cbstp adv webcast perm pavement 04april2014...

17
4/4/2014 1 Permeable Pavement Advanced Stormwater Design Webcast Series: Welcome to the Webcast To Ask a Question Submit your question in the chat box located to the left of the slides. We will answer as many as possible during Q&A. To Answer a Poll Question Simply select the preferred option. For those viewing this session alongside several colleagues, respond in a manner that represents your organization as a whole. We ARE Recording this Session All comments and questions will be recorded and included in the archives. We will notify you as soon as the recording and related resources are loaded on the web. We Appreciate Your Feedback Fill out our evaluations – our funders need to hear it! Speaker Info Kelly Lindow, CityScape Engineering, [email protected] Joe Battiata, Center for Watershed Protection, [email protected] Cecilia Lane, Chesapeake Stormwater Network, [email protected] Visit: www.chesapeakestormwater.net Chesapeake Bay Stormwater Training Partnership To learn how you can have access to: Discounted Webcasts Free One-day design workshops Intensive master stormwater design seminars Direct On-site technical assistance Self guided web-based learning modules Webcast Topics Permeable Pavement Types, Applications & Materials Performance Credits: Level 1 & 2 Design Key Design Considerations Pavement Structural and Hydrologic Design (with an example) Construction Inspection & Maintenance Resources Overview Permeable pavements are alternative paving surfaces that allow stormwater runoff to filter through voids in the pavement surface into an underlying stone reservoir, where it is temporarily stored and/or infiltrated. temporarily stored and/or infiltrated. 6

Upload: others

Post on 28-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CBSTP Adv Webcast Perm Pavement 04April2014 ver6chesapeakestormwater.net/wp-content/uploads/downloads/... · 2014-04-04 · Construction Process Poured-in-Place Poured-in-Place Hand

4/4/2014

1

Permeable Pavement

Advanced Stormwater Design Webcast Series:

Welcome to the Webcast• To Ask a Question

– Submit your question in the chat box located to the left of the slides. We will answer as many as possible during Q&A.

• To Answer a Poll Question – Simply select the preferred option. For those viewing this

session alongside several colleagues, respond in a manner g g pthat represents your organization as a whole.

• We ARE Recording this Session – All comments and questions will be recorded and included in

the archives. We will notify you as soon as the recording and related resources are loaded on the web.

• We Appreciate Your Feedback– Fill out our evaluations – our funders need to hear it!

Speaker Info

Kelly Lindow, CityScape Engineering, [email protected]

Joe Battiata, Center for Watershed Protection, [email protected]

Cecilia Lane, Chesapeake Stormwater Network, [email protected]

Visit: www.chesapeakestormwater.net

Chesapeake Bay Stormwater Training Partnership

To learn how you can have access to: Discounted Webcasts

Free One-day design workshopsIntensive master stormwater design seminars

Direct On-site technical assistance Self guided web-based learning modules

Webcast Topics

• Permeable Pavement Types, Applications & Materials

• Performance Credits: Level 1 & 2 Design

• Key Design Considerations y g

• Pavement Structural and Hydrologic Design (with an example)

• Construction

• Inspection & Maintenance

• Resources

Overview

Permeable pavements are alternative paving surfaces that allow stormwater runoff to filter through voids in the pavement surface into an underlying stone reservoir, where it is temporarily stored and/or infiltrated.temporarily stored and/or infiltrated. 

6

Page 2: CBSTP Adv Webcast Perm Pavement 04April2014 ver6chesapeakestormwater.net/wp-content/uploads/downloads/... · 2014-04-04 · Construction Process Poured-in-Place Poured-in-Place Hand

4/4/2014

2

Permeable Pavement Types

Pervious Concrete (PC)

Permeable Pavement Types

Porous Asphalt (PA)

Permeable Pavement Types 

Permeable Interlocking Concrete Pavers (PICP)

Permeable Pavement Types

Concrete Grid Pavers

Other Permeable Pavement Types

Plastic Reinforced Grid Pavers

Permeable Rubber Overlays

Pervious Pavers

ApplicationsPermeable pavements can be used in most light traffic applications as a substitute for regular pavement materials.  Certain feasibility factors may influence the design or choice of pavement material.

12

Page 3: CBSTP Adv Webcast Perm Pavement 04April2014 ver6chesapeakestormwater.net/wp-content/uploads/downloads/... · 2014-04-04 · Construction Process Poured-in-Place Poured-in-Place Hand

4/4/2014

3

• Common for low traffic applications:– Parking lots, driveways, parking strips, walkways

• Evolved to low traffic roadways, residential streets, alleys, emergency access roads. 

