casimir e ect and boundary quantum eld theories zolt an bajnokbajnok.web.elte.hu/miami.pdfzolt an...

89
University of Miami, Miami, 19th of October, 2011 Casimir effect and boundary quantum field theories Zolt´ an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest in collaboration with L. Palla and G. Tak´ acs F (L) A = - dE 0 (L) AdL = - ~2 240L 4 Planar Casimir energy E 0 (L) from finite size effects in (integrable) boundary QFT 1

Upload: others

Post on 06-Mar-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

University of Miami, Miami, 19th of October, 2011

Casimir effect and boundary quantum field theoriesZoltan Bajnok,

Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

in collaboration with L. Palla and G. Takacs

F (L)A = −dE0(L)

AdL = − ~cπ2

240L4

Planar Casimir energy E0(L) from finite size effects in (integrable) boundary QFT

1

Page 2: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Motivation: Casimir-Polder effect

Hendrik Casimir Dirk Poldercolloidal solution: neutral atoms

force not like Van der WaalsF (L)A = − ~cπ2

240L4

not a theoretical curiosity!

2

Page 3: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Motivation: Casimir-Polder effect

Hendrik Casimir Dirk Poldercolloidal solution: neutral atoms

force not like Van der WaalsF (L)A = − ~cπ2

240L4

not a theoretical curiosity! Gecko legs

Page 4: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Motivation: Casimir-Polder effect

Hendrik Casimir Dirk Poldercolloidal solution: neutral atoms

force not like Van der WaalsF (L)A = − ~cπ2

240L4

not a theoretical curiosity! Gecko legs

Airbag trigger chip

Page 5: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Motivation: Casimir-Polder effect

Hendrik Casimir Dirk Poldercolloidal solution: neutral atoms

force not like Van der WaalsF (L)A = − ~cπ2

240L4

not a theoretical curiosity! Gecko legs

Airbag trigger chip

micromechanicaldevice: pieces stickfriction, levitation

Page 6: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Motivation: Casimir-Polder effect

Hendrik Casimir Dirk Poldercolloidal solution: neutral atoms

force not like Van der WaalsF (L)A = − ~cπ2

240L4

not a theoretical curiosity! Gecko legs

Airbag trigger chip

micromechanicaldevice: pieces stickfriction, levitation

Maritime analogy:

Page 7: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Aim: understand/describe planar Casimir effect

3

Page 8: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Aim: understand/describe planar Casimir effect

Usual explanation: energy of the vacuum: E0(L) = 12∑k(L,BC) ω(k) ∝ ∞

Page 9: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Aim: understand/describe planar Casimir effect

Usual explanation: energy of the vacuum: E0(L) = 12∑k(L,BC) ω(k) ∝ ∞

E0(L)− E0(∞)− 2Eplate = ∆E0(L) ;∆E0(L)

A

Page 10: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Aim: understand/describe planar Casimir effect

Usual explanation: energy of the vacuum: E0(L) = 12∑k(L,BC) ω(k) ∝ ∞

E0(L)− E0(∞)− 2Eplate = ∆E0(L) ;∆E0(L)

A

Lifshitz formula: QED, Parallel dielectric slabs (ε1,1, ε2)

∆E0(L)/A =∑i=‖,⊥

∫∞0

d2q8π2dζ log

[1−R1

i (ζ, q)R2i (ζ, q)e−2L

√q2+ζ2

]

R⊥(ω =√q2 + ζ2, q) =

√ω2−q2−

√εω2−q2√

ω2−q2+√εω2−q2

R‖(ω, q) = ε√ω2−q2−

√εω2−q2

ε√ω2−q2+

√εω2−q2

Page 11: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Aim: understand/describe planar Casimir effect

Usual explanation: energy of the vacuum: E0(L) = 12∑k(L,BC) ω(k) ∝ ∞

E0(L)− E0(∞)− 2Eplate = ∆E0(L) ;∆E0(L)

ALifshitz formula: QED, Parallel dielectric slabs (ε1,1, ε2)

