case study: parallel coupled- line combline filter...edition, by michael steer. scitech publishing,...

132
MICROWAVE AND RF DESIGN Based on material in Microwave and RF Design: A Systems Approach, 2 nd Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled- Line Combline Filter Presented by Michael Steer Reading: § 16.1–16.4 Index: CS_PCL_Filter

Upload: others

Post on 28-Mar-2021

15 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

MICROWAVE AND RF DESIGNMICROWAVE AND RF DESIGN

Based on material in Microwave and RF Design: A Systems Approach, 2nd

Edition, by Michael Steer. SciTech Publishing, 2014.

Presentation copyright Michael Steer

Case Study:Parallel Coupled-Line Combline Filter

Presented by Michael Steer

Reading: § 16.1–16.4

Index: CS_PCL_Filter

Page 2: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Case Study: Parallel Coupled-Line Combline Filter

Copyright 2013 M. Steer and IETADA

C b C bC 1 C 3

50

50 t2COutput

1 2

Input

40

11 S 21

60

20

10

30

S50

S21

(dB

)

0

4

8

12

16

20

11S

(dB

)

240.5 1.0 1.5

0

Frequency (GHz)

1

Page 3: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Specifications● Bandpass filter● Center frequency: 1 GHz● 10% Bandwidth● Steep filter skirts

– requires Chebyshev response, choose a ripple factor of 0.1

● Low loss in passband– Microstrip technology

(Also low fabrication cost and very good performance.)

2

Page 4: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Microwave filter design

● Combination of Art and Science● Art: knowing the structures that intrinsically

have the desired response.● Science: knowing how to use mathematics in a

synthesis process to obtain the required tailoring of the response.

3

Page 5: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Art: choice of topologyParallel microstrip lines in combline configuration.

0

dB

12111 30-80

-60

-40

-20

21S

Frequency (GHz)

4

50

50 Output

1 2

Input

Page 6: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Science: synthesis procedure

50

50

Output

1 2

Input

5

Vg

L 11L 21

C 21

C31

L 31

11C

11

How to go from

to

using mathematical synthesis,while maintaining desired electrical characteristics.

(perhaps more complicated)

Page 7: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Optimization: an alternative to synthesis

● Optimization given a final structure that almost has the right response, use optimization to get the exact final response.

● E.G. Adjust line widths and lengths; number of microstrip lines, capacitor values.

● Works if the starting solution is very close.

● Does not provide insight or lead to new solutions.

● Even then, optimization with more than 6 variables is a problem.

6

50

50 Output

1 2

Input

Page 8: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Summary● Filter design, as with most RF design, is a combination

of art and science.

● The art is identifying the structures that intrinsically have the desired response.

● The science is developing the mathematical procedure to go from the mathematical specification of the desired response to the final microstrip realization.

● Choose topology (art), use synthesis procedure (science), use optimization to almost perfect design, use fabrication and test to perfect design.

7

Page 9: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Case Study: Parallel Coupled-Line Combline Filter. Part B

8

Filter design is based on circuit transformations.

Vg

L11L 21

C21

C31

L31

11C

11

Page 10: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Outline● Begin with a lumped element filter.

● Consider circuit model of coupled lines● Work out the steps to go from the lumped

element circuit to a transmission line-based circuit.

9

Z0

Vg

L12 C12

L22 C21

L32 C32

Z0Vg

L11L 21

C21

C31

L31

11C

11 or

Page 11: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Third-order filter● The lumped element filter has three

LC resonators:

● So (perhaps) the transmission line equivalent has three resonators:

● Consider as two pairs of coupled lines:

Vg

L 11L 21

C 21

C31

L 31

11C

11

1

2

2

1

10

Page 12: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Network model of a pair of coupled lines

1

2

4

3

1: n

4

3

:1n

Z

1

2

02

01

Z

The equivalent circuit of a pair of coupled lines

Is obtained by equating symbolic ABCD equations

11

Page 13: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Combline section and network models

1

2

4

3

Combline section 

1: n n

4

3

:1

1

201Z

02Z

1: n n

4

3

:1

1

201Z

02Z

12

Page 14: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Combline section and network models

