research.ipmu.jpinstitute for the physics and mathematics of the universe, 20 october, 2009, tokyo...

181
Institute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size effects in integrable models: planar AdS/CFT Zolt´ an Bajnok, Theoretical Physics Research Group of the Hungarian Academy of Sciences, otv¨ os University, Budapest 1

Upload: others

Post on 06-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Institute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo

Finite size effects in integrable models: planar AdS/CFTZoltan Bajnok,

Theoretical Physics Research Group of the Hungarian Academy of Sciences,

Eotvos University, Budapest

1

Page 2: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Institute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo

Finite size effects in integrable models: planar AdS/CFTZoltan Bajnok,

Theoretical Physics Research Group of the Hungarian Academy of Sciences,

Eotvos University, Budapest

IIB superstring on AdS5 × S5∑51 Y

2i = R2 −+ + +− = −R2

R2

α′∫dτdσ4π

(∂aXM∂aXM + ∂aY M∂aYM

)+ . . .

N = 4 D=4 SU(N) SYMAµ,Ψi,Ψi,Φa

2gYM

∫d4xTr

[−1

4F 2 − 1

2(DΦ)2 + iΨD/Ψ + V

]V (Φ,Ψ) = 1

4[Φ,Φ]2 + Ψ[Φ,Ψ]

gaugeinvariant ope: O = Tr(Φ2)

Couplings:√λ = R2

α′ , gs = λ

N → 0

QM for string: 2D field theoryString spectrum E(λ)

E(λ) = E(∞) + E1√λ

+ E2

λ+ . . .

strong↔weak⇓

λ = g2YMN , N →∞ planar

〈On(x)Om(0)〉 = δnm|x|2∆n(λ)

Anomalous dim ∆(λ)∆(λ) = ∆(0) + λ∆1 + λ2∆2+

AdS←→integrable model←→CFT

Page 3: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Institute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo

Finite size effects in integrable models: planar AdS/CFTZoltan Bajnok,

Theoretical Physics Research Group of the Hungarian Academy of Sciences,

Eotvos University, Budapest

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Finite J (volume) integrable models: (Lee-Yang, sinh-Gordon, sine-Gordon)←→AdS/CFT

Page 4: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Motivation: AdS/CFT

2

Page 5: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Motivation: AdS/CFT

g

J

Page 6: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Motivation: AdS/CFT

g

Classical string theory

J

Page 7: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Motivation: AdS/CFT

g

Classical string theory

Semiclassical string theory

J

Page 8: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Motivation: AdS/CFT

g

Classical string theory

Semiclassical string theory

J

+ string loop corrections

Quantum String theory

Page 9: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Motivation: AdS/CFT

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Quantum String theory

Page 10: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Motivation: AdS/CFT

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

+ gauge loop corrections

Page 11: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Motivation: AdS/CFT

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Page 12: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Motivation: AdS/CFT

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Page 13: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Motivation: AdS/CFT

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Need finite J (volume) solution of the spectral problem

Page 14: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk I: Finite size effects in integrable models

3

Page 15: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk I: Finite size effects in integrable models

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Page 16: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk I: Finite size effects in integrable models

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Page 17: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk I: Finite size effects in integrable models

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Lee-Yang, sinh-Gordon, sine-Gordon+−

Bn

B

B B

B

Page 18: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk I: Finite size effects in integrable models

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Lee-Yang, sinh-Gordon, sine-Gordon+−

Bn

B

B B

B

Finite volume: Asymptotic Bethe Ansatz:

p

2p

n

p1

Page 19: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk I: Finite size effects in integrable models

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Lee-Yang, sinh-Gordon, sine-Gordon+−

Bn

B

B B

B

Finite volume: Asymptotic Bethe Ansatz:

p

2p

n

p1

Luscher correction

Page 20: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk I: Finite size effects in integrable models

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Lee-Yang, sinh-Gordon, sine-Gordon+−

Bn

B

B B

B

Finite volume: Asymptotic Bethe Ansatz:

p

2p

n

p1

Luscher correction

Exact groundstate: TBA,

L

Re−H(R) L

L

e−H(L)R

R

Page 21: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrable models: sin(e/h)-Gordon theory

sine-Gordon0

V

2 πβ φ target 0

2πβ β ↔ ib sinh-Gordon

0

V

φ target οο

οο

L = 12(∂φ)2 − m2

β2 (1− cosβφ) L = 12(∂φ)2 − m2

b2(cosh bφ− 1)

4

Page 22: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrable models: sin(e/h)-Gordon theory

sine-Gordon0

V

2 πβ φ target 0

2πβ β ↔ ib sinh-Gordon

0

V

φ target οο

οο

L = 12(∂φ)2 − m2

β2 (1− cosβφ) L = 12(∂φ)2 − m2

b2(cosh bφ− 1)

Classicalfinite energy

solutions:

x

φ

x

φ

x

φ

sine-Gordon theory soliton anti-soliton breather

Page 23: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrable models: sin(e/h)-Gordon theory

sine-Gordon0

V

2 πβ φ target 0

2πβ β ↔ ib sinh-Gordon

0

V

φ target οο

οο

L = 12(∂φ)2 − m2

β2 (1− cosβφ) L = 12(∂φ)2 − m2

b2(cosh bφ− 1)

Classicalfinite energy

solutions:

x

φ

x

φ

x

φ

sine-Gordon theory soliton anti-soliton breather

Classical factorized scattering: time delays sums up ∆T1(v1, v2, . . . , vn) =∑i∆T1(v1, vi)

Τ vvv1 2 n> > ... >

.

v Τ1

v <2< ... <vn

Page 24: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

5

Page 25: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Page 26: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

p p1

pn2

∆(Q)

Page 27: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Scattering matrix S: |out〉 → |in〉commutes with symmetry [S,∆(Q)] = 0

Page 28: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Scattering matrix S: |out〉 → |in〉commutes with symmetry [S,∆(Q)] = 0

p p

S−matrix

1

21> >...>

p’p’m

< p’2

<...<

pn

Page 29: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Scattering matrix S: |out〉 → |in〉commutes with symmetry [S,∆(Q)] = 0

p p

S−matrix

1

21> >...>

p’p’m

< p’2

<...<

pn

(Q)∆

(Q)∆

Page 30: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Scattering matrix S: |out〉 → |in〉commutes with symmetry [S,∆(Q)] = 0

p p

S−matrix

1

21> >...>

p’p’m

< p’2

<...<

pn

(Q)∆

(Q)∆

Higher spin concerved charge

factorization + Yang-Baxter equation

S123 = S23S13S12 = S12S13S23

p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

S-matrix = scalar . Matrix

Page 31: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry:

p p21

> >...> pn

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Scattering matrix S: |out〉 → |in〉commutes with symmetry [S,∆(Q)] = 0

p p

S−matrix

1

21> >...>

p’p’m

< p’2

<...<

pn

(Q)∆

(Q)∆

Higher spin concerved charge

factorization + Yang-Baxter equation

S123 = S23S13S12 = S12S13S23p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

S-matrix = scalar . Matrix

Unitarity S12S21 = Id

Crossing symmetry S12 = S21Maximal analyticity: all poles have physical origin→ boundstates, anomalous thresholds

Page 32: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

6

Page 33: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

Unitarity S(θ)S(−θ) = 1

Crossing symmetry S(θ) = S(iπ − θ)

Maximal analyticity: all poles have physical origin

Page 34: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

Unitarity S(θ)S(−θ) = 1

Crossing symmetry S(θ) = S(iπ − θ)

Maximal analyticity: all poles have physical origin

Minimal solution: S(θ) = 1 Free boson

Page 35: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

Unitarity S(θ)S(−θ) = 1

Crossing symmetry S(θ) = S(iπ − θ)

Maximal analyticity: all poles have physical origin

Minimal solution: S(θ) = 1 Free boson

CDD factor: S(θ) = sinh θ−i sin pπsinh θ+i sin pπ Sinh-Gordon

V ∼ cosh bφ↔ b2

8π+b2= p > 0

Page 36: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

Unitarity S(θ)S(−θ) = 1

Crossing symmetry S(θ) = S(iπ − θ)

Maximal analyticity: all poles have physical origin

Minimal solution: S(θ) = 1 Free boson

CDD factor: S(θ) = sinh θ−i sin pπsinh θ+i sin pπ Sinh-Gordon

V ∼ cosh bφ↔ b2

8π+b2= p > 0

Maximal analyticity: S(θ) = sinh θ+i sin pπsinh θ−i sin pπ

pole at θ = ipπ →boundstate B2

bootstrap: S12(θ)=S11(θ − ipπ2

)S11(θ + ipπ2

)

new particle if p 6= 23 Lee-Yang

Page 37: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

Unitarity S(θ)S(−θ) = 1Crossing symmetry S(θ) = S(iπ − θ)Maximal analyticity: all poles have physical origin

Minimal solution: S(θ) = 1 Free boson

CDD factor: S(θ) = sinh θ−i sin pπsinh θ+i sin pπ Sinh-Gordon

V ∼ cosh bφ↔ b2

8π+b2= p > 0

Maximal analyticity: S(θ) = sinh θ+i sin pπsinh θ−i sin pπ

pole at θ = ipπ →boundstate B2

bootstrap: S12(θ)=S11(θ − ipπ2

)S11(θ + ipπ2

)

new particle if p 6= 23 Lee-Yang

Maximal analyticity:

all poles have physical origin

→sine-Gordon solitons

θιπ

S11

ipπ

B2

θιπ

S

ipπ/23ipπ/2

12

B3. . .