∆E0(L)/A =∑i=‖,⊥

∫∞0

d2q8π2dζ log

[1−R1

i (ζ, q)R2i (ζ, q)e−2L

√q2+ζ2

]R⊥(ω =

√q2 + ζ2, q) =

√ω2−q2−

√εω2−q2√

ω2−q2+√εω2−q2

R‖(ω, q) = ε√ω2−q2−

√εω2−q2

ε√ω2−q2+

√εω2−q2

Physics can be understood in 1+1 D QFT

L

integrability helps to solve the problem even exactly→ large volume expansion in any D

Page 12: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Plan of talkCylinder

4

Page 13: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Page 14: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Page 15: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Page 16: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Exact groundstate

0L

R

L

R

E0(L) =

−m2π

∫cosh θ log(1 + e−ε(θ))dθ

Page 17: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Exact groundstate

0L

R

L

R

E0(L) =

−m2π

∫cosh θ log(1 + e−ε(θ))dθ

Strip

Page 18: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Exact groundstate

0L

R

L

R

E0(L) =

−m2π

∫cosh θ log(1 + e−ε(θ))dθ

Strip

Semiinfinite volume������������������������

������������������������

θ

R-matrix

Page 19: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Exact groundstate

0L

R

L

R

E0(L) =

−m2π

∫cosh θ log(1 + e−ε(θ))dθ

Strip

Semiinfinite volume������������������������

������������������������

θ

R-matrix

Boundary Luscher correction

L

R

R

L

E0(L) =

−∫mdθ4π

cosh θK(θ)K(θ)e−2mL cosh(θ)

K(θ) = R(iπ2− θ)

Page 20: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Exact groundstate

0L

R

L

R

E0(L) =

−m2π

∫cosh θ log(1 + e−ε(θ))dθ

Strip

Semiinfinite volume������������������������

������������������������

θ

R-matrix

Boundary Luscher correction

L

R

R

L

E0(L) =

−∫mdθ4π

cosh θK(θ)K(θ)e−2mL cosh(θ)

K(θ) = R(iπ2− θ)

Boundary TBAE0(L) =

−∫mdθ4π

cosh θ log(1 + e−ε(θ))

Application

Casimir effect

Page 21: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

5

Page 22: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk multiparticle state: with n particles E(θ1, θ2, . . . , θn) =∑im cosh θi

��������

��������

��������

2vv

1 nv> > >...

Page 23: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle state:

��������

��������

2v>v1

Page 24: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

Page 25: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

times develop

��������

��������

2v>v1

Page 26: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

times develop further

��������

��������

v2

>

v1

Page 27: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

Bulk twoparticle out state: t→∞

��������

��������

v1

>

v2

Page 28: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

Bulk twoparticle out state: t→∞

��������

��������

v1

>

v2

θ12

Page 29: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

Bulk twoparticle out state: t→∞

��������

��������

v1

>

v2

θ12

Free, noninteracting in particles Free, noninteracting out particles

Page 30: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

Bulk twoparticle out state: t→∞

��������

��������

v1

>

v2

θ12

Free, noninteracting in particles ← S-matrix → Free, noninteracting out particles

Page 31: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

Bulk twoparticle out state: t→∞

��������

��������

v1

>

v2

θ12

Free, noninteracting in particles ← S-matrix → Free, noninteracting out particles

|θ1, θ2〉in = S(θ1 − θ2)|θ1, θ2〉out

Page 32: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

Bulk twoparticle out state: t→∞

��������

��������

v1

>

v2

θ12

Free, noninteracting in particles ← S-matrix → Free, noninteracting out particles

|θ1, θ2〉in = S(θ1 − θ2)|θ1, θ2〉out

Unitarity

12−θ

S−1(θ12) = S(θ21) Crossing

12iπ− θ

S(θ12) = S(iπ − θ12)

Page 33: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

Bulk twoparticle out state: t→∞

��������

��������

v1

>

v2

θ12

Free, noninteracting in particles ← S-matrix → Free, noninteracting out particles

|θ1, θ2〉in = S(θ1 − θ2)|θ1, θ2〉out

Unitarity

12−θ

S−1(θ12) = S(θ21) Crossing

12iπ− θ

S(θ12) = S(iπ − θ12)