1

2

4

3

Combline section 

1: n n

4

3

:1

1

201Z

02Z

2

1: n

Z 02

Z 012

1

( fr = f0 ) Z1: n

02

Z011 2

Z

Z

012

1 2Z 011 022

13

Page 15: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Translation of a circuit with stubs to coupled lines

1

2

4

3

Z

Z

012

1 2Z 011 022

So if the following structure is seen in a circuit (a Pi arrangement of shorted stubs)

Then it can be replaced by a combline section

14

Page 16: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Comparison of lumped element filter and Pi arrangement of stubs

Z

Z

012

1 2Z 011 022

Pi arrangement of shorted stubs.

Three connected resonators.Vg

L 11L 21

C 21

C31

L 31

11C

11

Each stub is a resonator.

A shorted stub corresponding to a parallel LC resonator.

An open circuit stub corresponds to a series LC resonator.

15

So the conversion from a lumped element filter to Pi network of shorted stubs is not direct.

But The Idea is Starting to Come Through

Page 17: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Summary● The key idea is to begin with a lumped element filter

prototype and put the circuit in the form of a collection of shorted stubs in a PI configuration.

16

Z

Z

012

1 2Z 011 022

Want basic circuit structure to be

But cannot start from here (3rd order BPF)

(Model of two PCL in combline configuration.)

Page 18: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Case Study: Parallel Coupled-Line Combline Filter. Part C, Step 1:

Develop Lowpass Prototype Filter

17

L21

C11 C31Vg

11

Page 19: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Outline● Begin with a lumped element filter.

● Calculate element values.

18

L21

C11 C31Vg

11

Page 20: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

19

TRANSMISSION2 REFLECTION2

This is the 6th order Chebyshev response

ε  is called the ripple factor.

Passband ripple,PBR = (1+ ε2)

Ripple in dB,RdB = 10 log(PBR)

Steeper filter skirt for• Higher order• Larger ripple

19

Page 21: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Third-order Chebyshev filter

Coefficients of a Chebyshev lowpass prototype filter normalized to a radian corner frequency of ω0 = 1 rad/s and a 1 Ω system impedance (i.e., g0 = 1 = gn+1). 

The ripple factor is ε. ε = 0.1 is a ripple of 0.0432 dB.

ω0 is the radian frequency at which the transmission response of a Chebyshev filter is down by the ripple. Here ω0 = 1 radian/s.

20

Page 22: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

21

L21

C11 C31Vg

11

A third-order Chebyshev lowpass filter prototype

g0 = 1g1 = 0.85158g2 = 1.10316g3 = 0.85158g4 = 1

C11 = 0.85158 FL21 = 1.10316 HC31 = 0.85158 F

ω0 = 1 rad/s 

21

Page 23: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

22

Chebyshev filter coefficients from recursive formula

22

Page 24: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Summary● Step 1: developed 3rd order Chebychev lowpass

prototype filter.

23

L21

C11 C31Vg

11

C11 = 0.85158 FL21 = 1.10316 HC31 = 0.85158 F

ω0 = 1 rad/s 

Page 25: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Case Study: Parallel Coupled-Line Combline Filter. Part D, Step 2:

Remove Series Inductor

24

L21

C11 C31Vg

11

C11 C21 C31

111 1

Page 26: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Outline

● Use an inverter(s) to replace series inductor.

● An inverter can be implemented using transmission lines.

● Where there are transmission lines it may be possible to equate them to an inverter (if they are /4 long).

25

Page 27: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Inverters

K

ZL

Zin

K

= K0Z

= K0ZinZ

LZImpedanceinverter

A /4 long line is an inverter

2

inL

KZZ

An inverter can be realized using a transmission line.

Wherever there are /4 long transmission lines an impedance inverter can be realized (probably).