θιπ

S1n

π/2ip(n+1)(n−1)ipπ/2

Bn

Page 38: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: sine-Gordon

Nondiagonal scattering: S-matrix = scalar . Matrix soliton doublet

(ss

)

Matrix:

global symmetry Uq(sl2)

2d evaluation reps

[S,∆(Q)] = 0S−matrix

(Q)∆

∆ (Q)

−1 0 0 0

0 − sinλπsinλ(π+iθ)

sin iλθsinλ(π+iθ) 0

0 sin iλθsinλ(π+iθ)

− sinλπsinλ(π+iθ) 0

0 0 0 −1

7

Page 39: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: sine-Gordon

Nondiagonal scattering: S-matrix = scalar . Matrix soliton doublet

(ss

)

Matrix:

global symmetry Uq(sl2)

2d evaluation reps

[S,∆(Q)] = 0S−matrix

(Q)∆

∆ (Q)

−1 0 0 0

0 − sinλπsinλ(π+iθ)

sin iλθsinλ(π+iθ) 0

0 sin iλθsinλ(π+iθ)

− sinλπsinλ(π+iθ) 0

0 0 0 −1

Unitarity

S(θ)S(−θ) = 1

Crossing symmetry

S(θ) = Sc1(iπ − θ)

∏∞l=1

[Γ(2(l−1)λ+λiθ

π )Γ(2lλ+1+λiθπ )

Γ((2l−1)λ+λiθπ )Γ((2l−1)λ+1+λiθ

π )/(θ → −θ)

]

Page 40: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: sine-Gordon

Nondiagonal scattering: S-matrix = scalar . Matrix soliton doublet

(ss

)

Matrix:

global symmetry Uq(sl2)2d evaluation reps

[S,∆(Q)] = 0

S−matrix

(Q)∆

∆ (Q)

−1 0 0 0

0 − sinλπsinλ(π+iθ)

sin iλθsinλ(π+iθ) 0

0 sin iλθsinλ(π+iθ)

− sinλπsinλ(π+iθ) 0

0 0 0 −1

Unitarity

S(θ)S(−θ) = 1

Crossing symmetry

S(θ) = Sc1(iπ − θ)

∏∞l=1

[Γ(2(l−1)λ+λiθ

π )Γ(2lλ+1+λiθπ )

Γ((2l−1)λ+λiθπ )Γ((2l−1)λ+1+λiθ

π )/(θ → −θ)

]

Maximal analyticity:

all poles have physical origin

either boundstates or

anomalous thresholds

p = λ−1+−

Bn

B

B B

B

Page 41: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: sine-Gordon

Nondiagonal scattering: S-matrix = scalar . Matrix soliton doublet

(ss

)

Matrix:

global symmetry Uq(sl2)2d evaluation reps

[S,∆(Q)] = 0

S−matrix

(Q)∆

∆ (Q)

−1 0 0 0

0 − sinλπsinλ(π+iθ)

sin iλθsinλ(π+iθ) 0

0 sin iλθsinλ(π+iθ)

− sinλπsinλ(π+iθ) 0

0 0 0 −1

Unitarity

S(θ)S(−θ) = 1Crossing symmetry

S(θ) = Sc1(iπ − θ)

∏∞l=1

[Γ(2(l−1)λ+λiθ

π )Γ(2lλ+1+λiθπ )

Γ((2l−1)λ+λiθπ )Γ((2l−1)λ+1+λiθ

π )/(θ → −θ)

]

Maximal analyticity:

all poles have physical origin

either boundstates or

anomalous thresholds

p = λ−1+−

Bn

B

B B

B

θιπ

S+−+−

(1−np)ιπ

...

...

Page 42: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

8

Page 43: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 44: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 45: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Page 46: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

Page 47: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

eipjLS(pj, p1) . . . S(pj, pn) = −1 ; S(0) = −1

pjL+∑k

1i logS(pj, pk) = (2n+ 1)iπ

p2πL

Page 48: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

eipjLS(pj, p1) . . . S(pj, pn) = −1 ; S(0) = −1

pjL+∑k

1i logS(pj, pk) = (2n+ 1)iπ

p2πL

Non-diagonal, sine-Gordon

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −Pn

1 2 j... ...p p p

p

Page 49: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

eipjLS(pj, p1) . . . S(pj, pn) = −1 ; S(0) = −1

pjL+∑k

1i logS(pj, pk) = (2n+ 1)iπ

p2πL

Non-diagonal, sine-Gordon

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −Pn

1 2 j... ...p p p

p

Inhomogenous XXZ spin-chain spectral problem eiL sinh θjT (θj)S0(θj) = −1

Page 50: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

eipjLS(pj, p1) . . . S(pj, pn) = −1 ; S(0) = −1

pjL+∑k

1i logS(pj, pk) = (2n+ 1)iπ

p2πL

Non-diagonal, sine-Gordon

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −Pn

1 2 j... ...p p p

p

Inhomogenous XXZ spin-chain spectral problem eiL sinh θjT (θj)S0(θj) = −1

T (θ)Q(θ) = Q(θ+iπ)T0(θ− iπ2 )+Q(θ−iπ)T0(θ+ iπ2 ) = Q++T−+Q−−T+

Page 51: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

eipjLS(pj, p1) . . . S(pj, pn) = −1 ; S(0) = −1

pjL+∑k

1i logS(pj, pk) = (2n+ 1)iπ

p2πL

Non-diagonal, sine-Gordon

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −P

n

1 2 j... ...p p p

p

Inhomogenous XXZ spin-chain spectral problem eiL sinh θjT (θj)S0(θj) = −1

T (θ)Q(θ) = Q(θ+iπ)T0(θ− iπ2 )+Q(θ−iπ)T0(θ+ iπ2 ) = Q++T−+Q−−T+

Q(θ) =∏β sinh(λ(θ − wβ))

T0(θ) =∏j sinh(λ(θ − θj))

Bethe Ansatz:T0(wα−iπ2 )Q(wα+iπ)

T0(wα+iπ2 )Q(wα−iπ)

=T−0 Q

++

T+0 Q−−

|α = −1

Page 52: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

9

Page 53: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 54: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 55: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Luscher originally: O(e−mL) mass correction

m(L) =√

32 m(−iRes

θ=2iπ3S)e−

√3

2 mL

−∫ dθ

2π cosh θ(S(θ + iπ2 )− 1)e−mL cosh θ

Page 56: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Luscher originally: O(e−mL) mass correction

m(L) =√

32 m(−iRes

θ=2iπ3S)e−

√3

2 mL

−∫ dθ

2π cosh θ(S(θ + iπ2 )− 1)e−mL cosh θ

Multiparticle Luscher correction

BY: S(pj, p1) . . .S(pj, pn)Ψ = −e−ipjLΨ

T (p, p1, . . . , pn)Ψ = t(p, p1, . . . , pn,Ψ)Ψ

Page 57: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Luscher originally: O(e−mL) mass correction

m(L) =√

32 m(−iRes

θ=2iπ3S)e−

√3

2 mL

−∫ dθ

2π cosh θ(S(θ + iπ2 )− 1)e−mL cosh θ

Multiparticle Luscher correction

BY: S(pj, p1) . . .S(pj, pn)Ψ = −e−ipjLΨ

T (p, p1, . . . , pn)Ψ = t(p, p1, . . . , pn,Ψ)Ψ

Modified momenta:

pjL− i log t(pj, p1, . . . , pn,Ψ) = (2n+ 1)π + Φj

Φj =∫ dq

2πddpjt(q, p1, . . . , pn,Ψ)e−LE(q)

Page 58: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrumn

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Luscher originally: O(e−mL) mass correction

m(L) =√

32 m(−iRes

θ=2iπ3S)e−

√3

2 mL

−∫ dθ

2π cosh θ(S(θ + iπ2 )− 1)e−mL cosh θ

Multiparticle Luscher correction

BY: S(pj, p1) . . .S(pj, pn)Ψ = −e−ipjLΨT (p, p1, . . . , pn)Ψ = t(p, p1, . . . , pn,Ψ)Ψ

Modified momenta:

pjL− i log t(pj, p1, . . . , pn,Ψ) = (2n+ 1)π + Φj

Φj =∫ dq

2πddpjt(q, p1, . . . , pn,Ψ)e−LE(q)