Speeds <35mph

Applications

– Speeds <35mph

– Light truck traffic

– Limited turning operations 

• Potential for use on highway shoulders 

• Selection of Permeable Pavement surface material:

– Scale of project

– Availability

– Site use

Permeable Pavement Types

– Aesthetics

– Construction

– Traffic loads

14

Comparative Properties of the Three Major Permeable Paver Types Design Factor Porous Concrete (PC) Porous Asphalt

(PA)Interlocking Pavers (PICP)

Scale of Application

Small and Large Scale Applications

Small and Large Scale Applications

Micro, Small and Largee Scale Applications

Construction Process

Poured-in-Place Poured-in-Place Hand or Mechanical Placement

Min. Batch Size ~500 SF None

Permeable Pavement Types

Min. Batch Size 500 SF None

Surface Thickness

5 to 8 inches 2 to 4 inches 3 1/8 inches

ConstructionCost

$ 6-10/sf $ 4-8/sf $ 5-15/sf

Longevity 20 to 30 years 15 to 20 years 20 to 30 years

Colors/Texture Limited Range of Colors and Textures

Black or Dark Grey Color Limited Range of Colors and Textures

Other Issues 7-10 day curing time 2-7 day curing time

Permeable Pavement Materials

• Materials and material specifications may vary by State

Permeable Pavement Materials

17

Permeable Pavement Materials

• Bedding/Choker Layer (stone size                          varies with pavement selection):– Used to level out surface material

– Required for PICP, Grids 

– Optional for PC and PA

– Typ. 2”‐4” of No. 8 or No. 57 stoneyp

– Washed and free of fines

• Reservoir Layer

– Provides temporary storage of infiltrated water

– Provides structural support to surface layers– No. 2, No. 3, No. 4, or No. 57 stone– Washed and free of fines

18

Page 4: CBSTP Adv Webcast Perm Pavement 04April2014 ver6chesapeakestormwater.net/wp-content/uploads/downloads/... · 2014-04-04 · Construction Process Poured-in-Place Poured-in-Place Hand

4/4/2014

4

Permeable Pavement Materials• Filter Layer (optional)

– Can be added between choker and reservoir layers to provide enhanced water quality benefit

– 4” to 6” layer of coarse sand (ASTM C 33 gradation); over a 2” to 4” layer of choker stone (No. 8)

• Underdrains (optional)P d i f h i l– Promotes drainage of the reservoir layer

– 4” to 6” perforated PVC (AASHTO M 252) pipe

– 3/8” perforations at 6 inches on center

– Minimum 0.5% slope 

– 20 feet maximum separation between pipes 

– Use non‐perforated pipe as needed when under drain extends beyond pavement section;

19

Permeable Pavement MaterialsUnderdrains

• Use Y’s as needed, with non‐perforated cleanout pipes extended to the surface with vented caps.

Observation Well

P f t d 4 t 6 i h ti l PVC i (AASHTOM 252)• Perforated 4 to 6 inch vertical PVC pipe (AASHTOM 252);

• Lockable cap, flush with the surface if in parking area, or extended above ground level and protected when adjacent. Minimum flow rate of 125 gpm/sq. ft. (ASTM D4491);

20

Permeable Pavement Materials• Geotextiles

– Typ. on sides of pavement subbase to prevent intrusion of native soils into system

– Generally not recommended above open‐graded pavement layers due to concerns over clogging

– Use along bottom of system not required, b b d b d l ibut may be warranted based on evaluation by geotechnical engineer

• Geomembrane/Impermeable Liner (optional)– Used to limited applications to inhibit 

infiltration

– 30 mil (minimum) PVC Geomembrane liner

21

State Stormwater BMP Performance Credit

State Stormwater Performance and BMP Performance Credits

• Most states established a stormwater treatment volume that must be managed by a BMP;

• The volume is computed as the amount of runoff generated by a specified rainfall depth;

• The rainfall depth is defined by each state:p y– DC, MD, NY, VA, & WV: 90th percentile rainfall depth (approximately 1 inch);

– DE: Resource Protection Event (RPE) = 2.7 inches of rainfall. 

• Designers should consult the individual state design criteria for guidance on computing the required runoff volume. 