Lossless telegrapher’s equation:

0in 0

0

tan( )tan( )

L

L

Z jZZ ZZ jZ

/ 2; tan( )

0in 0

tan( )tan( )L

jZZ ZjZ

20

inL

ZZZ

26

Page 28: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Consider combline section and network model

1

2

4

3

Combline section 

1:n n

4

3

:1

1

201Z

02Z

A combline section of coupled lines /4 long inherently presents two impedance inverters.

27

Page 29: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Replacement of a series inductor by a shunt capacitor plus inverters

L

C

-1:1

KK

Equivalence is demonstrated using ABCD parameters.

1T

0 1L

sL

K

L

2

0T

/ 0jK

j K

1

1 0T

1sC

C

-1:1

3

1 0T

0 1

For the cascade2

CASCADE 2 1 2 3

0 1 0 0 1 0 1T T T T T

/ 0 1 / 0 0 1 0 1jK jK sCK

j K sC j K

2L CK

sL

28

Page 30: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Equivalence of a series inductor and a shunt capacitor plus inverters

L

C

-1:1

KK 2L CK

29

C KK

Drop negative unity transformer as it only affects phase and not filter response.

Page 31: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Inverter form of lowpass prototype filter

L21

C11 C31Vg

11

C11 C21 C31

111 1

C11 = 0.85158 FL21 = 1.10316 HC31 = 0.85158 F

ω0 = 1 rad/s C11 = 0.85158 FC21 = 1.10316 FC31 = 0.85158 F

ω0 = 1 rad/s 

30

Page 32: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

31

+1

( odd)

( even)

g2 g4

g1 g3

gn

g0

Vg

gn n

gn n

1

Vg

g1 g2 g3 g4

1 1 1 1 1

-1:1 -1:1 -1:1

1

Vg

g1 g2 g3 g4

1 1

g5

1 1 1

Ladder prototype filters using impedance inverters

31

Page 33: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Summary: Inverter form of lowpassprototype filter

C11 C21 C31

111 1

C11 = 0.85158 FC21 = 1.10316 FC31 = 0.85158 F

ω0 = 1 rad/s 

32

Page 34: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Case Study: Parallel Coupled-Line Combline Filter. Part E, Step 3:

Bandpass Transformation

33

C11 C21 C31

111 1

' ' ' ' ' '

Vg

111 1

LC C L C L1 1 2 32 3

Page 35: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

34

First lumped element transformation to BPF, 1 GHz

L21

C11 C31Vg

11

Z 0

Vg

L12 C12

L 22 C 21

L32 C 32

Z 0

34

+11(rad/s)

(s)T 2

(rad/s)1

T s( ) 2

0 2

LPF HPF

Page 36: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

35

BPF and center frequency transformation

1 11 22 2

1 10 1 22 2

0 1 2

1112 12

0 11 0

950MHz, 1050MHz

1000 MHzfractional bandwidth,

1, CC LC

R

dB

This assumes that the LPF corner frequency is 1 radian/s.

L21

C11 C31Vg

11

Z0

Vg

L12 C12

L22 C21

L32 C32

Z0

Page 37: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

36

1

Vg

L12 C12

L22 C22

L32 C32

1

Transformation to BPF, 1 GHz

C12 = 1.35533 nF = C31L12 = 18.6894 pH = L32C22 = 14.4271 pFL22 = 1.75573 nH

10

20

30

40

60

50

S214

8

12

16

24

20

11S(d

B)

21S(d

B) S11

1.00.90.80.70.60.5 1.1 1.31.2 1.4 1.5

0

Frequency (GHz)

0

36

Page 38: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

' ' ' ' ' '

Vg

111 1

LC C L C L1 1 2 32 3

37

BPF and center frequency transformation

C11 C21 C31

111 1

1 11 22 2

1 10 1 22 2

0 1 2

/ /111 1

0 11 0

950MHz, 1050MHz

1000 MHzfractional bandwidth,

1, CC LC

R

dB

This assumes that the LPF corner frequency is 1 radian/s.

Page 39: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

' ' ' ' ' '

Vg

111 1

LC C L C L1 1 2 32 3

38

Prototype BPF and center frequency transformation

C1 = 1355.33 pF = C3

L1 = 0.0186894 nH = L3

C2 = 1755.73 pF

L2 = 0.0144271 nH

/

/

/

/

/

/

Z

Z

012

1 2Z 011 022

Recall: desired basic circuit structure

(Model of two PCL in combline configuration.)