Modified energy:

E(p1, . . . , pn) =∑kE(pk + δpk)−

∫ dq2πt(q, p1, . . . , pn,Ψ)e−LE(q)

Page 59: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

10

Page 60: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 61: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 62: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Page 63: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Exchange space and Euclidien time

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Page 64: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Exchange space and Euclidien time

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Dominant contribution: finite particle/hole density ρ, ρh:p2π

L

Page 65: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Exchange space and Euclidien time

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Dominant contribution: finite particle/hole density ρ, ρh:p2π

L

En(R) =∑

iE(pi)→∫E(p)ρ(p)dp

pjR+∑

k1i

logS(pj, pk) = (2n+ 1)iπ −→ R+∫

(−idp logS(p, p′))ρ(p′)dp

′= 2π(ρ+ ρh)

Page 66: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Exchange space and Euclidien time

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Dominant contribution: finite particle/hole density ρ, ρh:p2π

L

En(R) =∑

iE(pi)→∫E(p)ρ(p)dp

pjR+∑

k1i

logS(pj, pk) = (2n+ 1)iπ −→ R+∫

(−idp logS(p, p′))ρ(p′)dp

′= 2π(ρ+ ρh)

Z(L,R) =∫d[ρ, ρh]e−LE(R)−

∫((ρ+ρh) ln(ρ+ρh)−ρ ln ρ−ρh ln ρh)dp

Page 67: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Exchange space and Euclidien time

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Dominant contribution: finite particle/hole density ρ, ρh:p2π

L

En(R) =∑

iE(pi)→∫E(p)ρ(p)dp

pjR+∑

k1i

logS(pj, pk) = (2n+ 1)iπ −→ R+∫

(−idp logS(p, p′))ρ(p′)dp

′= 2π(ρ+ ρh)

Z(L,R) =∫d[ρ, ρh]e−LE(R)−

∫((ρ+ρh) ln(ρ+ρh)−ρ ln ρ−ρh ln ρh)dp

Saddle point : ε(p) = ln ρh(p)ρ(p) ε(p) = E(p)L+

∫ dp2πidp logS(p′, p) log(1 + e−ε(p

′))

Ground state energy exactly: E0(L) = −∫ dp

2π log(1 + e−ε(p)) Lee-Yang, sinh-Gordon

Page 68: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk II: Planar AdS/CFT

11

Page 69: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk II: Planar AdS/CFT

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Page 70: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk II: Planar AdS/CFT

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Quantization of integrable models: sine-Gordon model: PCFT

Page 71: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk II: Planar AdS/CFT

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Quantization of integrable models: sine-Gordon model: PCFT

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Page 72: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk II: Planar AdS/CFT

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Quantization of integrable models: sine-Gordon model: PCFT

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Lee-Yang, sinh-Gordon, sine-Gordon↔ AdS σmodel+−

Bn

B

B B

B

Page 73: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk II: Planar AdS/CFT

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Quantization of integrable models: sine-Gordon model: PCFT

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Lee-Yang, sinh-Gordon, sine-Gordon↔ AdS σmodel+−

Bn

B

B B

B

Finite volume: Asymptotic Bethe Ansatz:

p

2p

n

p1

Page 74: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk II: Planar AdS/CFT

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Quantization of integrable models: sine-Gordon model: PCFT

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Lee-Yang, sinh-Gordon, sine-Gordon↔ AdS σmodel+−

Bn

B

B B

B

Finite volume: Asymptotic Bethe Ansatz:

p

2p

n

p1

Luscher correction

Page 75: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk II: Planar AdS/CFT

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Quantization of integrable models: sine-Gordon model: PCFT

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Lee-Yang, sinh-Gordon, sine-Gordon↔ AdS σmodel+−

Bn

B

B B

B

Finite volume: Asymptotic Bethe Ansatz:

p

2p

n

p1

Luscher correction

Exact: groundstate TBA,

L

Re−H(R) L

L

e−H(L)R

R

Page 76: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Plan of talk II: Planar AdS/CFT

Classical integrable models: sine-Gordon theory0

V

2 πβ φ

AdS5

S5

Quantization of integrable models: sine-Gordon model: PCFT

Bootstrap approach to quantum integrable models: S=scalar.matrix p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

Lee-Yang, sinh-Gordon, sine-Gordon↔ AdS σmodel+−

Bn

B

B B

B

Finite volume: Asymptotic Bethe Ansatz:

p

2p

n

p1

Luscher correction

Exact: groundstate TBA,

L

Re−H(R) L

L

e−H(L)R

R

Excited TBA, Y-system, NLIE...

p

p+1

Page 77: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrable models: sin(e/h)-Gordon theory

sine-Gordon0

V

2 πβ φ target 0

2πβ β ↔ ib sinh-Gordon

0

V

φ target οο

οο

L = 12(∂φ)2 − m2

β2 (1− cosβφ) L = 12(∂φ)2 − m2

b2(cosh bφ− 1)

12

Page 78: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrable models: sin(e/h)-Gordon theory

sine-Gordon0

V

2 πβ φ target 0

2πβ β ↔ ib sinh-Gordon

0

V

φ target οο

οο

L = 12(∂φ)2 − m2

β2 (1− cosβφ) L = 12(∂φ)2 − m2

b2(cosh bφ− 1)

Classicalfinite energy

solutions:

x

φ

x

φ

x

φ

sine-Gordon theory soliton anti-soliton breather

Page 79: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrable models: sin(e/h)-Gordon theory

sine-Gordon0

V

2 πβ φ target 0

2πβ β ↔ ib sinh-Gordon

0

V

φ target οο

οο

L = 12(∂φ)2 − m2

β2 (1− cosβφ) L = 12(∂φ)2 − m2

b2(cosh bφ− 1)

Classicalfinite energy

solutions:

x

φ

x

φ

x

φ

sine-Gordon theory soliton anti-soliton breather

Integrability: ∂xAt − ∂tAx + [Ax, At] = 0↔ T (λ) = TrP exp∮A(x)µdxµ

Ax(µ) = i2

(2µ β∂+ϕ

−β∂+ϕ −2µ

)At(µ) = 1

4iµ

(cosβϕ −i sinβϕi sinβϕ − cosβϕ

)T

gTg−1

Page 80: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrable models: sin(e/h)-Gordon theory

sine-Gordon0

V

2 πβ φ target 0

2πβ β ↔ ib sinh-Gordon

0

V

φ target οο

οο

L = 12(∂φ)2 − m2

β2 (1− cosβφ) L = 12(∂φ)2 − m2

b2(cosh bφ− 1)

Classicalfinite energy

solutions:

x

φ

x

φ

x

φ

sine-Gordon theory soliton anti-soliton breather

Integrability: ∂xAt − ∂tAx + [Ax, At] = 0↔ T (λ) = TrP exp∮A(x)µdxµ

Ax(µ) = i2

(2µ β∂+ϕ

−β∂+ϕ −2µ

)At(µ) = 1

4iµ

(cosβϕ −i sinβϕi sinβϕ − cosβϕ

)T

gTg−1

conserved Q±1[ϕ] = E[ϕ]± P [ϕ] =∫ {1

2(∂±ϕ)2 + m2

β2 (1− cosβϕ)}dx

charges: Q±3[ϕ] =∫ {1

2(∂2±ϕ)2 − 1

8(∂±ϕ)4 + m2

β2 (∂±ϕ)2(1− cosβϕ)}

Page 81: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrable models: sin(e/h)-Gordon theory

sine-Gordon0

V

2 πβ φ target 0

2πβ β ↔ ib sinh-Gordon

0

V

φ target οο

οο

L = 12(∂φ)2 − m2

β2 (1− cosβφ) L = 12(∂φ)2 − m2

b2(cosh bφ− 1)

Classicalfinite energy

solutions:

x

φ

x

φ

x

φ

sine-Gordon theory soliton anti-soliton breather

Integrability: ∂xAt − ∂tAx + [Ax, At] = 0↔ T (λ) = TrP exp∮A(x)µdxµ

Ax(µ) = i2

(2µ β∂+ϕ

−β∂+ϕ −2µ

)At(µ) = 1

4iµ

(cosβϕ −i sinβϕi sinβϕ − cosβϕ

)T

gTg−1

Classical factorized scattering: time delays sums up ∆T1(v1, v2, . . . , vn) =∑i∆T1(v1, vi)

Τ vvv1 2 n> > ... >

.

v Τ1

v <2< ... <vn

Page 82: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrability: AdSg

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

AdS σ modelτ

σ target

AdS5

S5

L = R2

α′(∂aXM∂aXM + ∂aYM∂aYM

)+ fermions

13

Page 83: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrability: AdSg

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

AdS σ modelτ

σ target

AdS5

S5

L = R2

α′(∂aXM∂aXM + ∂aYM∂aYM

)+ fermions

Classical solutions are found, for example magnon:

S5

p

−p

J

Page 84: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrability: AdSg

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

AdS σ modelτ

σ target

AdS5

S5

L = R2

α′(∂aXM∂aXM + ∂aYM∂aYM

)+ fermions

Classical solutions are found, for example magnon:

S5

p

−p

J

Coset NLσ model: g ∈ PSU(2,2|4)SO(4,1)×SO(5) J = g−1dg = J||+ J⊥

Z4 graded structure:

J⊥ → J0, J1, J2, J3 L ∝ STr(J2 ∧ ∗J2)− STr(J1 ∧ J3)

Page 85: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Classical integrability: AdSg

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

AdS σ modelτ

σ target

AdS5

S5

L = R2

α′(∂aXM∂aXM + ∂aYM∂aYM

)+ fermions

Classical solutions are found, for example magnon:

S5

p

−p

J

Coset NLσ model: g ∈ PSU(2,2|4)SO(4,1)×SO(5) J = g−1dg = J||+ J⊥

Z4 graded structure:

J⊥ → J0, J1, J2, J3L ∝ STr(J2 ∧ ∗J2)− STr(J1 ∧ J3)

Integrability from flat connection: dA−A ∧A = 0

A(µ) = J0 + µ−1J1 + (µ2 + µ−2)J2/2 + (µ2 + µ−2)J2/2 + µJ3

Conserved charges from the trace of the monodromy matrix

T (µ) = P exp∮A(x)µdxµ

T

gTg−1

Page 86: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Quantum integrability: sine-Gordon L = 12(∂φ)2 − m2

β2 (1− cosβφ)

Perturbed Conformal Field Theory Lagrangian perturbation theory

LCFT + λLpert = 12(∂φ)2 + λ(Vβ + V−β) L0 + Vpert = 1

2(∂φ)2 − m2

2 φ2 − β2U

hβ = β2 definite scaling Vβ =: eiβφ : semiclassical=free

14

Page 87: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Quantum integrability: sine-Gordon L = 12(∂φ)2 − m2

β2 (1− cosβφ)

Perturbed Conformal Field Theory Lagrangian perturbation theory

LCFT + λLpert = 12(∂φ)2 + λ(Vβ + V−β) L0 + Vpert = 1

2(∂φ)2 − m2

2 φ2 − β2U

hβ = β2 definite scaling Vβ =: eiβφ : semiclassical=free

Quantum conservation laws∂−Λ4 = 0→ ∂−Λ4 = λ∂+Θ2

[λ] = 2− hβ, [Λ4] = 4,

Nonlocal symmetries Uq(sl2)

Correlators=∑loops Feynmandiagrams

Asymptotic states E(p) =√p2 +m2

S-matrix↔correlators LSZunitarity, crossing symmetry, analyticity

Bootstrap scheme

Quantum integrability: AdS no proof !

Page 88: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

15

Page 89: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Page 90: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

p p1

pn2

∆(Q)

Page 91: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Scattering matrix S: |out〉 → |in〉commutes with symmetry [S,∆(Q)] = 0

Page 92: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Scattering matrix S: |out〉 → |in〉commutes with symmetry [S,∆(Q)] = 0

p p

S−matrix

1

21> >...>

p’p’m

< p’2

<...<

pn

Page 93: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Scattering matrix S: |out〉 → |in〉commutes with symmetry [S,∆(Q)] = 0

p p

S−matrix

1

21> >...>

p’p’m

< p’2

<...<

pn

(Q)∆

(Q)∆

Page 94: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry: p p

21> >...> p

n

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Scattering matrix S: |out〉 → |in〉commutes with symmetry [S,∆(Q)] = 0

p p

S−matrix

1

21> >...>

p’p’m

< p’2

<...<

pn

(Q)∆

(Q)∆

Higher spin concerved charge

factorization + Yang-Baxter equation

S123 = S23S13S12 = S12S13S23

p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

S-matrix = scalar . Matrix

Page 95: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program

Asymptotic states |p1, p2, . . . , pn〉in/outform a representation of global symmetry:

p p21

> >...> pn

Lorentz: P =∑i pi E =

∑iE(pi)

dispersion relation E(p) =√m2 + p2

Scattering matrix S: |out〉 → |in〉commutes with symmetry [S,∆(Q)] = 0

p p

S−matrix

1

21> >...>

p’p’m

< p’2

<...<

pn

(Q)∆

(Q)∆

Higher spin concerved charge

factorization + Yang-Baxter equation

S123 = S23S13S12 = S12S13S23p p

1

21

2

p

3

3

p p p

p

1

1

2

p

3

3

p p p

p2

S-matrix = scalar . Matrix

Unitarity S12S21 = Id

Crossing symmetry S12 = S21Maximal analyticity: all poles have physical origin→ boundstates, anomalous thresholds

Page 96: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

16

Page 97: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

Unitarity S(θ)S(−θ) = 1

Crossing symmetry S(θ) = S(iπ − θ)

Maximal analyticity: all poles have physical origin

Page 98: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

Unitarity S(θ)S(−θ) = 1

Crossing symmetry S(θ) = S(iπ − θ)

Maximal analyticity: all poles have physical origin

Minimal solution: S(θ) = 1 Free boson

Page 99: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

Unitarity S(θ)S(−θ) = 1

Crossing symmetry S(θ) = S(iπ − θ)

Maximal analyticity: all poles have physical origin

Minimal solution: S(θ) = 1 Free boson

CDD factor: S(θ) = sinh θ−i sin pπsinh θ+i sin pπ Sinh-Gordon

V ∼ cosh bφ↔ b2

8π+b2= p > 0

Page 100: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

Unitarity S(θ)S(−θ) = 1

Crossing symmetry S(θ) = S(iπ − θ)

Maximal analyticity: all poles have physical origin

Minimal solution: S(θ) = 1 Free boson

CDD factor: S(θ) = sinh θ−i sin pπsinh θ+i sin pπ Sinh-Gordon

V ∼ cosh bφ↔ b2

8π+b2= p > 0

Maximal analyticity: S(θ) = sinh θ+i sin pπsinh θ−i sin pπ

pole at θ = ipπ →boundstate B2

bootstrap: S12(θ)=S11(θ − ipπ2

)S11(θ + ipπ2

)

new particle if p 6= 23 Lee-Yang

Page 101: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: diagonal

Diagonal scattering: S-matrix = scalar S(p1, p2) = S(θ1−θ2) p = m sinh θ

Unitarity S(θ)S(−θ) = 1Crossing symmetry S(θ) = S(iπ − θ)Maximal analyticity: all poles have physical origin

Minimal solution: S(θ) = 1 Free boson

CDD factor: S(θ) = sinh θ−i sin pπsinh θ+i sin pπ Sinh-Gordon

V ∼ cosh bφ↔ b2

8π+b2= p > 0

Maximal analyticity: S(θ) = sinh θ+i sin pπsinh θ−i sin pπ

pole at θ = ipπ →boundstate B2

bootstrap: S12(θ)=S11(θ − ipπ2

)S11(θ + ipπ2

)

new particle if p 6= 23 Lee-Yang

Maximal analyticity:

all poles have physical origin

→sine-Gordon solitons

θιπ

S11

ipπ

B2

θιπ

S

ipπ/23ipπ/2

12

B3. . .

θιπ

S1n

π/2ip(n+1)(n−1)ipπ/2

Bn

Page 102: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: sine-Gordon

Nondiagonal scattering: S-matrix = scalar . Matrix soliton doublet

(ss

)

Matrix:

global symmetry Uq(sl2)

2d evaluation reps

[S,∆(Q)] = 0S−matrix

(Q)∆

∆ (Q)

−1 0 0 0

0 − sinλπsinλ(π+iθ)

sin iλθsinλ(π+iθ) 0

0 sin iλθsinλ(π+iθ)

− sinλπsinλ(π+iθ) 0

0 0 0 −1

17

Page 103: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: sine-Gordon

Nondiagonal scattering: S-matrix = scalar . Matrix soliton doublet

(ss

)

Matrix:

global symmetry Uq(sl2)

2d evaluation reps

[S,∆(Q)] = 0S−matrix

(Q)∆

∆ (Q)

−1 0 0 0

0 − sinλπsinλ(π+iθ)

sin iλθsinλ(π+iθ) 0

0 sin iλθsinλ(π+iθ)

− sinλπsinλ(π+iθ) 0

0 0 0 −1

Unitarity

S(θ)S(−θ) = 1

Crossing symmetry

S(θ) = Sc1(iπ − θ)

∏∞l=1

[Γ(2(l−1)λ+λiθ

π )Γ(2lλ+1+λiθπ )

Γ((2l−1)λ+λiθπ )Γ((2l−1)λ+1+λiθ

π )/(θ → −θ)

]

Page 104: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: sine-Gordon

Nondiagonal scattering: S-matrix = scalar . Matrix soliton doublet

(ss

)