23

State Stormwater Performance and BMP Performance Credits

• Stormwater practice sizing provides for the storage or retention of the design stormwater treatment volume;

• Stormwater Practice design may include both g yretention and storage volume: 

– Storage when an underdrain (UD) is used to dewater the practice;

– Retention when native soils are sufficiently permeable to infiltrate.

24

Page 5: CBSTP Adv Webcast Perm Pavement 04April2014 ver6chesapeakestormwater.net/wp-content/uploads/downloads/... · 2014-04-04 · Construction Process Poured-in-Place Poured-in-Place Hand

4/4/2014

5

State Stormwater Performance Standards

State Regulatory Performance Standard1 BMP Performance Credit1

DC On‐site retention of runoff from 1.2” rainfall Runoff Volume reduction

DE Zero effective impervious for 2.7” rainfall (Resource Protection Event , RPE)

Runoff Volume Reduction

MD On‐site retention using ESD of runoff from 1.0” rainfall 

Runoff Volume Reduction OR Impervious CN Reduction

f ff f th ff l dNY On‐site retention  of runoff from 90th

percentile rainfall (~ 1”) Runoff Volume Reduction

VA Total Phosphorus Load Limit of 0.41 lbs/ac/yr(performance based on management of runoff from 1.0” rainfall)

Total TP Load Reduction(Runoff Volume + Pollutant Removal)

WV  On‐site retention of runoff from 1.0” rainfall Runoff Volume Reduction

25

1Some states may include watershed specific pollutant load reduction requirements for select parameters, e.g., TP or TSS, in addition to volume reduction.  

Different Levels of BMP DesignLevel 1 (standard) Level 2 (enhanced)

Good design to provide:• Treatment; • Safety;• Long‐term functionality (maintenance)

Includes additional design enhancementsfor runoff reduction and/or pollutant removal:• Size (treatment volume storage);• Retention (infiltration) storage

26

Photo: Lake George Association, NY Image: The Huletts Current, Lake George, NY

State Stormwater Performance and BMP Performance Credits

• The design is considered a standard (or Level 1) design when equipped with an underdrain at bottom of reservoir; or

• The design is an enhanced (or Level 2) designThe design is an enhanced (or Level 2) design when designed to infiltration or equipped with other design features that increase performance.  

– Infiltration/storage sump beneath underdrain invert

– 48 hour drawdown time, regulated by a control structure

– Use of filter layer

27

Typical Section (Level 1/Standard)

Underdrain at reservoir bottom; minimal infiltration

28

• (Dry) storage:

– May allow for a partial runoff reduction credit;

– Pollutant removal credit; and  

– Large storm volume and/or peak rate credit 

Retention storage:– Runoff reduction credit; Pollutant removal credit

Typical Sections (Level 2/Enhanced)

Full Infiltration ‐ No Underdrain

– Pollutant removal credit; and

– Large storm volume and/or peak rate credit.

29

Partial Infiltration – Underdrain with infiltration sump

Level 1 & Level 2 Design

Maximum depth of stone reservoir:  Infiltration Sump

• A combination of standard and Enhanced (or Level 1 and Level 2) design includes:

– a stone reservoir storage volume drained by an underdrain; and 

a stone reservoir infiltration sump (retention)– a stone reservoir infiltration sump (retention)

30

Underdrain (UD) 

infiltration sump

Stone reservoir storage

Page 6: CBSTP Adv Webcast Perm Pavement 04April2014 ver6chesapeakestormwater.net/wp-content/uploads/downloads/... · 2014-04-04 · Construction Process Poured-in-Place Poured-in-Place Hand

4/4/2014

6

Design Modifications

• An ‘upturned elbow’ or elevated outflow invert to create an infiltration sump 

• 48 hour drawdown time for WQ storm, regulated by a control structure

• Addition of a filter layer

Orifice control

Additional design configurations may include:

• An overflow perforated pipe at the top of the stone storage; 

• Additional stone, perforated pipes, arch chambers, etc., for channel or flood protection

Overflow

Design Modifications

32

Permeable Pavement (PP) Performance Credit

State Level 1 Level 2

DC Volume reduction = 4.5ft3/100ft2 of PP (Sv)

Volume reduction = 100% of Retention Storage (Sv) (Infiltration) or when using UD & Infiltration Sump: 100% of Sv in sump + 4.5ft3/100ft2 of PP

DE Volume Reduction = 100% of Retention Storage (infiltration) or when using UD & infiltration sump = 100% of storage below UD (RPv)

MD CN Reduction: CN for PP area reduced based on depth of sub‐base 

NY Volume Reduction = 100% of Retention Storage (infiltration) (WQv)

