cdf 実験でのヒッグス粒子の研究

38
CDF 実実実実実実実実実実実実実 佐佐佐佐CDF Collaboration 佐佐佐佐佐佐 佐佐佐佐佐 2013 佐佐佐佐 佐佐 佐佐 佐 佐 , 2013921 1

Upload: umberto-potter

Post on 01-Jan-2016

78 views

Category:

Documents


0 download

DESCRIPTION

CDF 実験でのヒッグス粒子の研究. 佐藤構二, CDF Collaboration 日本物理学会 2013年秋季大会 高知大学, 2013年9月21日. Tevatron Run II. collisions at s = 1.96 TeV (1.8 TeV in Run I). Run II: Summer 2001 - Autumn 2011. Collisions at world highest energy until Nov 2009. Energy frontier for ~ 25 years!! - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: CDF 実験でのヒッグス粒子の研究

CDF 実験でのヒッグス粒子の研究

佐藤構二, CDF Collaboration

日本物理学会 2013年秋季大会高知大学, 2013年9月21日

1

Page 2: CDF 実験でのヒッグス粒子の研究

Tevatron Run II

collisions at s = 1.96 TeV (1.8 TeV in Run I).

Run II: Summer 2001 - Autumn 2011. Collisions at world highest

energy until Nov 2009. Energy frontier for ~ 25

years!! Two detectors (CDF and D0) for

wide range of physics studies.• Delivered: 12 fb-1.

– Recorded by CDF: 10 fb-1.– Recorded by D0: 10 fb-1.

2

Page 3: CDF 実験でのヒッグス粒子の研究

CDF and D0 Detectors• Both are multipurpose detectors:

– Top/EWK measurements, Searches for Higgs and New Phenomena, and B physics.

• Precision tracking with Silicon in 1.5 (CDF)/1.9 T (D0) Solenoid field.• EM/Had calorimeters for e/g/jet measurement.• Outer muon chambers.

CDF D0

3

Page 4: CDF 実験でのヒッグス粒子の研究

Before Tevatron Run II results (Spring 2004)

With Tevatron Run II results (Winter2013)

Constraint on Higgs Mass

Mhiggs < 152 GeV/c2 ( 95% CL) . ….was Mhiggs < 251 GeV/c2 (95% CL) in Spring 2004.

4

• Mass of W Boson (World Average):Before Tevatron Run II : mW=80.426±0.034 GeV/c2

With Tevatron Run II results : mW=80.385±0.015 GeV/c2

• Mass of Top Quark (World Average): Tevatron Run I result :    mtop = 178.0 4.3 GeV/c2

With Tevatron Run II results :     mtop = 173.2 0.9 GeV/c2

Page 5: CDF 実験でのヒッグス粒子の研究

Higgs Discovery by LHC, Summer 2012

ATLAS: 5.9 σ from Background CMS: 5.0 σ from Background

Discovery was driven by and decay modes.

5

Page 6: CDF 実験でのヒッグス粒子の研究

What We Want to Remember!!

6

TEVATRON Summer 2012: Excess at GeV/c2 mass region.3.1 σ from Background in Combination of searches for analyses.Complementary to LHC results Discovery was driven by and decay modes.

Page 7: CDF 実験でのヒッグス粒子の研究

Tevatron Winter 2013 Combination• Final full combination of Tevatron Higgs searches.• Published on Sep 17:

– CDF: Phys. Rev. D 88, 052013 (2013).– D0: Phys. Rev. D 88, 052011 (2013). – CDF&D0: Phys. Rev. D 88, 052014 (2013).

• Although we know from LHC results, we present our search results over full mass range.

• Analysis updates in a few channels since last Summer.• Studies of Higgs couplings to Fermions and Bosons.

7

Page 8: CDF 実験でのヒッグス粒子の研究

SM Higgs Production and Decay at Tevatron

Channels with best sensitivity are:

• mH<135 GeV (low mass):

– gg→H→bb is difficult to see.– Look for WH/ZH with leptonic vector boson

decays.