Matrix:

global symmetry Uq(sl2)2d evaluation reps

[S,∆(Q)] = 0

S−matrix

(Q)∆

∆ (Q)

−1 0 0 0

0 − sinλπsinλ(π+iθ)

sin iλθsinλ(π+iθ) 0

0 sin iλθsinλ(π+iθ)

− sinλπsinλ(π+iθ) 0

0 0 0 −1

Unitarity

S(θ)S(−θ) = 1

Crossing symmetry

S(θ) = Sc1(iπ − θ)

∏∞l=1

[Γ(2(l−1)λ+λiθ

π )Γ(2lλ+1+λiθπ )

Γ((2l−1)λ+λiθπ )Γ((2l−1)λ+1+λiθ

π )/(θ → −θ)

]

Maximal analyticity:

all poles have physical origin

either boundstates or

anomalous thresholds

p = λ−1+−

Bn

B

B B

B

Page 105: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: sine-Gordon

Nondiagonal scattering: S-matrix = scalar . Matrix soliton doublet

(ss

)

Matrix:

global symmetry Uq(sl2)2d evaluation reps

[S,∆(Q)] = 0

S−matrix

(Q)∆

∆ (Q)

−1 0 0 0

0 − sinλπsinλ(π+iθ)

sin iλθsinλ(π+iθ) 0

0 sin iλθsinλ(π+iθ)

− sinλπsinλ(π+iθ) 0

0 0 0 −1

Unitarity

S(θ)S(−θ) = 1Crossing symmetry

S(θ) = Sc1(iπ − θ)

∏∞l=1

[Γ(2(l−1)λ+λiθ

π )Γ(2lλ+1+λiθπ )

Γ((2l−1)λ+λiθπ )Γ((2l−1)λ+1+λiθ

π )/(θ → −θ)

]

Maximal analyticity:

all poles have physical origin

either boundstates or

anomalous thresholds

p = λ−1+−

Bn

B

B B

B

θιπ

S+−+−

(1−np)ιπ

...

...

Page 106: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Nondiagonal scattering: S-matrix = scalar . Matrix

18

Page 107: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Nondiagonal scattering: S-matrix = scalar . Matrix

Matrix:

global symmetry PSU(2|2)2

Q = 1 reps

b1

b2

f3

f4

⊗ b1

b2f3f4

[S,∆(Q)] = 0S−matrix

(Q)∆

∆ (Q)

Page 108: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Nondiagonal scattering: S-matrix = scalar . Matrix

Matrix:

global symmetry PSU(2|2)2

Q = 1 reps

b1

b2

f3

f4

⊗ b1

b2f3f4

[S,∆(Q)] = 0S−matrix

(Q)∆

∆ (Q)

1 . . . . . . . . . . . . . . .. A . . −b . . . . . . −c . . c .. . d . . . . . e . . . . . . .. −b . .d . . . . . . . . e . . .. . . . A . . . . . . c . . −c .. . . . . 1 . . . . . . . . . .. . . . . . d . .e . . . . . . .. . . . . . . d . . . . . e . .. . f . . . . . g . . . . . . .. . . . . . f . . g . . . . . .. . . . . . . . . . a . . . . .. −h . . h . . . . . . B . . −i .. . . f . . . . . . . . g . . .. . . . . . . f . . . . . g . .. h . . −h . . . . . . −i . . B .. . . . . . . . . . . . . . . a

Page 109: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Nondiagonal scattering: S-matrix = scalar . Matrix

Matrix:

global symmetry PSU(2|2)2

Q = 1 reps

b1

b2

f3

f4

⊗ b1

b2f3f4

[S,∆(Q)] = 0S−matrix

(Q)∆

∆ (Q)

1 . . . . . . . . . . . . . . .. A . . −b . . . . . . −c . . c .. . d . . . . . e . . . . . . .. −b . .d . . . . . . . . e . . .. . . . A . . . . . . c . . −c .. . . . . 1 . . . . . . . . . .. . . . . . d . .e . . . . . . .. . . . . . . d . . . . . e . .. . f . . . . . g . . . . . . .. . . . . . f . . g . . . . . .. . . . . . . . . . a . . . . .. −h . . h . . . . . . B . . −i .. . . f . . . . . . . . g . . .. . . . . . . f . . . . . g . .. h . . −h . . . . . . −i . . B .. . . . . . . . . . . . . . . a

Unitarity

S(z1, z2)S(z2, z1) = 1

Crossing symmetry

S(z1, z2) = Sc1(z2, z1 + ω2)

S1111 = u1−u2−i

u1−u2+iei2θ(z1,z2)

u = 12

cot p2E(p)

p = 2 am(z)

Page 110: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bootstrap program: AdSg

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Nondiagonal scattering: S-matrix = scalar . Matrix

Matrix:

global symmetry PSU(2|2)2

Q = 1 reps

b1

b2

f3

f4

⊗ b1

b2f3f4

[S,∆(Q)] = 0S−matrix

(Q)∆

∆ (Q)

1 . . . . . . . . . . . . . . .. A . . −b . . . . . . −c . . c .. . d . . . . . e . . . . . . .. −b . .d . . . . . . . . e . . .. . . . A . . . . . . c . . −c .. . . . . 1 . . . . . . . . . .. . . . . . d . .e . . . . . . .. . . . . . . d . . . . . e . .. . f . . . . . g . . . . . . .. . . . . . f . . g . . . . . .. . . . . . . . . . a . . . . .. −h . . h . . . . . . B . . −i .. . . f . . . . . . . . g . . .. . . . . . . f . . . . . g . .. h . . −h . . . . . . −i . . B .. . . . . . . . . . . . . . . a

Unitarity

S(z1, z2)S(z2, z1) = 1

Crossing symmetry

S(z1, z2) = Sc1(z2, z1 + ω2)

S1111 = u1−u2−i

u1−u2+iei2θ(z1,z2)

u = 12

cot p2E(p)

p = 2 am(z)

Maximal analyticity:

boundstates atyp symrep: Q ∈ N

anomalous thresholds Physical domain?1 Q

Q 1

1Q ω /2

−ω /2 ω /2

ω2

2

1 1

Page 111: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

19

Page 112: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 113: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 114: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Page 115: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

Page 116: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

eipjLS(pj, p1) . . . S(pj, pn) = −1 ; S(0) = −1

pjL+∑k

1i logS(pj, pk) = (2n+ 1)iπ

p2πL

Page 117: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

eipjLS(pj, p1) . . . S(pj, pn) = −1 ; S(0) = −1

pjL+∑k

1i logS(pj, pk) = (2n+ 1)iπ

p2πL

Non-diagonal, sine-Gordon

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −Pn

1 2 j... ...p p p

p

Page 118: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

eipjLS(pj, p1) . . . S(pj, pn) = −1 ; S(0) = −1

pjL+∑k

1i logS(pj, pk) = (2n+ 1)iπ

p2πL

Non-diagonal, sine-Gordon

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −Pn

1 2 j... ...p p p

p

Inhomogenous XXZ spin-chain spectral problem eiL sinh θjT (θj)S0(θj) = −1

Page 119: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

eipjLS(pj, p1) . . . S(pj, pn) = −1 ; S(0) = −1

pjL+∑k

1i logS(pj, pk) = (2n+ 1)iπ

p2πL

Non-diagonal, sine-Gordon

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −Pn

1 2 j... ...p p p

p

Inhomogenous XXZ spin-chain spectral problem eiL sinh θjT (θj)S0(θj) = −1

T (θ)Q(θ) = Q(θ+iπ)T0(θ− iπ2 )+Q(θ−iπ)T0(θ+ iπ2 ) = Q++T−+Q−−T+

Page 120: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

QFTs in finite volume

Finite volume spectrump

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) pi ∈ R

Polynomial volume corrections:

Bethe-Yang; pi quantized. Diagonal

eipjLS(pj, p1) . . . S(pj, pn) = −1 ; S(0) = −1

pjL+∑k

1i logS(pj, pk) = (2n+ 1)iπ

p2πL

Non-diagonal, sine-Gordon

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −P

n

1 2 j... ...p p p

p

Inhomogenous XXZ spin-chain spectral problem eiL sinh θjT (θj)S0(θj) = −1

T (θ)Q(θ) = Q(θ+iπ)T0(θ− iπ2 )+Q(θ−iπ)T0(θ+ iπ2 ) = Q++T−+Q−−T+

Q(θ) =∏β sinh(λ(θ − wβ))

T0(θ) =∏j sinh(λ(θ − θj))

Bethe Ansatz:T0(wα−iπ2 )Q(wα+iπ)

T0(wα+iπ2 )Q(wα−iπ)

=T−0 Q

++

T+0 Q−−

|α = −1

Page 121: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bethe-Yang=Asymptotic Bethe Ansatz

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Finite volume spectrump

2p

n

p1

20

Page 122: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bethe-Yang=Asymptotic Bethe Ansatz

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Finite volume spectrump

2p

n

p1

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) E(p) =

√1 + (4g sin p

2)2 pi ∈ [−π, π]

Page 123: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bethe-Yang=Asymptotic Bethe Ansatz

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tionFinite volume spectrum

p

2p

n

p1

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) E(p) =

√1 + (4g sin p

2)2 pi ∈ [−π, π]

Polynomial volume corrections:

Asymptotic Bethe Ansatz; pi quantized, .