Integrability→ factorizability: |θ1, θ2, . . . , θn〉 =∏i<j S(θi − θj)|θn, θn−1, . . . , θ1〉

Page 34: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

Bulk twoparticle out state: t→∞

��������

��������

v1

>

v2

θ12

Free, noninteracting in particles ← S-matrix → Free, noninteracting out particles

|θ1, θ2〉in = S(θ1 − θ2)|θ1, θ2〉out

Unitarity

12−θ

S−1(θ12) = S(θ21) Crossing

12iπ− θ

S(θ12) = S(iπ − θ12)

Integrability→ factorizability: |θ1, θ2, . . . , θn〉 =∏i<j S(θi − θj)|θn, θn−1, . . . , θ1〉

Minimal solutions: free boson S = ±1 sinh-Gordon S(θ) = sinh θ−i sinπpsinh θ+i sinπp , Lee-Yang p = −1

3

Page 35: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable field theory: Bootstrap

pi = m sinh θiEi = m cosh θi

Bulk twoparticle in state: t→ −∞

��������

��������

v1 > v

2

Bulk twoparticle out state: t→∞

��������

��������

v1

>

v2

θ12

Free, noninteracting in particles ← S-matrix → Free, noninteracting out particles

|θ1, θ2〉in = S(θ1 − θ2)|θ1, θ2〉out

Unitarity

12−θ

S−1(θ12) = S(θ21) Crossing

12iπ− θ

S(θ12) = S(iπ − θ12)

Integrability→ factorizability: |θ1, θ2, . . . , θn〉 =∏i<j S(θi − θj)|θn, θn−1, . . . , θ1〉

Minimal solutions: free boson S = ±1 sinh-Gordon S(θ) = sinh θ−i sinπpsinh θ+i sinπp , Lee-Yang p = −1

3

Lagrangian: L = 12(∂φ)2 −µ(cosh bφ− 1) p = b2

8π+b2

Page 36: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Very large volume spectrum

12(∂φ)2−µ(cosh bφ− 1)↔S(θ) = sinh θ−i sinπp

sinh θ+i sinπp

0L

θn

θ2θ1

6

Page 37: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Very large volume spectrum

12(∂φ)2−µ(cosh bφ− 1)↔S(θ) = sinh θ−i sinπp

sinh θ+i sinπp

0L

θn

θ2θ1

Infinite volumeE(θ) = m cosh θ

p(θ) = m sinh θ

E(θ1, ..., θn) =∑

iE(θi)

Ε

0

m

2m

3m

Page 38: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Very large volume spectrum

12(∂φ)2−µ(cosh bφ− 1)↔S(θ) = sinh θ−i sinπp

sinh θ+i sinπp

0L

θn

θ2θ1

Infinite volumeE(θ) = m cosh θ

p(θ) = m sinh θ

E(θ1, ..., θn) =∑

iE(θi)

Ε

0

m

2m

3m

Finite volume: free particles

eip(θ)L = 1 Quantizationp(θ)→ p(k) = 2πk

L

|θ1, . . . θn〉 → |k1, . . . , kn〉

0

1

2

3

4

5

0 5 10 15 20 25 30

Page 39: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Very large volume spectrum

12(∂φ)2−µ(cosh bφ− 1)↔S(θ) = sinh θ−i sinπp

sinh θ+i sinπp

0L

θn

θ2θ1

Infinite volumeE(θ) = m cosh θ

p(θ) = m sinh θ

E(θ1, ..., θn) =∑

iE(θi)

Ε

0

m

2m

3m

Finite volume: free particles

eip(θ)L = 1 Quantizationp(θ)→ p(k) = 2πk

L

|θ1, . . . θn〉 → |k1, . . . , kn〉

0

1

2

3

4

5

0 5 10 15 20 25 30

Very large volume, interacting particles

one particle eip(θ)L = 1;θ → p(k) = 2πkL

two particles eip(θ1)LS(θ12) = 1

p(θ1)L+ ϕ(θ12) = 2πn1 ; S = eiϕ

n particles p(θi)L+∑

j ϕ(θij) = 2πni

0

1

2

3

4

5

0 5 10 15 20 25 30

Page 40: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Very large volume spectrum

