catalyst: the immuno‐oncology revolution continues: a 3d view

19
CATALYST: The Immuno‐oncology Revolution Continues: A 3D View Chapter 2: Mechanisms of Immune Escape Jason Luke, MD, FACP Assistant Professor of Medicine The University of Chicago Medicine & Biological Sciences Chicago, IL

Upload: others

Post on 28-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CATALYST: The Immuno‐oncology Revolution Continues: A 3D View

CATALYST: The Immuno‐oncology Revolution Continues: A 3D ViewChapter 2: Mechanisms of Immune Escape

Jason Luke, MD, FACPAssistant Professor of Medicine

The University of ChicagoMedicine & Biological Sciences

Chicago, IL

Page 2: CATALYST: The Immuno‐oncology Revolution Continues: A 3D View

Disclosures• Consultancy: 

– 7 Hills, Actym, Amgen, Array, AstraZeneca, BeneVir, Bristol‐Myers Squibb, Castle, CheckMate, EMD Serono, Gilead, Janssen, Merck, NewLink, Nimbus, Novartis, Palleon, Syndax, Tempest, WntRx

• Research Support to Institution:– AbbVie, Array, Boston Biomedical, Bristol‐Myers Squibb, Celldex, CheckMate, Corvus, Delcath, Five Prime, Genentech, Immunocore, Incyte, Intensity, MedImmune, Macrogenics, Novartis, Palleon, Pharmacyclics, Merck, Tesaro

This activity is supported by an educational grant from Bristol‐Myers Squibb.

Page 3: CATALYST: The Immuno‐oncology Revolution Continues: A 3D View

Learning Objectives 

• Discuss the pathophysiology of adult malignancies with a focus on tumor immunosurveillance and immune evasion

• Describe immune pathways that may be targeted to overcome immune‐evasion mechanisms and emerging clinical data on novel immuno‐oncology agents

• Review significant advances and unmet medical needs associated with currently available immuno‐oncology therapies including innate and adaptive resistance mechanisms (e.g., T‐cell exhaustion)

Page 4: CATALYST: The Immuno‐oncology Revolution Continues: A 3D View

The Cancer Immunogram

LDH =  Lactate dehydrogenase; CRP = C‐reactive protein. Blank CU et al. Science.  2016;352:658‐660. Pitt JM et al. Immunity. 2016;44:1255‐1269.

Tumor sensitivityto immune effectorsMHC expression,IFN‐γ sensitivity

General immune statusLymphocyte count

Tumor foreignnessMutational load

Immune cell infiltrationIntratumoral 

T cells

Absence of checkpointsPD‐L1

Absence of soluble inhibitorsIL‐6, CRP

Absence of inhibitory tumor metabolism

LDH, glucose utilization

Page 5: CATALYST: The Immuno‐oncology Revolution Continues: A 3D View

• Cancers cells express neo‐antigens; often recognized by the immune system

• Immune evasion mechanisms are prominent in tumors in which a host immune response has been generated

• Can be cancer‐cell intrinsic or extrinsic• Intrinsic immune evasion mechanisms:

• Loss or down‐regulated antigen‐presentation machinery

• PD‐L1 upregulation• Poor T cell co‐stimulation• Loss of class I molecules

• Extrinsic immune evasion mechanisms:• Recruitment of immune suppressive 

cell populations (TAM, MDSC, Tregs)• Inhibitory enzymes (IDO, arginase) 

and cytokines (IL‐10, TGF‐b)

Tumors Activate Immune Escape Mechanisms

IDO = Indoleamine 2,3‐dioxygenase; TAM = tumor‐associated macrophage; MDSC = myeloid‐derived suppressor cell.

Page 6: CATALYST: The Immuno‐oncology Revolution Continues: A 3D View

Please put on your 3D glasses

Page 7: CATALYST: The Immuno‐oncology Revolution Continues: A 3D View

Mechanisms of Immune Escape3D Video

Page 8: CATALYST: The Immuno‐oncology Revolution Continues: A 3D View

The Tumor Immunity Continuum 

Hegde PS et al. Clin Cancer Res. 2016;22:1865‐1874.

Inflamed Non‐inflamed

Preexisting immunity Immunologically ignorantExcluded infiltrate

Mutational load

Respond favorably tocheckpoint inhibition

Convert to inflamed phenotype with combinations

AngiogenesisReactive stroma

MDSCsProliferating

tumorsLow MHCclass I

TILsCB8 T cells/IFNγ

PD‐L1/checkpoints

MDSC = myeloid‐derived suppressor cell; MHC = Major histocompatibility complex.

Page 9: CATALYST: The Immuno‐oncology Revolution Continues: A 3D View

Noninflamed Tumor Phenotype

• Poor effector cell trafficking due to:

• High expression of vascular markers, macrophages, fibroblasts

• Low inflammation and chemokineexpression, few lymphocytes

Gajewski, et al. Curr Opin Immunol. 2011;23:286‐292.