VA Volume Reduction = 45%TP Reduction = 25%Total TP Reduction = 59% 

Volume Reduction = 75%TP Reduction = 25%Total TP Reduction = 81%

WV Volume Reduction = 45% Tv Volume reduction = 100% of Retention Storage (Tv) (infiltration) or when using UD & Infiltration Sump = 100% of storage in sump + 45% of storage above UD

33

UD = Under drain

Q & A

Key Design Considerations Design Considerations

Available Space:

• Permeable pavements do not require additional SWM footprint and can be applied in urban and ultra‐urban sites in lieu of traditional pavementtraditional pavement

• May require a setback from structures or water supply or septic systems  

36

Page 7: CBSTP Adv Webcast Perm Pavement 04April2014 ver6chesapeakestormwater.net/wp-content/uploads/downloads/... · 2014-04-04 · Construction Process Poured-in-Place Poured-in-Place Hand

4/4/2014

7

Design ConsiderationsSoils:

• Full infiltration designs require permeable soils (typical required infiltration rate (f) = 0.52”/hr minimum, or with a factor of safety, f = 1”/hr)– Designers should evaluate existing soil properties during initial site 

layout. In particular, areas of HSG A or B soils should be considered as primary locations for all types of infiltrationprimary locations for all types of infiltration.

• Research indicates that permeable pavements and underlying stone reservoir provide a runoff reduction benefit even when equipped with an underdrain (CWP 2008)– The bottom of the sub‐base below the underdrain should be level to 

encourage infiltration. 

– Storage (partial‐infiltration) designs may still receive a runoff reduction credit (VA, DC, WV, DE) 

37

Soils: (continued)

• Use of an impermeable liner (“no‐infiltration” designs) generally recommended for systems:

– Located in karst topography

– Over expansive soils or poorly compacted                                        

Design Considerations

Over expansive soils or poorly compacted                                        fill soils that have unacceptable stability                                 when exposed to infiltrating water

– In close proximity to building foundations, basements, water supply wells

– Within 2′ of high groundwater table

Design ConsiderationsSoils: (continued)

• Structural strength of the underlying soils should be evaluated and, combined with the pavement and sub‐base design, capable of bearing the anticipated vehicle loads.bearing the anticipated vehicle loads. 

39

Design Considerations

Land Use (Urban Hot Spots):

• Permeable pavement should not                                                 be used on sites that are                                                      considered Hotspots – sites that                                               generate higher concentrations                                                       of hydrocarbons, metals, or                                                     other parameters than are found in typical runoff;

• Some states will provide a published list of industrial codes or land uses that are restricted as hotspots;

40

Design ConsiderationsLand Use: (continued)

• Permeable pavement is not intended to treat sites with high sediment or trash/debris loads;

• Large pervious areas (newly established landscaping t f) b id d hi h l di d h ld bor turf) can be considered high loading and should be 

diverted around permeable pavements; if unavoidable, pretreatment measures should be employed. 

41

Design Considerations

External Drainage Area:• The maximum allowable external drainage areas is limited 

to a ratio with the area of permeable pavement (refer to state guidelines); 

• In all cases external

42

• In all cases, external drainage areas should be limited to impervious surfaces to reduce potential sediment loading

Page 8: CBSTP Adv Webcast Perm Pavement 04April2014 ver6chesapeakestormwater.net/wp-content/uploads/downloads/... · 2014-04-04 · Construction Process Poured-in-Place Poured-in-Place Hand

4/4/2014

8

Design Considerations

External Drainage Area: (continued)• ‘Run on’ from pervious (landscaped) areas or tree canopy 

may require more frequent routine or seasonal maintenance

• Pretreatment can include a low‐maintenance (minimal (grass cutting or use of other vegetation) along the edge between landscaped area and permeable pavers 

Design Considerations

Topography:• Permeable pavement surface slope should be less than 3 to 

5% in order to enhance percolation through the pavement surface and reduce potential shifting of surface or base materials (refer to State guidelines);

• Terraced designs can be used to accommodate steep sites (ensuring that runoff does not flow out of the pavement surface in lower terraces)

44

Design Considerations

Depth to Groundwater Table:

• Typical vertical distance from the bottom of most practices to the groundwater (seasonal high water table) is 2 feet;

• This separation distance may be reduced with design elements such as a liner, or a detailed subsurface investigation; 

45

Coastal Applications:

• Properly designed and installed permeable pavement systems can work effectively in the coastal plain, if the following conditions are met:

– Distance to the top of the water 

Design Considerations

table is at least 2 feet.