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −Pn

1 2 j... ...p p p

p

Page 124: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bethe-Yang=Asymptotic Bethe Ansatz

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Finite volume spectrump

2p

n

p1

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) E(p) =

√1 + (4g sin p

2)2 pi ∈ [−π, π]

Polynomial volume corrections:

Asymptotic Bethe Ansatz; pi quantized, .

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −Pn

1 2 j... ...p p p

p

Inhomogenous Hubbard2 spin-chain: eiLpjS20(uj)

Q++4 (uj)

Q−−4 (uj)T (uj)T (uj) = −1

Page 125: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bethe-Yang=Asymptotic Bethe Ansatz

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tionFinite volume spectrum

p

2p

n

p1

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) E(p) =

√1 + (4g sin p

2)2 pi ∈ [−π, π]

Polynomial volume corrections:

Asymptotic Bethe Ansatz; pi quantized, .

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −Pn

1 2 j... ...p p p

p

Inhomogenous Hubbard2 spin-chain: eiLpjS20(uj)

Q++4 (uj)

Q−−4 (uj)T (uj)T (uj) = −1

T (u) =B−1 B

+3 R−(+)4

B+1 B−3 R−(−)4

[Q−−2 Q+

3Q2Q

−3− R

−(−)4 Q+

3

R−(+)4 Q−3

+Q++

2 Q−1Q2Q

+1

− B+(+)4 Q−1

B+(−)4 Q+

1

]

Qj(u) = −Rj(u)Bj(u) and R(±)j =

∏k

x(u)−x∓j,k√x∓j,k

B(±)j =

∏k

1

x(u)−x∓j,k√x∓j,k

Page 126: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Bethe-Yang=Asymptotic Bethe Ansatz

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tionFinite volume spectrum

p

2p

n

p1

Infinite volume spectrum:

E(p1, . . . , pn) =∑iE(pi) E(p) =

√1 + (4g sin p

2)2 pi ∈ [−π, π]

Polynomial volume corrections:

Asymptotic Bethe Ansatz; pi quantized, .

eipjLS(pj, p1) . . .S(pj, pn)Ψ = −Ψ S(0) = −P

n

1 2 j... ...p p p

p

Inhomogenous Hubbard2 spin-chain: eiLpjS20(uj)

Q++4 (uj)

Q−−4 (uj)T (uj)T (uj) = −1

T (u) =B−1 B

+3 R−(+)4

B+1 B−3 R−(−)4

[Q−−2 Q+

3Q2Q

−3− R

−(−)4 Q+

3

R−(+)4 Q−3

+Q++

2 Q−1Q2Q

+1

− B+(+)4 Q−1

B+(−)4 Q+

1

]

Qj(u) = −Rj(u)Bj(u) and R(±)j =

∏k

x(u)−x∓j,k√x∓j,k

B(±)j =

∏k

1

x(u)−x∓j,k√x∓j,k

Bethe Ansatz:Q+

2 B(−)4

Q−2B(+)4

|1 = 1Q−−2 Q+

1 Q+3

Q++2 Q−1Q

−3

|2 = −1Q+

2 R(−)4

Q−2R(+)4

|3 = 1

Page 127: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

21

Page 128: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 129: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 130: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Luscher originally: O(e−mL) mass correction

m(L) =√

32 m(−iRes

θ=2iπ3S)e−

√3

2 mL

−∫ dθ

2π cosh θ(S(θ + iπ2 )− 1)e−mL cosh θ

Page 131: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Luscher originally: O(e−mL) mass correction

m(L) =√

32 m(−iRes

θ=2iπ3S)e−

√3

2 mL

−∫ dθ

2π cosh θ(S(θ + iπ2 )− 1)e−mL cosh θ

Multiparticle Luscher correction

BY: S(pj, p1) . . .S(pj, pn)Ψ = −e−ipjLΨ

T (p, p1, . . . , pn)Ψ = t(p, p1, . . . , pn,Ψ)Ψ

Page 132: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrum n

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Luscher originally: O(e−mL) mass correction

m(L) =√

32 m(−iRes

θ=2iπ3S)e−

√3

2 mL

−∫ dθ

2π cosh θ(S(θ + iπ2 )− 1)e−mL cosh θ

Multiparticle Luscher correction

BY: S(pj, p1) . . .S(pj, pn)Ψ = −e−ipjLΨ

T (p, p1, . . . , pn)Ψ = t(p, p1, . . . , pn,Ψ)Ψ

Modified momenta:

pjL− i log t(pj, p1, . . . , pn,Ψ) = (2n+ 1)π + Φj

Φj =∫ dq

2πddpjt(q, p1, . . . , pn,Ψ)e−LE(q)

Page 133: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher correction of multiparticle states

Finite volume spectrumn

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Luscher originally: O(e−mL) mass correction

m(L) =√

32 m(−iRes

θ=2iπ3S)e−

√3

2 mL

−∫ dθ

2π cosh θ(S(θ + iπ2 )− 1)e−mL cosh θ

Multiparticle Luscher correction

BY: S(pj, p1) . . .S(pj, pn)Ψ = −e−ipjLΨT (p, p1, . . . , pn)Ψ = t(p, p1, . . . , pn,Ψ)Ψ

Modified momenta:

pjL− i log t(pj, p1, . . . , pn,Ψ) = (2n+ 1)π + Φj

Φj =∫ dq

2πddpjt(q, p1, . . . , pn,Ψ)e−LE(q)

Modified energy:

E(p1, . . . , pn) =∑kE(pk + δpk)−

∫ dq2πt(q, p1, . . . , pn,Ψ)e−LE(q)

Page 134: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher/wrapping correction in AdSg

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Finite volume spectrum n

1 2 j... ...p p p

p

22

Page 135: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher/wrapping correction in AdSg

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Finite volume spectrum n

1 2 j... ...p p p

p

One particle correction:

∆(L) =(1− E′(p)E

′(p0)

)(−iResp=p0

∑b S)e−E(p)L

-∑b∫∞−∞

dp2π

(1− E′(p)E

′(p)

)(Sbaba(p, p)− 1)e−E(p)L

Page 136: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher/wrapping correction in AdSg

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Finite volume spectrum n

1 2 j... ...p p p

p

One particle correction:

∆(L) =(1− E′(p)E

′(p0)

)(−iResp=p0

∑b S)e−E(p)L

-∑b∫∞−∞

dp2π

(1− E′(p)E

′(p)

)(Sbaba(p, p)− 1)e−E(p)L

Two particle Luscher correction (Konishi)

BY: j = 1,2 S(pj, p1)S(pj, p2)Ψ = −e−ipjLΨ

T (p, p1, p2)Ψ = t(p, p1, p2,Ψ)Ψ

Page 137: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher/wrapping correction in AdSg

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Finite volume spectrum n

1 2 j... ...p p p

p

One particle correction:

∆(L) =(1− E′(p)E

′(p0)

)(−iResp=p0

∑b S)e−E(p)L

-∑b∫∞−∞

dp2π

(1− E′(p)E

′(p)

)(Sbaba(p, p)− 1)e−E(p)L

Two particle Luscher correction (Konishi)

BY: j = 1,2 S(pj, p1)S(pj, p2)Ψ = −e−ipjLΨ

T (p, p1, p2)Ψ = t(p, p1, p2,Ψ)Ψ

Modified momenta:

pjL− i log t(pj, p1, p2,Ψ) = (2n+ 1)π + Φj∫ dp2π

ddp1

t(p, p1, p2,Ψ)e−LE(p) 6= Φ1 = −∫ dp

2π( ddpS(p, p1))S(p, p2)e−LE(p)

Page 138: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Luscher/wrapping correction in AdSg

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Finite volume spectrumn

1 2 j... ...p p p

p

One particle correction:

∆(L) =(1− E′(p)E

′(p0)

)(−iResp=p0

∑b S)e−E(p)L

-∑b∫∞−∞

dp2π

(1− E′(p)E

′(p)

)(Sbaba(p, p)− 1)e−E(p)L

Two particle Luscher correction (Konishi)

BY: j = 1,2 S(pj, p1)S(pj, p2)Ψ = −e−ipjLΨT (p, p1, p2)Ψ = t(p, p1, p2,Ψ)Ψ

Modified momenta:

pjL− i log t(pj, p1, p2,Ψ) = (2n+ 1)π + Φj∫ dp2π

ddp1

t(p, p1, p2,Ψ)e−LE(p) 6= Φ1 = −∫ dp

2π( ddpS(p, p1))S(p, p2)e−LE(p)

