloacetate

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    125/145

    1. In the cytosol, NADH reduces oxaloacetateto yield NAD+ and malate in a reactioncatalysed by cytosolic malat dehydrogenase.

    2. The malate--ketoglutarate carriertransports malate from the cytosol to themitochondriyel matrix in exchange for -ketoglutarate from the matrix.

    125

    3. In t e matrix, NAD+ reoxi izes malate toyield NADH and oxaloacetate in a reactioncatalyzed by mitochondrial malat

    dehydrogenase.

    Phase B (regeneration of cytosolicoxaloacetate)

    4. In the matrix, a tansaminase convertsoxaloacetate to aspartate with the concomitantconversion of glutamate to -ketoglutarate.

    5. The glutamate-aspartate carrier transportsaspartate from the matrix to the cytosol inexchange for cytosolic glutamate.

    6. In the cytosol, a tansaminase convertsaspartate to oxaloacetate with the concomitantconversion of-ketoglutarate to glutamate.

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    126/145

    126

    Skeletal muscle and brain use adifferent NADH shuttle, theglycerol-3-phosphate shuttle.It differs from the malate-as-partate shuttle in that it delivers

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    127/145

    the reducing equivalents fromNADH to ubiquinone and thus

    into Complex III, not ComplexI, providing only enough ener-gy to synthesize 1.5 ATP mole-cules er air of electrons.

    127

    Malate-aspartate shuttle Glycerol-3-phosphate shuttle

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    128/145

    128

    Reversible Irreversible

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    129/145

    129

    Regulation of Oxidative Phosphorylation

    The rate of respiration (02 consumption) in mitochondria is tightly regulated; it

    is generally limited by the availability of ADP as a substrate forphosphorylation. Dependence of the rate of 02 consumption on the availability

    of the Pi acceptor ADP, the acceptor control of respiration, can be remarkable.

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    130/145

    The intracellular concentration of ADP ([ADP])is one measure of the energy

    status of cells. Another, related measure is the mass-action ratio of the ATP-

    ADP system, [ATP]/([ADP][Pi]).

    130

    Normally this ratio is very high, so the ATP-ADP system is almost fully

    phosphorylated. When the rate of some energy-requiring process (protein

    synthesis, for example) increases, the rate of breakdown of ATP to ADP and P i

    increases, lowering the mass-action ratio. With more ADP available for

    oxidative phosphorylation, the rate of respiration increases, causing

    regeneration of ATP. This continues until the mass-action ratio returns to its

    normal high level, at which point respiration slows again.

    In short, ATP is formed only as fast as it is used in energy-requiring cellular

    activities.

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    131/145

    New born mammals, hibernating mammals containbrown fat in their neck and upper back that functions in

    nonshivering thermogenesis, that is, as a biologicalheating pad. (The ATP hydrolysis that occurs during themuscle contractions or shiveringor any other move-ment also produce heat.

    131

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    132/145

    132

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    133/145

    133

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    134/145

    134

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    135/145

    135

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    136/145

    136

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    137/145

    137

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    138/145

    138

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    139/145

    139

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    140/145

    140

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    141/145

    141

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    142/145

    142

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    143/145

    143

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    144/145

    144

  • 8/3/2019 Ch19a Oksidatif Fosforilasyon Ve Fotofosforilasyon Yonca Duman

    145/145

    145