– Minimum 0.5% slope on                                                              underdrain to ensure proper drainage.

46

Durability:• Recommend rigid edge restraints to 

prevent surface fracturing

• Use impermeable liner or deep edge restraint to prevent horizontal movement of water beneath any

Design Considerations

movement of water beneath any abutting standard pavement section

• Avoid use of permeable pavement in areas with repetitive turning

• Ensure proper mixtures and curing times for PA and PC

Climate Considerations:• Numerous success stories in cold climates

– Porosity of base materials allow accommodate expansion of water without cracking

– Infiltration of snowmelt during warm days. No ponding and refreezing on surface

Design Considerations

• Cold climate recommendations– Avoid use of sand on pavement surface– May need to limit use of deicers on pervious concrete (particularly during first year)

– Limit placement of PC/PA during                                      cold or hot weather

Page 9: CBSTP Adv Webcast Perm Pavement 04April2014 ver6chesapeakestormwater.net/wp-content/uploads/downloads/... · 2014-04-04 · Construction Process Poured-in-Place Poured-in-Place Hand

4/4/2014

9

Permeable Pavement Retrofits:• Ultra Urban: Alleys and Parking strips

• Look for repaving/pavement replacement opportunities

Design Considerations

City of Chicago: Streetscape and Sustainable Design Program

Use of Recycled Concrete for Base layers:

• Can be used, provided they are carefully analyzed and tested to ensure that aggregate is:– structurally sufficient

– clean of fines (to prevent subbase clogging)

Design Considerations

– and properly placed to prevent piping through the system

• Designers should be aware that the pH of the drainage may be raised due to the concrete material

• May result in higher project costs

Permeable Pavement Design Permeable Pavement Design

1. Structural Design

2. Hydraulic Design

– Infiltration & Infiltration Sump

O fl– Overflow

– Detention storage

Permeable Pavement Design

Pavement surface material:

Different pavement materials may dictate different design considerations:

• Surface material thickness

L d b i it d l it (d i lif )• Load bearing capacity and longevity (design life)

• Bedding material design (materials, depth, capacity, etc.)

• Maintenance

• Optimal scale of application

53

Design Factor  Porous Concrete (PC)

Porous Asphalt 

(PA)

Interlocking Pavers (PICP)

Scale of Application

Small and Large Scale Applications

Small and Large Scale  Applications

Micro, Small and Large Scale Applications

Paver Thickness 1 5 to 8 inches 3 to 4 inches 3 inches

Permeable Pavement Design 

Comparative Properties of Permeable Pavement Material 

Design Permeability 

10 feet/day 6 feet/day 2 feet/day 

Min Batch Size ~ 500 sf NA

Longevity   20 to 30 years 15 to 20 years 20 to 30 years

Traffic LoadsVariable designs for any load conditions

Variable designs for any load conditions

Variable designs for any load conditions

1 Individual designs may depart from these typical properties

54

Page 10: CBSTP Adv Webcast Perm Pavement 04April2014 ver6chesapeakestormwater.net/wp-content/uploads/downloads/... · 2014-04-04 · Construction Process Poured-in-Place Poured-in-Place Hand

4/4/2014

10

Structural Design• The thickness of the permeable pavement and reservoir layer must be sized to support structural loads.

• Four primary design elements: 

– Anticipated traffic loads

– Underlying soil properties

– Environmental/climate factors

– Surface, bedding, and reservoir strength coefficients and layer thicknesses

• Strength coefficients vary for materials used

55

Structural Design

• Structural design often based on 1993 AASHTO Guide for Design of Pavement Structures (Flexible Pavement Design) • AASHTO Supplement to the Guide for Design of Pavement 

Structures (1998).

• Designers should consult manufacturer and industry references for structural design requirements of surface material selected

56

Structural Design

• Traffic load bearing capacity of permeable pavement systems can be increased

– Increase base thickness

Increase surface thickness (PC and PA)– Increase surface thickness (PC and PA)

– Use fiber additives in PC and PA surface mixtures to increase strength

Structural DesignSoil Strength:  If underlying soils have a low California Bearing Ratio (CBR) (less than 4%), they may need to be compacted to at least 95% of the Standard Proctor Density.

– Compaction generally limits the use of infiltration;

– Underlying soils may need to be

58

– Underlying soils may need to be excavated and replaced to increase structural capacity.