Page 40: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

' ' ' ' ' '

Vg

111 1

LC C L C L1 1 2 32 3

39

Summary prototype BPF

C1 = 1355.33 pF = C3

L1 = 0.0186894 nH = L3

C2 = 1755.73 pF

L2 = 0.0144271 nH

/

/

/

/

/

/

Page 41: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Case Study: Parallel Coupled-Line Combline Filter. Part F, Step 4:

Impedance Scaling

40

' ' ' ' ' '

Vg

111 1

LC C L C L1 1 2 32 3

||

Vg

505050 50

LC C L C L1 1 2 32 3|| || || || ||

Page 42: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Principle of impedance scaling

● Every impedance in the circuit is scaled by the same amount

● So to go from 1 to 50 – The value of a resistor is increased by a factor of 50.– The value of an inductor is increased by a factor of 50.– The value of a capacitor is reduced by a factor of 50.– The value of an impedance inverter is increased by a factor

of 50.– The value of an admittance inverter is reduced by a factor of

50.

41

Page 43: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Summary, Step 4: BPF scaled to 50 .

' ' ' ' ' '

Vg

111 1

LC C L C L1 1 2 32 3

||

Vg

505050 50

LC C L C L1 1 2 32 3|| || || || ||

C1 = 1355.33 pF = C3

L1 = 0.0186894 nH = L3

C2 = 1755.73 pF

L2 = 0.0144271 nH

/

/

/

/

/

/

C1 = 27.1066 pF = C3

L1 = 0.934468 nH = L3

C2 = 35.1147 pF

L2 = 0.721359 nH

||

||

||

||

42

Page 44: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Case Study: Parallel Coupled-Line Combline Filter. Part G, Step 5:Conversion of Lumped-Element

Resonators

43

LC C0 Z 1Z 01

,

Z 1

Z 01

Page 45: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Outline

● Central idea: Obtain a broadband realization of the LC resonators in the BPF without using inductors.

● Realize the LC resonant circuit by a circuit with C and a stub.

● Equate admittances and the derivatives of admittances

44

LC C0 Z 1Z 01

Page 46: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

45

LC Z 1Z 01

Narrowband resonator equivalence at ω0

Z01 is the characteristic impedance of the transmission line and Z1is the input impedance of the shorted transmission line.

2 degrees of freedom. 2 degrees of freedom.

Can only match admittance at one frequency.

45

Page 47: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

46

LC C0 Z 1Z 01

,

Z 1

Z 01

Broadband resonator equivalence at ω0Z01 is the characteristic impedance of the line and Z1 is the input impedance of the shorted line.2 degrees of freedom. 3 degrees of freedom.

0

inin 0

at

and at .YY

Broadband match is obtained

by matching

Yin Yin/

r is, the radian resonant frequency of the stub (i.e. the frequency at which it is /4 long).

46

Page 48: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

47

LC C0 Z 1Z 01

,

Z 1

Z 01

Broadband resonator equivalence at ω0

2 degrees of freedom. 3 degrees of freedom.

0

inin 0

at

and at .YY

Broadband match is obtained

by matching

Yin Yin/

Specific design choice r 0 (most common).

The admittance of the networks are equivalent(at 0) when:

Also (at 0)Z1 = jZ01

,

Z 1

Z 01The derivatives of the admittance of the networks are equivalent(at 0) when:

47

Z01 is the characteristic impedance of the line and Z1 is the input impedance of the shorted line.

Page 49: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

48

The transmission line stubs present impedances Z1 = jZ01, Z2 = jZ02, and Z3 = jZ03 since the resonant frequencies of the stubs are twice that of the design center frequency.

Step 5. Bandpass combline filter with broadband realization of lumped-

element inverters/ / / /

1 3/ /2

01 03

02

21.0881 pF

27.3181 pF7.54713

5.82598

C C

CZ Z

Z

/ // // / Z 01 Z 02 Z 032C1C C 3

50 50

Convert LC resonators to hybrid C‐stub resonators.