• mH>135 GeV (high mass):

– Easiest to look for H→WW→lnln.8

Page 9: CDF 実験でのヒッグス粒子の研究

CDF and D0 analysesChannel CDF Luminosity

fb-1D0 Lumiosity

fb-1

9.45 9.7

Z 9.45 9.7

Z 9.45 9.5

6.0 9.6 / 8.6

10.0 9.6

9.45

9.45

9.7 9.7

9.7 7.3

9.7 9.7

9.7 9.7

9.7

9.7

9.7 9

Page 10: CDF 実験でのヒッグス粒子の研究

• NN B-tagging algorithm.– Two operation points

(T/L).– Subdivision of events to

4 b-tag categories (TT/TL/Tx/LL)

• Trained 3 NN to further subdivide analysis sample.– Separate signal from ,

+jets, diboson.• Final discrimintnt NN

trained to separate signal from all backgrounds.

10Candidate event

Final Discriminant = separate Signal from all Bkgd.

NN +jets NN Diboson NN

like +jetslike

dibosonlike

signallike

CDF: Analysis

• or + 2 or 3 jets.• / trigger + MET trigger (for ’s which trigger failed to identify).

Page 11: CDF 実験でのヒッグス粒子の研究

General Strategy for Improved Sensitivity

• Utilize Multivariate Algorithms (MVA) for better S/B separation.– Neural Net, Boosted Decision Tree, Matrix Element, etc.– Training of multiple MVAs in many channels.

• Maximize trigger efficiency of each analysis.– Analysis of events through different triggers.

• Maximize acceptance of leptons.– Use isolated tracks as low quality lepton candidates.

• Improved b-tagging (low mass analyses)

– Algorithms based on MVA.• Divide analysis sample into high/low purity subsamples.

– Subdivision due to lepton and b-tag quality.

11

Page 12: CDF 実験でのヒッグス粒子の研究

History of Analysis Improvement• Tevatron analyses have been constantly improved.

– Improvement is far better than expected due to increase in data!!

12

Expected sensitivity for CDF searches:

𝒎𝑯=𝟏𝟏𝟓𝐆𝐞𝐕 /𝒄𝟐 𝒎𝑯=𝟏𝟔𝟎𝐆𝐞𝐕 /𝒄𝟐

Page 13: CDF 実験でのヒッグス粒子の研究

CDF and D0: Combined LimitCDF D0

CDF excludes (95% C.L.): 90 < mH < 102 GeV/c2

149 < mH < 172 GeV/c2

Expected exclusion (95% C.L.):90 < mH < 94, 96 < mH < 106 GeV/c2

153 < mH < 175 GeV/c2

D0 excludes (95% C.L.):

90 < mH < 101 GeV/c2

157 < mH < 178 GeV/c2

Expected exclusion (95% C.L.):155< mH < 175 GeV/c2

13

Page 14: CDF 実験でのヒッグス粒子の研究

CDF+D0 Combined Limit

Tevatron excludes:

90<mH<109, 149<mH<182 GeV/c2 Expected exclusion:

90<mH<120, 140<mH< 184 GeV/c2 14

Broad excess at 115-140 GeV/c2Corresponding to 3.0σ for mH=125 GeV/c2

Page 15: CDF 実験でのヒッグス粒子の研究

Signal Cross Section Best Fit

• for .• Consistent across different decay modes.

• Assuming the SM Higgs branching ratio:

15

• Fit separately by decay mode for :

Page 16: CDF 実験でのヒッグス粒子の研究

Studies of Higgs Couplings• Coupling scale factor w.r.t. SM:

– Kf : Fermion coupling Hff

– KW, KZ, KV : Boson couplings HWW, HZZ, HVV

• Follow prescription of LHC Higgs working group arxiv:1209.0040.

• Assume a SM-like Higgs particle of 125 GeV.

KZ

Kf

KfKW

16

Page 17: CDF 実験でのヒッグス粒子の研究

Test of Custodial Symmetry• floating.• Compute posterior probability density for

.

SM

17

Page 18: CDF 実験でのヒッグス粒子の研究

Constraint on HVV and Hff Couplings• Assuming:

• Result is consistent with SM.

• Preferred regions around

,

• Negative values preferred for due

to excess.

18

Page 19: CDF 実験でのヒッグス粒子の研究

Summary• Extensive search for Higgs boson with full Tevatron dataset.

– Analyses evolved throughout Run II.

– Excluded: 90<mH<109, 149<mH<182 GeV/c2 (95% C.L.)

• Observed a broad excess in 115<mH<140 GeV/c2.