Modified energy:

E(p1, p2) =∑kE(pk + δpk)−

∫ dq2πt(q, p1, p2,Ψ)e−LE(q)

Page 139: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

23

Page 140: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 141: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 142: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Page 143: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Exchange space and Euclidien time

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Page 144: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Exchange space and Euclidien time

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Dominant contribution: finite particle/hole density ρ, ρh:p2π

L

Page 145: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Exchange space and Euclidien time

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Dominant contribution: finite particle/hole density ρ, ρh:p2π

L

En(R) =∑

iE(pi)→∫E(p)ρ(p)dp

pjR+∑

k1i

logS(pj, pk) = (2n+ 1)iπ −→ R+∫

(−idp logS(p, p′))ρ(p′)dp

′= 2π(ρ+ ρh)

Page 146: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Exchange space and Euclidien time

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Dominant contribution: finite particle/hole density ρ, ρh:p2π

L

En(R) =∑

iE(pi)→∫E(p)ρ(p)dp

pjR+∑

k1i

logS(pj, pk) = (2n+ 1)iπ −→ R+∫

(−idp logS(p, p′))ρ(p′)dp

′= 2π(ρ+ ρh)

Z(L,R) =∫d[ρ, ρh]e−LE(R)−

∫((ρ+ρh) ln(ρ+ρh)−ρ ln ρ−ρh ln ρh)dp

Page 147: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ Tr(e−H(L)R)Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)

L

e−H(L)R

R

Exchange space and Euclidien time

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Dominant contribution: finite particle/hole density ρ, ρh:p2π

L

En(R) =∑

iE(pi)→∫E(p)ρ(p)dp

pjR+∑

k1i

logS(pj, pk) = (2n+ 1)iπ −→ R+∫

(−idp logS(p, p′))ρ(p′)dp

′= 2π(ρ+ ρh)

Z(L,R) =∫d[ρ, ρh]e−LE(R)−

∫((ρ+ρh) ln(ρ+ρh)−ρ ln ρ−ρh ln ρh)dp

Saddle point : ε(p) = ln ρh(p)ρ(p) ε(p) = E(p)L+

∫ dp2πidp logS(p′, p) log(1 + e−ε(p

′))

Ground state energy exactly: E0(L) = −∫ dp

2π log(1 + e−ε(p)) Lee-Yang, sinh-Gordon

Page 148: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: non-diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)L

e−H(L)R

R

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

24

Page 149: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: non-diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)L

e−H(L)R

R

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Finite particle/hole + Bethe root density ρ0, ρ0h, ρ

i, ρih:

eiLpT S0|j = −1,T−0 Q

++

T+0 Q−−

|α = −1

p2πL

ιπ2

ιπp

periodicity ιπ /p

Page 150: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: non-diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)L

e−H(L)R

R

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Finite particle/hole + Bethe root density ρ0, ρ0h, ρ

i, ρih:

eiLpT S0|j = −1,T−0 Q

++

T+0 Q−−

|α = −1

p2πL

ιπ2

ιπp

periodicity ιπ /p

En(R) =∑

iE(pi)→∫E(p)ρ0(p)dp

Rδm0 +∫Kmn (p, p′)ρn(p

′)dp

′= 2π(ρm + ρmh )

Page 151: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: non-diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)L

e−H(L)R

R

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Finite particle/hole + Bethe root density ρ0, ρ0h, ρ

i, ρih:

eiLpT S0|j = −1,T−0 Q

++

T+0 Q−−

|α = −1

p2πL

ιπ2

ιπp

periodicity ιπ /p

En(R) =∑

iE(pi)→∫E(p)ρ0(p)dp

Rδm0 +∫Kmn (p, p′)ρn(p

′)dp

′= 2π(ρm + ρmh )

Z(L,R) =∫d[ρi, ρih]e−LE(R)−

∑i

∫((ρi+ρih) ln(ρi+ρih)−ρi ln ρi−ρih ln ρih)dp

Page 152: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: non-diagonal

Ground-state energy exactly L

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Euclidien partition function:

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)L

e−H(L)R

R

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Finite particle/hole + Bethe root density ρ0, ρ0h, ρ

i, ρih:

eiLpT S0|j = −1,T−0 Q

++

T+0 Q−−

|α = −1

p2πL

ιπ2

ιπp

periodicity ιπ /p

En(R) =∑

iE(pi)→∫E(p)ρ0(p)dp

Rδm0 +∫Kmn (p, p′)ρn(p

′)dp

′= 2π(ρm + ρmh )

Z(L,R) =∫d[ρi, ρih]e−LE(R)−

∑i

∫((ρi+ρih) ln(ρi+ρih)−ρi ln ρi−ρih ln ρih)dp

Saddle point : εi(θ) = − ln ρi(p)ρih(p) εj(θ) = δ

j0E(p)L−

∫Kji (p′, p) log(1 + e−ε

i(p′))dp′

Ground state energy exactly: E0(L) = −∫ dp

2π log(1 + e−ε0(θ))dθ

Page 153: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Ground-state energy exactly L

Euclidien E2 + (4g sin p2)2 = 1 partition function:

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)L

e−H(L)R

R

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

25

Page 154: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Ground-state energy exactly L

Euclidien E2 + (4g sin p2)2 = 1 partition function:

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)L

e−H(L)R

R

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Finite particle/hole + Bethe root density ρQ, ρQh , ρ

i, ρih: i

no periodicity

Page 155: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Ground-state energy exactly L

Euclidien E2 + (4g sin p2)2 = 1 partition function:

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)L

e−H(L)R

R

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Finite particle/hole + Bethe root density ρQ, ρQh , ρ

i, ρih: i

no periodicity

En(R) =∑

i,Q EQ(pi)→∑

Q

∫EQ(p)ρQ(p)dp

eiLpS20Q++

4

Q−−4

T T |4 = −1 Q+2 B

(−)4

Q−2B(+)4

|1 = 1 Q−−2 Q+1 Q

+3

Q++2 Q−1Q

−3

|2 = −1 Q+2 R

(−)4

Q−2R(+)4

|3 = 1

∫Kmn (p, p′)ρn(p

′)dp

′= 2π(ρm + ρmh )

Page 156: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Ground-state energy exactly L

Euclidien E2 + (4g sin p2)2 = 1 partition function:

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)L

e−H(L)R

R

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Finite particle/hole + Bethe root density ρQ, ρQh , ρ

i, ρih: i

no periodicity

En(R) =∑

i,Q EQ(pi)→∑

Q

∫EQ(p)ρQ(p)dp

eiLpS20Q++

4

Q−−4

T T |4 = −1 Q+2 B

(−)4

Q−2B(+)4

|1 = 1 Q−−2 Q+1 Q

+3

Q++2 Q−1Q

−3

|2 = −1 Q+2 R

(−)4

Q−2R(+)4

|3 = 1

∫Kmn (p, p′)ρn(p

′)dp

′= 2π(ρm + ρmh )

Z(L,R) =∫d[ρi, ρih]e−LE(R)−

∑i

∫((ρi+ρih) ln(ρi+ρih)−ρi ln ρi−ρih ln ρih)dp

Page 157: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Thermodynamic Bethe Ansatz: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Ground-state energy exactly L

Euclidien E2 + (4g sin p2)2 = 1 partition function:

Z(L,R) =R→∞ e−E0(L)R(1 + e−∆ER)L

e−H(L)R

R

Z(L,R) =R→∞ Tr(e−H(R)L) =R→∞∑n e−En(L)R

L

Re−H(R) L

Finite particle/hole + Bethe root density ρQ, ρQh , ρ

i, ρih: i

no periodicity

En(R) =∑

i,Q EQ(pi)→∑

Q

∫EQ(p)ρQ(p)dp

eiLpS20Q++

4

Q−−4

T T |4 = −1 Q+2 B

(−)4

Q−2B(+)4

|1 = 1 Q−−2 Q+1 Q

+3

Q++2 Q−1Q

−3

|2 = −1 Q+2 R

(−)4

Q−2R(+)4

|3 = 1∫Kmn (p, p′)ρn(p

′)dp

′= 2π(ρm + ρmh )

Z(L,R) =∫d[ρi, ρih]e−LE(R)−

∑i

∫((ρi+ρih) ln(ρi+ρih)−ρi ln ρi−ρih ln ρih)dp

Saddle point : εi(p) = − ln ρi(p)ρih(p) εj(θ) = δ

jQEQ(p)L−

∫Kji (p, p′) log(1 + e−ε

i(p′))dp′

Ground state energy exactly: E0(L) = −∑Q∫ dp

2π log(1 + e−εQ(p))dp

Page 158: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: diagonal

Excited states exactlyp

2p

n

p1

26

Page 159: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: diagonal

Excited states exactlyp

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 160: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: diagonal