12(∂φ)2−µ(cosh bφ− 1)↔S(θ) = sinh θ−i sinπp

sinh θ+i sinπp

0L

θn

θ2θ1

Infinite volumeE(θ) = m cosh θ

p(θ) = m sinh θ

E(θ1, ..., θn) =∑

iE(θi)

Ε

0

m

2m

3m

Finite volume: free particles

eip(θ)L = 1 Quantizationp(θ)→ p(k) = 2πk

L

|θ1, . . . θn〉 → |k1, . . . , kn〉

0

1

2

3

4

5

0 5 10 15 20 25 30

Very large volume, interacting particles

one particle eip(θ)L = 1;θ → p(k) = 2πkL

two particles eip(θ1)LS(θ12) = 1

p(θ1)L+ ϕ(θ12) = 2πn1 ; S = eiϕ

n particles p(θi)L+∑

j ϕ(θij) = 2πni

0

1

2

3

4

5

0 5 10 15 20 25 30

Momentum quantization S(0) = −1������

2

L

π

���� ����������������2

L

π∼

Page 41: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Groundstate energy in finite volume

Groundstate energy E0(L) =

7

Page 42: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Groundstate energy in finite volume

Groundstate energy E0(L) =0

L

Page 43: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Groundstate energy in finite volume

Groundstate energy E0(L) =

− limR→∞1R log(Tr (e−H(L)R)) = − limR→∞

1R log(e−E0(L)R)

0L

R

Page 44: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Groundstate energy in finite volume

Groundstate energy E0(L) =

− limR→∞1R log(Tr (e−H(L)R)) = − limR→∞

1R log(e−E0(L)R)

0L

R

− limR→∞1R logZ(L,R) = − limR→∞

1R log(Tr(e−H(R)L))

L

R

Page 45: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Groundstate energy in finite volume

Groundstate energy E0(L) =

− limR→∞1R log(Tr (e−H(L)R)) = − limR→∞

1R log(e−E0(L)R)

0L

R

− limR→∞1R logZ(L,R) = − limR→∞

1R log(Tr(e−H(R)L))

L

R

Dominant contribution for large L: one particle term

Tr(e−H(R)L) = 1 +∑k e−m cosh θk(R)L +O(e−2mL)

Page 46: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Groundstate energy in finite volume

Groundstate energy E0(L) =

− limR→∞1R log(Tr (e−H(L)R)) = − limR→∞

1R log(e−E0(L)R)

0L

R

− limR→∞1R logZ(L,R) = − limR→∞

1R log(Tr(e−H(R)L))

L

R

Dominant contribution for large L: one particle term

Tr(e−H(R)L) = 1 +∑k e−m cosh θk(R)L +O(e−2mL)

one particle quantization m sinh θ = 2πkR

∑k → Rm

∫dθ cosh θ

E0(L) = −m∫dθ cosh θ e−mL cosh θ +O(e−2mL)

Page 47: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Groundstate energy in finite volume

Groundstate energy E0(L) =

− limR→∞1R log(Tr (e−H(L)R)) = − limR→∞

1R log(e−E0(L)R)

0L

R

− limR→∞1R logZ(L,R) = − limR→∞

1R log(Tr(e−H(R)L))

L

R

Dominant contribution for large L: one particle term

Tr(e−H(R)L) = 1 +∑k e−m cosh θk(R)L +O(e−2mL)

one particle quantization m sinh θ = 2πkR

∑k → Rm

∫dθ cosh θ

E0(L) = −m∫dθ cosh θ e−mL cosh θ +O(e−2mL)

Ground state energy exactly: Al. Zamolodchikov ’90

E0(L) = −m∫ dθ

2π cosh(θ) log(1 + e−ε(θ))

ε(θ) = mL cosh θ −∫ dθ′

2πϕ′(θ − θ′) log(1 + e−ε(θ

′))0

L

Page 48: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Plan of talkCylinder

8

Page 49: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Page 50: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Page 51: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Page 52: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Exact groundstate