Page 10: CATALYST: The Immuno‐oncology Revolution Continues: A 3D View

Inflamed Tumor Phenotype

• T cell recruitment • High levels of innate immune signals

• Chemokine expression

• Nevertheless, negative immune regulators dominate

CytotoxicT cell

Gajewski, et al. Curr Opin Immunol. 2011;23:286‐292.

Page 11: CATALYST: The Immuno‐oncology Revolution Continues: A 3D View

Eliciting Anti‐Tumor Immunity in “T Cell‐Inflamed” vs “Non‐Inflamed” Cancers

Sharma P, et al. Science. 2015;348:56‐61.

Page 12: CATALYST: The Immuno‐oncology Revolution Continues: A 3D View

Cancer Immunity: A Balancing Act

Immune Escape:• Antigen Presentation

• Loss of antigen (immune‐editing), • HLA

• Immune Checkpoints• PD1/PD‐L1• CTLA4• TIM3 and others

• Cytokines: TGF‐β, IL‐4, IL‐6• Immunosuppressive 

microenvironment: IDO• Cellular Immune Escape

• T‐regs, M2 macrophages, MDSCs; T‐cell anergy

Immune Surveillance:• Immune system recognizes 

malignant cells

IDO = Indoleamine 2,3‐dioxygenase; HLA = human leukocyte antigens; PD‐L1 =  Programmed death ligand; CTLA4 = cytotoxic T‐lymphocyte protein 4; TIM3 =  T‐cell immunoglobulin and mucin‐domain containing‐3

Page 13: CATALYST: The Immuno‐oncology Revolution Continues: A 3D View

Stratification Based on Microenvironment

O’Donnell JS et al. Nat Rev Clin Oncol.  2019;16;151‐67.

Page 14: CATALYST: The Immuno‐oncology Revolution Continues: A 3D View

PD-L1 upregulation is driven by IFN- from T cells infiltrating solid tumors

Daud A et al. ASCO 2015; 2. Garon EB et al. ESMO 2014; 3. Seiwert T et al. ASCO 2015; 4. Plimack E et al. ASCO 2015;  5. Nanda R et al. SABCS 2014; 6. Bang YJ et al. ASCO 2015 ; 7. Moskowitz C et al. ASH 2014; 8. Zinzani PL et al. ASH 2015; 9. Alley EA et al. AACR 2015; 10. Varga A et al. ASCO 2015; 11. Ott PA et al. 2015 ASCO; 12. Doi T et al. ASCO 2015; 13. Hsu C et al. ECC 2015; 14. Ott PA et al. ECC 2015; 15. Bang Y‐J et al. ECC 2015; 16. O’Neil B et al. ECC 2015; 17. Rugo HS et al. SABCS 2015;18. Frenel JS et al. ASCO 2016; 19. Mehnert JM et al. ASCO 2016; 20. Cohen R et al. ASCO 

PD‐1/PD‐L1 Pathway: A Dominant Immune Escape Pathway in Human Cancer

TCR = T‐cell receptor; MHC = major histocompatibility complex; STAT = Signal transducer and activator of transcription.

Page 15: CATALYST: The Immuno‐oncology Revolution Continues: A 3D View

Inhibition of T lymphocytes

Normal Function of Immune Checkpoints: CTLA4, PD1, and PD‐L1

Sharma P et al. Nat Rev Cancer. 2011;11:805‐812.

T cell T cellAPC APCAntigenTCR

TCRAntigen

CD‐28

CD‐28

B7

Activation of T lymphocytes

CTLA = cytotoxic T‐lymphocyte antigen; PD‐L = PD ligand; TCR = T‐cell receptor; MHC = major histocompatibility complex. 

Page 16: CATALYST: The Immuno‐oncology Revolution Continues: A 3D View

PD‐1

PD‐L1

Immune Checkpoint Inhibitors Mechanism of Action

Proliferation

Cytokines(IFN‐g)Cytotoxicity

Exhausted T cellImmune response

APCTumor cell

Page 17: CATALYST: The Immuno‐oncology Revolution Continues: A 3D View

Proliferation

Cytokines(IFN‐g)Cytotoxicity

Reinvigorated T cellImmune response

APCTumor cell

PD‐1

PD‐L1

TCR

MHC

Immune Checkpoint InhibitorsMechanism of Action (continued)

Page 18: CATALYST: The Immuno‐oncology Revolution Continues: A 3D View

Summary

• Immunotherapy response is impacted by factors related to the tumor, the host/patient, and the microenvironment

• Mechanisms of immune escape/resistance can be stratified by the T‐cell inflamed and non‐T‐cell inflamed tumor microenvironment

• Immune checkpoint inhibitors generally take advantage of pre‐existing immune response in the context of T‐cell inflammation 

Page 19: CATALYST: The Immuno‐oncology Revolution Continues: A 3D View

UP NEXT:  CHAPTER 3

CATALYST: The Immuno‐oncology Revolution Continues: A 3D View

Chapter 3: Resistance or Non‐Response to Treatment

Mario Sznol, MDProfessor of Medicine (Medical Oncology)

Co‐Director, Cancer Immunology Program at Yale Cancer CenterCo‐Director, Yale SPORE in Skin Cancer

New Haven, CT