• Geo‐grids or other materials can improve structural strength of underlying soil.– Reinforces and confines fill materials and distributes loads

Hydrologic Design

• Consideration given to the following variables

– Design storm, rainfall depth

– Run‐on from surrounding areas

– Underlying soil infiltration rate

Base thickness and storage capacity– Base thickness and storage capacity

– Pavement outflow

• Presence or lack of underdrains 

59

Source: VHB/Vanasse Hangen Brustlin, Inc. 2013

Hydraulic Design

60

Page 11: CBSTP Adv Webcast Perm Pavement 04April2014 ver6chesapeakestormwater.net/wp-content/uploads/downloads/... · 2014-04-04 · Construction Process Poured-in-Place Poured-in-Place Hand

4/4/2014

11

Hydraulic Design Hydraulic Design

62

Hydraulic Design

63

BAE Stormwater Engineering Group

Hydraulic Design

64

• Virginia allows a ratio of 2.5:1 (drive aisle and opposite parking space) 

• DE allows a ratio of 5:1

Hydraulic Design

65

Hydraulic Design

66

Consult state guidelines to verify the applicable rules for designing the minimum required depth of the stone reservoir.

Page 12: CBSTP Adv Webcast Perm Pavement 04April2014 ver6chesapeakestormwater.net/wp-content/uploads/downloads/... · 2014-04-04 · Construction Process Poured-in-Place Poured-in-Place Hand

4/4/2014

12

Design Example• 3 acre commercial development; 1.4 acres of parking

• 3 sub‐areas of parking lot: 0.47 acres each;

• Typical drainage in each sub‐area : upper parking spaces and drive aisle drain to lower parking spaces configured with permeable pavement

67

18’

24’

18’

38 parking spaces @ 9’ = 342’

Design Example

68

Design Example

69

Hydraulic Design

70

Design Example

71

Page 13: CBSTP Adv Webcast Perm Pavement 04April2014 ver6chesapeakestormwater.net/wp-content/uploads/downloads/... · 2014-04-04 · Construction Process Poured-in-Place Poured-in-Place Hand

4/4/2014

13

Construction

Qualified Contractors

Construction

Sequence of Construction:

• Areas of proposed PP should generally not be used for sediment controls unless removal includes over‐excavating below sediment elevations;

• If possible, areas of proposed PP should be clearly marked prior to construction to avoid unnecessary construction traffic or stockpiling of material; 

• All areas adjacent to the PP surface must be stabilized or the PP area must be fully protected from ‘run‐on’;

74

BAE Stormwater Engineering Group

Source: Bill Hunt, NCSU75

ConstructionCritical Stages of Construction:

• Excavate storage reservoir to proper depth; 

• Bottom should be scarified to promote infiltration. 

76

Construction Inspection: Certification of Excavation 

ConstructionCritical Stages of Construction: (continued):

• Placement of filter layer (if applicable): 2 to 4” layer choker stone, e.g., No. 8 stone covered with 6 to 8” coarse sand, e.g., ASTM C33; or

Pl t f b

77

Construction Inspection: Certification of Filter Layer 

• Placement of base layer (2 to 3 inches No. 57) with underdrain  

ConstructionCritical Stages of Construction: (continued):

• Placement of stone reservoir, e.g., No. 57, 2, 3, or 4 stone, in 6 inch lifts; 

• Compact (or settle) stone with a vibratory roller in static mode or plate compactorroller in static mode or plate compactor

78

Construction Inspection: Certification of Filter Layer 

Page 14: CBSTP Adv Webcast Perm Pavement 04April2014 ver6chesapeakestormwater.net/wp-content/uploads/downloads/... · 2014-04-04 · Construction Process Poured-in-Place Poured-in-Place Hand

4/4/2014

14

ConstructionCritical stages of Construction (continued):

Construction Inspection: Certification of        Stone Placement, bedding layer, and Drainage Connections 

79

ConstructionCritical stages of Construction (continued):

Construction Inspection: Certification of placement of pavement materials (includes contractor or supplier certification of concrete or asphalt mix as meeting specifications)asphalt mix as meeting specifications)

80

Construction

Density testing requirements for PA and PC• ASTM C 1688 may be used to test the materials and mixtures 

for pervious concrete in the lab or manufacturing plant, but is not used in the field to test voids and density of the placed pavements. 