0L

R

L

R

E0(L) =

−m2π

∫cosh θ log(1 + e−ε(θ))dθ

Page 53: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Exact groundstate

0L

R

L

R

E0(L) =

−m2π

∫cosh θ log(1 + e−ε(θ))dθ

Strip

Page 54: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Exact groundstate

0L

R

L

R

E0(L) =

−m2π

∫cosh θ log(1 + e−ε(θ))dθ

Strip

Semiinfinite volume������������������������

������������������������

θ

R-matrix

Page 55: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Exact groundstate

0L

R

L

R

E0(L) =

−m2π

∫cosh θ log(1 + e−ε(θ))dθ

Strip

Semiinfinite volume������������������������

������������������������

θ

R-matrix

Boundary Luscher correction

L

R

R

L

E0(L) =

−∫mdθ4π

cosh θK(θ)K(θ)e−2mL cosh(θ)

K(θ) = R(iπ2− θ)

Page 56: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Plan of talkCylinder

Infinite volume

θ12

S-matrix

Large volumes

0L

θn

θ2θ1

Bethe-Yang lines

Luscher correction

0L

R

L

R

E0(L) =

−m∫

dθ2π

cosh θ e−m cosh(θ)L

Exact groundstate

0L

R

L

R

E0(L) =

−m2π

∫cosh θ log(1 + e−ε(θ))dθ

Strip

Semiinfinite volume������������������������

������������������������

θ

R-matrix

Boundary Luscher correction

L

R

R

L

E0(L) =

−∫mdθ4π

cosh θK(θ)K(θ)e−2mL cosh(θ)

K(θ) = R(iπ2− θ)

Boundary TBAE0(L) =

−∫mdθ4π

cosh θ log(1 + e−ε(θ))

Application

Casimir effect

Page 57: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable boundary field theory: Bootstrap

9

Page 58: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable boundary field theory: Bootstrap

Boundary multiparticle state: with n particles����������������

����������������

v1 > v

2 > ... > vn > 0

Page 59: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable boundary field theory: Bootstrap

Boundary one particle state:��������

��������

v1

Page 60: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Page 61: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

times develop��������

��������

v1

Page 62: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

times develop further��������

��������

v1

Page 63: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Boundary one pt out state: t→∞��������

��������

v1

Page 64: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Boundary one pt out state: t→∞��������

��������

v1

������������������������

������������������������

θ

Page 65: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Boundary one pt out state: t→∞��������

��������

v1

������������������������

������������������������

θ

Free in particle Free out particle

Page 66: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Boundary one pt out state: t→∞��������

��������

v1

������������������������

������������������������

θ

Free in particle ← R-matrix → Free out particle

Page 67: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Boundary one pt out state: t→∞��������

��������

v1

������������������������

������������������������

θ

Free in particle ← R-matrix → Free out particle

|θ〉B = R(θ)| − θ〉B

Page 68: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Boundary one pt out state: t→∞��������

��������

v1

������������������������

������������������������

θ

Free in particle ← R-matrix → Free out particle

|θ〉B = R(θ)| − θ〉B

UnitarityR∗(θ) = R−1(θ) = R(−θ)

Boundary crossing unitarity

R(iπ2 + θ) = S(2θ)R(iπ2 − θ)

������������������������

������������������������

−θ

����������������������������������������������������

Page 69: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Boundary one pt out state: t→∞��������

��������

v1

������������������������

������������������������

θ

Free in particle ← R-matrix → Free out particle

|θ〉B = R(θ)| − θ〉B

UnitarityR∗(θ) = R−1(θ) = R(−θ)

Boundary crossing unitarity

R(iπ2 + θ) = S(2θ)R(iπ2 − θ)

������������������������

������������������������

−θ

����������������������������������������������������

sinh-Gordon S(θ) = sinh θ−i sinπpsinh θ+i sinπp

= [−p] = −(−p)(1 + p) ; (p) =sinh( θ

2+ iπp

2 )sinh( θ

2− iπp

2 )

Page 70: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Boundary one pt out state: t→∞��������

��������

v1

������������������������

������������������������

θ

Free in particle ← R-matrix → Free out particle

|θ〉B = R(θ)| − θ〉B

UnitarityR∗(θ) = R−1(θ) = R(−θ)