Excited states exactlyp

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

By lattice regularization: sinh-Gordon

i π/2

ε(θ) = mL cosh θ +∫dθ′

2πidθ logS(θ−θ

′) log(1+e−ε(θ

′))

E{nj}(L) = −m∫dθ

2πcosh θ log(1+e−ε(θ))

Page 161: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: diagonal

Excited states exactlyp

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

By lattice regularization: sinh-Gordon

i π/2

ε(θ) = mL cosh θ+∑

logS(θ − θj)+∫dθ′

2πidθ logS(θ−θ

′) log(1+e−ε(θ

′))

E{nj}(L) = −m∫dθ

2πcosh θ log(1+e−ε(θ))

Page 162: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: diagonal

Excited states exactlyp

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

By lattice regularization: sinh-Gordon

i π/2

ε(θ) = mL cosh θ+∑

logS(θ − θj)+∫dθ′

2πidθ logS(θ−θ

′) log(1+e−ε(θ

′))

E{nj}(L) =m

i

∑sinh θj−m

∫dθ

2πcosh θ log(1+e−ε(θ))

Page 163: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: diagonal

Excited states exactlyp

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

By lattice regularization: sinh-Gordon

i π/2

ε(θ) = mL cosh θ+∑

logS(θ − θj)+∫dθ′

2πidθ logS(θ−θ

′) log(1+e−ε(θ

′))

E{nj}(L) =m

i

∑sinh θj−m

∫dθ

2πcosh θ log(1+e−ε(θ)) ; Y (θj) = eε(θj) = −1

Page 164: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: diagonal

Excited states exactlyp

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

By lattice regularization: sinh-Gordon

i π/2

ε(θ) = mL cosh θ+∑

logS(θ − θj)+∫dθ′

2πidθ logS(θ−θ

′) log(1+e−ε(θ

′))

E{nj}(L) =m

i

∑sinh θj−m

∫dθ

2πcosh θ log(1+e−ε(θ)) ; Y (θj) = eε(θj) = −1

By analytical continuation: Lee-Yang

i π/6

π/6−i

ε(θ) = mL cosh θ −∫ ∞−∞

dθ′

2πφ(θ − θ

′) log(1 + e−ε(θ

′))

E{nj}(L) = −m∫ ∞−∞

2πcosh θ log(1 + e−ε(θ))

Luscher corrections: differ by µ term

Page 165: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: diagonal

Excited states exactlyp

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

By lattice regularization: sinh-Gordon

i π/2

ε(θ) = mL cosh θ+∑

logS(θ − θj)+∫dθ′

2πidθ logS(θ−θ

′) log(1+e−ε(θ

′))

E{nj}(L) =m

i

∑sinh θj−m

∫dθ

2πcosh θ log(1+e−ε(θ)) ; Y (θj) = eε(θj) = −1

By analytical continuation: Lee-Yang

i π/6

π/6−i

ε(θ) = mL cosh θ+N∑j=1

logS(θ − θj)S(θ − θ∗j)

−∫ ∞−∞

dθ′

2πφ(θ − θ

′) log(1 + e−ε(θ

′))

E{nj}(L) = −m∫ ∞−∞

2πcosh θ log(1 + e−ε(θ))

Luscher corrections: differ by µ term

Page 166: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: diagonal

Excited states exactlyp

2p

n

p1

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

By lattice regularization: sinh-Gordon

i π/2

ε(θ) = mL cosh θ+∑

logS(θ − θj)+∫dθ′

2πidθ logS(θ−θ

′) log(1+e−ε(θ

′))

E{nj}(L) =m

i

∑sinh θj−m

∫dθ

2πcosh θ log(1+e−ε(θ)) ; Y (θj) = eε(θj) = −1

By analytical continuation: Lee-Yang

i π/6

π/6−i

ε(θ) = mL cosh θ+N∑j=1

logS(θ − θj)S(θ − θ∗j)

−∫ ∞−∞

dθ′

2πφ(θ − θ

′) log(1 + e−ε(θ

′))

E{nj}(L) = −im∑

(sinh θj − sinh θ∗j)−m∫ ∞−∞

2πcosh θ log(1 + e−ε(θ))

Luscher corrections: differ by µ term

S(θ − iπ3 )S(θ + iπ

3 ) = S(θ)→ Y (θ + iπ3 )Y (θ − iπ

3 ) = 1 + Y (θ)

Y-system+analyticity=TBA <-> scalar . Matrix

Page 167: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: Non-diagonal

Excited states exactlyn

1 2 j... ...p p p

p

27

Page 168: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: Non-diagonal

Excited states exactlyn

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 169: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: Non-diagonal

Excited states exactlyn

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Page 170: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: Non-diagonal

Excited states exactlyn

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Y-system: sine-Gordon p2πL

ιπ2

ιπp

periodicity ιπ /p

Ys(θ + iπp2 )Ys(θ − iπp

2 ) = (1 + Ys−1)(1 + Ys+1)

(eiπp2 ∂ + e−

iπp2 ∂) logYs =

∑r Isr log(1 + Yr)

...

p

p+1

Page 171: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: Non-diagonal

Excited states exactlyn

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Y-system: sine-Gordon p2πL

ιπ2

ιπp

periodicity ιπ /p

Ys(θ + iπp2 )Ys(θ − iπp

2 ) = (1 + Ys−1)(1 + Ys+1)

(eiπp2 ∂ + e−

iπp2 ∂) logYs =

∑r Isr log(1 + Yr)

...

p

p+1

Excited states: analyticity from Luscher

Lattice regularization:Λ

ΛΛ

Λ

ΛΛ

ΛΛ

−Λ−Λ

−Λ−Λ

−Λ−Λ

−Λ−Λ

sG

Page 172: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: Non-diagonal

Excited states exactlyn

1 2 j... ...p p p

p

L

E

0

2m

m

S−

mat

rix

Bethe−YangLuscherCFT

Y-system: sine-Gordon p2πL

ιπ2

ιπp

periodicity ιπ /p

Ys(θ + iπp2 )Ys(θ − iπp

2 ) = (1 + Ys−1)(1 + Ys+1)

(eiπp2 ∂ + e−

iπp2 ∂) logYs =

∑r Isr log(1 + Yr)

...

p

p+1

Excited states: analyticity from Luscher

Lattice regularization:Λ

ΛΛ

Λ

ΛΛ

ΛΛ

−Λ−Λ

−Λ−Λ

−Λ−Λ

−Λ−Λ

sG

Z(θ) = ML sinh θ+source(θ|{θk})+2=m∫dxG(θ−x−iε) log

[1− (−1)δeiZ(x+iε)

]source(θ|{θk}) =

∑k sgnk(−i) logS++

++(θ−θk) kernel: G(θ) = −i∂θ logS++++(θ)

Energy: E = M∑k sgnk cosh θk−2M=m

∫dxG(θ+iε) log

[1− (−1)δeiZ(x+iε)

]Bethe-Yang eiZ(θk) = −1

Page 173: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Excited states exactlyn

1 2 j... ...p p p

p

28

Page 174: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Excited states exactlyn

1 2 j... ...p p p

p

Y-system: AdS

i

no periodicity

Ya,s(θ+ i2)Ya,s(θ− i

2)Ya+1,sYa−1,s

=(1+Ya,s−1)(1+Ya,s+1)(1+Ya+1,s)(1+Ya−1,s)

Page 175: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Excited states TBA, Y-system: AdS g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Excited states exactlyn

1 2 j... ...p p p

p

Y-system: AdS

i

no periodicity

Ya,s(θ+ i2)Ya,s(θ− i

2)Ya+1,sYa−1,s

=(1+Ya,s−1)(1+Ya,s+1)(1+Ya+1,s)(1+Ya−1,s)

Excited states: analyticity from Luscher

Lattice regularization: ?

Page 176: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Conclusion

29

Page 177: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Conclusion

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Page 178: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Conclusion

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

Page 179: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Conclusion

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

S-matrix = scalar . Matrix

physical sheet, explanation of all the poles

Page 180: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Conclusion

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

S-matrix = scalar . Matrix

physical sheet, explanation of all the poles

Excited states = analiticity . Y-system

Analytical structure of all excited states

Page 181: research.ipmu.jpInstitute for the Physics and Mathematics of the Universe, 20 October, 2009, Tokyo Finite size e ects in integrable models: planar AdS/CFT Zolt an Bajnok, Theoretical

Conclusion

g

Classical string theory

Semiclassical string theory

J

1 loop perturbative gauge theory

+ string loop corrections

Nonperturbative gauge theory

Quantum String theory

S −

mat

rix

+ gauge loop corrections

Asy

mpt

otic

Bet

he A

nsat

z

Wra

ppin

g/Lu

sche

r co

rrec

tion

S-matrix = scalar . Matrix

physical sheet, explanation of all the poles

Excited states = analiticity . Y-system

Analytical structure of all excited states

lattice?