• Equivalent tests for porous asphalt include AASHTO T164 (binder content) ASTM D6752 (Air void content) ASTM(binder content), ASTM D6752 (Air void content), ASTM D6390 (Draindown, AAHTO 283 (retained tensile strength) and ASTM D7064‐04 (Cantabro abrasion test).  

• These tests are generally applied to the job mix formula and are submitted as part of the submittals and approvals. For larger jobs they are submitted as QA/QC measure from cores taken in place.

• Currently, there are no in‐place testing procedures for permeable pavements

Permeable Pavement Inspection & Maintenance 

Maintenance Inspections

• Measure drawdown at observation well for consecutive days after storm event;

• Inspect pavement surface for sediment deposition, organic debris, staining, or other evidence of ponding or clogging;

• Inspect pavement surface for evidence of structural failures or p psurface deterioration (spalling, cracking, etc.);

• Inspect control structure or outlet conduits for structural condition and debris accumulation;

• Inspect observation wells, cleanouts, and caps;

• Inspect upstream ‘run‐on’ drainage areas for excessive debris or sediment.  

83

Maintenance

Preventive Operational Guidelines:

• No winter sanding;

• No re‐sealing or resurfacing;

• No power washing;

• No storage of mulch or other materials;• No storage of mulch or other materials;

• No piling of snow;

• Proper sequence of construction:– Stabilize site 

– No Construction traffic

– No staging of construction materials

84

Page 15: CBSTP Adv Webcast Perm Pavement 04April2014 ver6chesapeakestormwater.net/wp-content/uploads/downloads/... · 2014-04-04 · Construction Process Poured-in-Place Poured-in-Place Hand

4/4/2014

15

MaintenancePreventive Maintenance Tasks:

• Frequent inspections during first 6 to 12 months after installation to ensure adjacent areas are stabilizing and there are no defects in the pavement materials;

• Periodic sweeping  (1 to 2 times/year) with standard street sweeper or cleaning with high powered blower to prevent clogging; 

• Sweeping as soon as possible after any clogging is observed using regenerative‐air sweeper; 

85

Maintenance

Maintenance Tasks (continued):

• Annual (or as needed depending on traffic loads and use) sweeping with regenerative‐air sweeper. 

86

Pavement Repairs• PA and PC:

– The pavement surface can be saw cut (similar to standard pavement) 

– To repair the surface, the pavement will need to be repoured from a new mixed batch.

• For paver systems (PICP or grid pavers):– Blocks or grids can be lifted up in isolated areas where needed

– These pavers are then simply replaced after utility placement. 

Take Home Points• Infiltration designs reduce more runoff than underdrain designs

• Gravel Sumps – even in marginal soils – are effective at reducing runoff volume

• Permeable Pavements can be cost and performance• Permeable Pavements can be cost ‐ and performance ‐ effective BMPs for stormwater management

• Many recent innovations in design applications

• Need to ensure proper design, construction and maintenance to realize long‐term performance benefits

88

Where To Find Design Resources: Bay wide

• Design Guidance for Karst, Coastal, Urban/Redevelopment: Chesapeake Stormwater Network, Technical Bulletins: http://chesapeakestormwater.net/category/publications/csn‐technical‐bulletins/

• ASCE e‐book publication

• Objectives

– Document current data

– Define and respond to concerns

Coming Soon Permeable Pavements: Recommended Design Guidelines

– Outline best practices

– Provide guidance, resources and references

– Checklists, standards, specifications, and modeling methods

– Identify needs for more information

Page 16: CBSTP Adv Webcast Perm Pavement 04April2014 ver6chesapeakestormwater.net/wp-content/uploads/downloads/... · 2014-04-04 · Construction Process Poured-in-Place Poured-in-Place Hand

4/4/2014

16

Where To Find Design Resources: Virginia

• Laws, Regulations, Permits: Virginia Dept. of Environmental Quality, Stormwater: http://www.deq.virginia.gov/Programs/Water/StormwaterManagement.aspx

• BMP Specifications: Virginia Stormwater BMP Clearinghouse, Non‐Proprietary (Permeable Pavement = Specification #7): http://vwrrc.vt.edu/swc/NonProprietaryBMPs.html

Where To Find Design Resources: West Virginia

• Laws, Regulations, Permits: West Virginia Dept. of Environmental Protection: http://www.dep.wv.gov/WWE/Programs/stormwater/Pages/sw_home.aspx

BMP S ifi ti W t Vi i i St t• BMP Specifications: West Virginia Stormwater Management & Design Guidance Manual (Permeable Pavement = Specification 4.2.4): http://www.dep.wv.gov/WWE/Programs/stormwater/MS4/Pages/StormwaterManagementDesignandGuidanceManual.aspx

Where To Find Design Resources: D.C.