Boundary crossing unitarity

R(iπ2 + θ) = S(2θ)R(iπ2 − θ)

������������������������

������������������������

−θ

����������������������������������������������������

sinh-Gordon S(θ) = sinh θ−i sinπpsinh θ+i sinπp

= [−p] = −(−p)(1 + p) ; (p) =sinh( θ

2+ iπp

2 )sinh( θ

2− iπp

2 )

reflection factor R(θ) =(

12

) (1+p2

) (1− p

2

) [32− ηp

π

] [32− Θp

π

]Ghoshal-Zamolodchikov ’94

Page 71: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Boundary one pt out state: t→∞��������

��������

v1

������������������������

������������������������

θ

Free in particle ← R-matrix → Free out particle

|θ〉B = R(θ)| − θ〉B

UnitarityR∗(θ) = R−1(θ) = R(−θ)

Boundary crossing unitarity

R(iπ2 + θ) = S(2θ)R(iπ2 − θ)

������������������������

������������������������

−θ

����������������������������������������������������

sinh-Gordon S(θ) = sinh θ−i sinπpsinh θ+i sinπp

= [−p] = −(−p)(1 + p) ; (p) =sinh( θ

2+ iπp

2 )sinh( θ

2− iπp

2 )

reflection factor R(θ) =(

12

) (1+p2

) (1− p

2

) [32− ηp

π

] [32− Θp

π

]Ghoshal-Zamolodchikov ’94

Lagrangian: L = 12(∂φ)2−µ(cosh bφ− 1)− δ

[µB+e

b

2φ + µB−e

− b

2φ] √

µsin b2 cosh b2(η ±Θ) = µB±

Page 72: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Integrable boundary field theory: Bootstrap

Boundary one particle in state: t→ −∞��������

��������

v1

Boundary one pt out state: t→∞��������

��������

v1

������������������������

������������������������

θ

Free in particle ← R-matrix → Free out particle

|θ〉B = R(θ)| − θ〉B

UnitarityR∗(θ) = R−1(θ) = R(−θ)

Boundary crossing unitarity

R(iπ2 + θ) = S(2θ)R(iπ2 − θ)

������������������������

������������������������

−θ

����������������������������������������������������

sinh-Gordon S(θ) = sinh θ−i sinπpsinh θ+i sinπp

= [−p] = −(−p)(1 + p) ; (p) =sinh( θ

2+ iπp

2 )sinh( θ

2− iπp

2 )

reflection factor R(θ) =(

12

) (1+p2

) (1− p

2

) [32− ηp

π

] [32− Θp

π

]Ghoshal-Zamolodchikov ’94

Lagrangian: L = 12(∂φ)2−µ(cosh bφ− 1)− δ

[µB+e

b

2φ + µB−e

− b

2φ] √

µsin b2 cosh b2(η ±Θ) = µB±

Integrability→factorizability: |θ1, θ2, . . . , θn〉B =∏i<j S(θi−θj)S(θi+θj)

∏iR(θi)|−θ1,−θ2, . . . ,−θn〉B

Page 73: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Boundary Luscher correction

Groundstate energy for large L from IR reflection: E0(L) =

10

Page 74: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Boundary Luscher correction

Groundstate energy for large L from IR reflection: E0(L) =L

Page 75: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Boundary Luscher correction

Groundstate energy for large L from IR reflection: E0(L) =

− limR→∞1R log(Tr(e−H

B(L)R)) = − limR→∞1R log(e−E0(L)R)

L

R

Page 76: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Boundary Luscher correction

Groundstate energy for large L from IR reflection: E0(L) =

− limR→∞1R log(Tr(e−H

B(L)R)) = − limR→∞1R log〈B|e−H(R)L|B〉

L

R

R

L

Page 77: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Boundary Luscher correction

Groundstate energy for large L from IR reflection: E0(L) =

− limR→∞1R log(Tr(e−H

B(L)R)) = − limR→∞1R log〈B|e−H(R)L|B〉

L

R

R

L

Boundary state |B〉 = exp{∫∞−∞

dθ4πR(iπ2 − θ)A+(−θ)A+(θ)