• Higgs Mass consistent with LHC.– 3.0 standard deviations at .– Excess is shared between CDF and D0.– Excess mainly from .– for .

• Studies of Fermion and Boson couplings.– Consistent with SM expectations.– Complementary to LHC studies.

19

Page 20: CDF 実験でのヒッグス粒子の研究

Backup

20

Page 21: CDF 実験でのヒッグス粒子の研究

Distribution of the Candidate Events

Candidate events in all the combined analyses:

Data - Background

21

Page 22: CDF 実験でのヒッグス粒子の研究

P-value of the Tevatron Combination

• 3.0 standard deviations at .

22

Page 23: CDF 実験でのヒッグス粒子の研究

D0: Channel• , or pair within GeV.• BDT to reject in , events.• are considered as signal.

– Events with different jet multiplicity have different s/b composition.– Separately analyze 0, 1, ≥2 jet bins.

• Subdivision of sample into WW-enriched/depleted by WW-BDT.• Train a final BDT discriminant against all background.

Distributions of the Final discriminant (only showing channel):

23

0 jetWW-enriched

≥2 jet0 jetWW-depled

Page 24: CDF 実験でのヒッグス粒子の研究

Tevatron Combination by Channel

24

Page 25: CDF 実験でのヒッグス粒子の研究

Sensitivity of Individual Channel

25

Old plot, just for illustration purposes

Page 26: CDF 実験でのヒッグス粒子の研究

2627

HCP

Summer2012

Summer 2012

Page 27: CDF 実験でのヒッグス粒子の研究

Improved b-tagging

Light Flavor Eff.

HOBIT Eff. SecVtx Eff.(old tagger)

0.89% 42% 39%

8.9% 70% 47%

Light Flavor Eff. Lb Eff.

0.5% 50%

4.5% 70%

CDF and D0 combine information of secondary vertex and tracks within jet cone by MVA (NN and BDT).

Primary Vertex Secondary Vertex

Displaced Tracks

Jet

27

Page 28: CDF 実験でのヒッグス粒子の研究

B-jet energy correction by NN(CDF llbb channel)

Before NN Correction: After NN Correction:

28

Resolution on

Page 29: CDF 実験でのヒッグス粒子の研究

Systematics (CDF llbb channel)Source %Luminosity 6Trigger efficiency 1-5Lepton energy scale 1.5ISR/FSR 1-15B-tag efficiency 5-20Jet energy scale 5-15Signal xsec/br 5Bkgd. Normalization 6-40

29

Bkgd. Process

%

Mis-ID 504010

Diboson 6

• The effect of Jet Energy Scale on the distribution shape is also considered.

• Sysyrmstic uncertainty degrade sensitivity to ZH signal by approximately 13%.

Page 30: CDF 実験でのヒッグス粒子の研究

2013 Collected Event Distribution

Tevatron CDF D0

30

Page 31: CDF 実験でのヒッグス粒子の研究

2013 Best Fit

Tevatron

CDF D0

31

Page 32: CDF 実験でのヒッグス粒子の研究

HWW, HZZ and Hff Couplings𝑲 𝒇=𝑲 𝒁=𝟏 𝑲 𝒇=𝑲𝑾=𝟏

𝑲𝑾=𝑲 𝒁=𝟏, or

Negative values preferred for and due to excess.

32

Page 33: CDF 実験でのヒッグス粒子の研究

HWW and HZZ Couplings• floating.

• Result is consistent with SM.• Preferred region around:

33

Page 34: CDF 実験でのヒッグス粒子の研究

Limits by Experiment

D0

CDF

Page 35: CDF 実験でのヒッグス粒子の研究

CDF H->γγ

35

Page 36: CDF 実験でのヒッグス粒子の研究

Coupling Factor for

KW Kf

+

2

36

Page 37: CDF 実験でのヒッグス粒子の研究

D0 Spin and Parity Measurement• LHC results in bosonic decay modes favor .• Tevatron sensitive in decay mode.

– Visible mass of system is sensitive to assignment. - J. Ellis et al., JHEP 1211, 134 (2012)

37

Page 38: CDF 実験でのヒッグス粒子の研究

D0 Spin and Parity Measurement 2• , H1=(+bkg) / H0=(+bkg).

• Suppose excess is admixture of and particles:

Exclude at 99.9% C.L. (in favor of ).

Exclude fraction at 95% C.L (in favor of pure ).

38