• Stormwater Rule: District Department of the Environment: http://ddoe.dc.gov/node/610592

• BMP Specifications: D.C. Stormwater Management Guidebook (Permeable Pavement = SpecificationGuidebook (Permeable Pavement = Specification 3.5): http://ddoe.dc.gov/node/610622

Where To Find Design Resources: Delaware

• Laws, Regulations, Permits: Department of Natural Resources & Environmental Control: http://www.dnrec.delaware.gov/swc/pages/sedimentstormwater.aspx

• BMP Specifications: Sediment & Stormwater Technical Document (Permeable Pavement = Appendix 3.06.2.3): http://www.dnrec.delaware.gov/swc/Drainage/Pages/Technical_document.aspx

Where To Find Design Resources: Maryland

• Laws, Regulations, Permits: Department of the Environment: http://www.mde.maryland.gov/programs/Water/StormwaterManagementProgram/SedimentandStormwaterHome/Pages/Programs/WaterPrograms/SedimentandStormwater/home/index.aspx

• BMP Specifications: Maryland Stormwater Design Manual (Chapter 5 Section 5.3 Alternative Surfaces: Permeable Pavements A‐2): http://www.mde.maryland.gov/programs/Water/StormwaterManagementProgram/MarylandStormwaterDesignManual/Pages/Programs/WaterPrograms/SedimentandStormwater/stormwater_design/index.aspx

Where To Find Design Resources: Pennsylvania

• Laws, Regulations, Permits: PA Department of Environmental Protection: http://www.portal.state.pa.us/portal/server.pt/community/stormwater_management/21377

• BMP Specifications: PA Stormwater Best Management Practices Manual (Chapter 6.4, Permeable Pavement: BMP 6.4.1): http://www.portal.state.pa.us/portal/server.pt/community/best_management_practices_manual/21383

Page 17: CBSTP Adv Webcast Perm Pavement 04April2014 ver6chesapeakestormwater.net/wp-content/uploads/downloads/... · 2014-04-04 · Construction Process Poured-in-Place Poured-in-Place Hand

4/4/2014

17

Where To Find Design Resources: New York

• Laws, Regulations, Permits: NY Department of Environmental Conservation: http://www.dec.ny.gov/chemical/8468.html

• BMP Specifications: NY State StormwaterBMP Specifications: NY State Stormwater Management Design Manual Chapter 5.3: Green Infrastructure Techniques‐Permeable Pavements (5.3.11): http://www.dec.ny.gov/chemical/29072.html

CSN’s 2014 Webcast SeriesNo. Date Series Topic

2 March 27 Advanced Stormwater Design Bioretention & Dry Swales

3 April 3 Advanced Stormwater Design Permeable Pavement

4 April 24 MS4 Implementers and the Bay TMDL

Stream Restoration

5 May 1 Advanced Stormwater Design Infiltration

6 May 8 MS4 Implementers and the Bay TMDL

Urban Nutrient Management

7 M 29 Ad d S D i Th R l Di ! (S il d S il 7 May 29 Advanced Stormwater Design The Real Dirt! (Soils and Soil Amendments)

8 June 5 Advanced Stormwater Design Constructed Wetlands

9 June 12 Advanced Stormwater Design Rainwater Harvesting

10 June 19 MS4 Implementers and the Bay TMDL

TBD

11 June 26 Advanced Stormwater Design Grass Channels, Filter Strips & Disconnections

http://chesapeakestormwater.net/events/categories/2014-webcast-series/

Webcast Resources• Virginia’s Stormwater Design Specification No 7: Permeable

Pavement

• UNHSC Design Specifications for Porous Asphalt Pavement and Infiltration Beds

• Water Quality and Hydrologic Performance of a Porous A h lt P t St t T t t St t i Asphalt Pavement as a Stormwater Treatment Strategy in a Cold Climate

• Winter Maintenance fact sheet from UNHSC

• National Guidance on Permeable Pavement Design (ASCE) –coming soon!!

www.chesapeakestormwater.net

Please take a few moments to answer our 6 question survey to help us better serve your

needs in our 2014 webcast series.

Evaluation

htt // k / /GNNKDLN

We use this information to report it to assess our work, your needs and to report it to our

funders for future webcasts !

https://www.surveymonkey.com/s/GNNKDLN

Q & A

101