}|0〉

������������������������������������������������

+ +1

������������������������������������������������

++ 1

Page 78: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Boundary Luscher correction

Groundstate energy for large L from IR reflection: E0(L) =

− limR→∞1R log(Tr(e−H

B(L)R)) = − limR→∞1R log〈B|e−H(R)L|B〉

L

R

R

L

Boundary state |B〉 = exp{∫∞−∞

dθ4πR(iπ2 − θ)A+(−θ)A+(θ)

}|0〉

������������������������������������������������

+ +1

������������������������������������������������

++ 1

Dominant contribution for large L: two particle term

〈B|e−H(R)L|B〉 = 1 +∑kR(iπ2 − θ)R(iπ2 + θ)e−2m cosh θkL + . . .

Page 79: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Boundary Luscher correction

Groundstate energy for large L from IR reflection: E0(L) =

− limR→∞1R log(Tr(e−H

B(L)R)) = − limR→∞1R log〈B|e−H(R)L|B〉

L

R

R

L

Boundary state |B〉 = exp{∫∞−∞

dθ4πR(iπ2 − θ)A+(−θ)A+(θ)

}|0〉

������������������������������������������������

+ +1

������������������������������������������������

++ 1

Dominant contribution for large L: two particle term

〈B|e−H(R)L|B〉 = 1 +∑kR(iπ2 − θ)R(iπ2 + θ)e−2m cosh θkL + . . .

quantization condition: m sinh θk = 2πR

∑k → Rm

∫dθ cosh θ

E0(L) = −∫ m cosh θdθ

4π R(iπ2 − θ)R(iπ2 + θ) e−2mL cosh θ; Z.B, L. Palla, G. Takacs ’04-’08

Page 80: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Boundary Luscher correction

Groundstate energy for large L from IR reflection: E0(L) =

− limR→∞1R log(Tr(e−H

B(L)R)) = − limR→∞1R log〈B|e−H(R)L|B〉

L

R

R

L

Boundary state |B〉 = exp{∫∞−∞

dθ4πR(iπ2 − θ)A+(−θ)A+(θ)

}|0〉

������������������������������������������������

+ +1������������������������������������������������

++ 1

Dominant contribution for large L: two particle term

〈B|e−H(R)L|B〉 = 1 +∑kR(iπ2 − θ)R(iπ2 + θ)e−2m cosh θkL + . . .

quantization condition: m sinh θk = 2πR

∑k → Rm

∫dθ cosh θ

E0(L) = −∫ m cosh θdθ

4π R(iπ2 − θ)R(iπ2 + θ) e−2mL cosh θ; Z.B, L. Palla, G. Takacs ’04-’08

Ground state energy exactly: E0(L) = −m∫ dθ

4π cosh(θ) log(1 + e−ε(θ))

ε(θ) = 2mL cosh θ − log(R(iπ2 − θ)R(iπ2 + θ))

−∫ dθ′

2πϕ′(θ − θ′) log(1 + e−ε(θ

′)) LeClair, Mussardo, Saleur, SkorikL

R R

Page 81: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Casimir effect: Boundary finite size effect

11

Page 82: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Casimir effect: Boundary finite size effect

Extension to higher dimensions: ~k‖ label

k

k

L

Dispersion ω =√m2 + ~k2

‖ + k2⊥ =

√m2

eff + k2⊥

rapidity ω = meff(k‖) cosh θ, k⊥ = meff(k‖) sinh θ

Reflection R(θ,meff(k‖))

Page 83: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Casimir effect: Boundary finite size effect

Extension to higher dimensions: ~k‖ label

k

k

L

Dispersion ω =√m2 + ~k2

‖ + k2⊥ =

√m2

eff + k2⊥

rapidity ω = meff(k‖) cosh θ, k⊥ = meff(k‖) sinh θ

Reflection R(θ,meff(k‖))

Bstate: |B〉 =

{1 +

∫ dD−1k‖(2π)D−1

dθ4πR(iπ2 − θ,meff(k‖))A+(−θ,−~k‖)A+(θ,~k‖) + ...

}|0〉

Page 84: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Casimir effect: Boundary finite size effect

Extension to higher dimensions: ~k‖ label

k

k

L

Dispersion ω =√m2 + ~k2

‖ + k2⊥ =

√m2

eff + k2⊥

rapidity ω = meff(k‖) cosh θ, k⊥ = meff(k‖) sinh θ

Reflection R(θ,meff(k‖))

Bstate: |B〉 =

{1 +

∫ dD−1k‖(2π)D−1

dθ4πR(iπ2 − θ,meff(k‖))A+(−θ,−~k‖)A+(θ,~k‖) + ...

}|0〉

Ground state energy (for free bulk):

E0(L) =∫ dD−1k‖

(2π)D−1dθ4π log(1 +R1(iπ2 + θ,meff)R2(iπ2 − θ,meff)e−2meff cosh θL)

Page 85: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Casimir effect: Boundary finite size effect

Extension to higher dimensions: ~k‖ label

k

k

L

Dispersion ω =√m2 + ~k2

‖ + k2⊥ =

√m2

eff + k2⊥

rapidity ω = meff(k‖) cosh θ, k⊥ = meff(k‖) sinh θ

Reflection R(θ,meff(k‖))

Bstate: |B〉 =

{1 +

∫ dD−1k‖(2π)D−1

dθ4πR(iπ2 − θ,meff(k‖))A+(−θ,−~k‖)A+(θ,~k‖) + ...

}|0〉

Ground state energy (for free bulk):

E0(L) =∫ dD−1k‖

(2π)D−1dθ4π log(1 +R1(iπ2 + θ,meff)R2(iπ2 − θ,meff)e−2meff cosh θL)

QED: Parallel dielectric slabs (ε1,1, ε2)

reflections E‖,⊥, B‖,⊥ −→ R‖,⊥ look it up in Jackson:

R⊥(ω, k‖ = q) =√ω2−q2−

√εω2−q2√

ω2−q2+√εω2−q2

R‖(ω, k‖ = q) = ε√ω2−q2−

√εω2−q2

ε√ω2−q2+

√εω2−q2

Page 86: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Casimir effect: Boundary finite size effect

Extension to higher dimensions: ~k‖ label

k

k

L

Dispersion ω =√m2 + ~k2

‖ + k2⊥ =

√m2

eff + k2⊥

rapidity ω = meff(k‖) cosh θ, k⊥ = meff(k‖) sinh θ

Reflection R(θ,meff(k‖))

Bstate: |B〉 =

{1 +

∫ dD−1k‖(2π)D−1

dθ4πR(iπ2 − θ,meff(k‖))A+(−θ,−~k‖)A+(θ,~k‖) + ...

}|0〉

Ground state energy (for free bulk):

E0(L) =∫ dD−1k‖

(2π)D−1dθ4π log(1 +R1(iπ2 + θ,meff)R2(iπ2 − θ,meff)e−2meff cosh θL)

QED: Parallel dielectric slabs (ε1,1, ε2)

reflections E‖,⊥, B‖,⊥ −→ R‖,⊥ look it up in Jackson:

R⊥(ω, k‖ = q) =√ω2−q2−

√εω2−q2√

ω2−q2+√εω2−q2

R‖(ω, k‖ = q) = ε√ω2−q2−

√εω2−q2

ε√ω2−q2+

√εω2−q2

Lifshitz

formula

Page 87: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Conclusion

12

Page 88: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Conclusion

Usual derivation:

summing up zero freqencies

E0(L) = 12∑k(L) ω(k(L)) ∝ ∞

Complicated finite volume problem

+ divergencies

Page 89: Casimir e ect and boundary quantum eld theories Zolt an Bajnokbajnok.web.elte.hu/Miami.pdfZolt an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, Budapest

Conclusion

Usual derivation:

summing up zero freqencies

E0(L) = 12∑k(L) ω(k(L)) ∝ ∞

Complicated finite volume problem

+ divergencies

as a boundary finite size effect

E0(L) = −∫ dp

2π log(1 +R(−p)R(p)e−2E(p)L)

Reflection factor of the IR degrees of freedom:

semi infinite settings,

easier to calculate,

no divergences