• The commensurate frequency, fr, of the design is the resonant frequency of the stubs.

• By default all the stubs have the same fr.

• The design choice here is that fr =2f0. f0 is the center frequency of the design.

48

Page 50: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

49

Summary, Step 5

/ // // / Z 01 Z 02 Z 032C1C C 3

50 50

• Broadband, but stubs have different characteristic impedances.

• Really want them to be the same as they will be realized by microstrip lines and we want them to have the same width.(Kind of, this is a little imprecise as the inverters are yet to be realized.)

49

/ / / /1 3/ /2

01 03

02

21.0881 pF

27.3181 pF7.54713

5.82598

C C

CZ Z

Z

Page 51: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Case Study: Parallel Coupled-Line Combline Filter. Part H

Step 6: Equalize Stub Impedances

50

/ / // / // / Z 01 Z 02 Z 032C1C C 3

56.9084 56.9084

Page 52: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Outline● Result of Step 5 (previous):

● Broadband, but want stubs to have the same characteristic impedances.

● Result of this step (Step 6):

/ / / /1 3/ /2

01 03

02

21.0881 pF

27.3181 pF7.54713

5.82598

C C

CZ Z

Z

/ // // / Z 01 Z 02 Z 032C1C C 3

50 50

/ / // / // / Z 01 Z 02 Z 032C1C C 3

56.9084 56.9084

/ / / / / / /1 3 2

/01 03 02

21.0881 pF

7.54713

C C C

Z Z Z

51

Page 53: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

52

12

Target combline filter physical layout

/ / // / // / Z 01 Z 02 Z 032C1C C 3

56.9084 56.9084

Very approximately

52

Page 54: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Compare prototype with comblinenetwork model

53

• The impedances of the shunt stubs are mostly determined by the impedances of the individual microstrip lines.

• For manfacturability reasons we would like the microstrip lines to have the same width. 

• Therefore we want the shunt stubs to have the same characteristic impedance.

• The impedances of the series stubs are mostly determined by the coupling of the individual microstrip lines.

/ / // / // / Z 01 Z 02 Z 032C1C C 3

56.9084 56.9084

Page 55: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Procedure/ / / /

1 3/ /2

01 03

02

21.0881 pF

27.3181 pF7.54713

5.82598

C C

CZ Z

Z

/ // // / Z 01 Z 02 Z 032C1C C 3

50 50

Want Z02 scaled so that new Z02 = Z01.

00

0y

2 31

J3J1 J J

0

Better to use admittance now as the analysis is based on building a nodal admittance matrix.

54

Page 56: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

55

Element values are impedances except for y and y1, which are admittances.

x xy1

y = yx1

2

0 00

J3J1 J J

1 3

y J3J1

0

2 31

j/Jj/J

-j/J

j/J

-j/J

j/J

y = yx1

y1 J3J1

0

1 2 3

j/dj/d

-j/d -j/d

j/dj/d

Inverter impedance scaling

00

0y

2 31

J3J1 J J

0

Admittances are the same   

if

Scaled original network

Original network

Procedure is:(A) Develop nodal admittance matrix of original network.(B) Develop nodal admittance matrix of scaled network.Then equate to find required parameters.

A

B

55

Jd = x

Page 57: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

56

Realization of a series inductor as a shunt capacitor with 10 inverters.

1 nH

IMPEDANCE OR ADMITTANCEINVERTERS

y 11

1 nF

C

IMPEDANCE INVERTERS

10 10 1C

10 pF

xx

y = yx1

ADMITTANCE INVERTERS

1C= 0.1 S= 0.1 S

JJ

Example

Note the impact on the size of the capacitor!

56

Page 58: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

57

Summary, step 6

/ / // / // / Z 01 Z 02 Z 032C1C C 3

56.9084 56.9084

/ / / / / / /1 3 2

/01 03 02

21.0881 pF

7.54713

C C C

Z Z Z

• The stubs now have the same impedance, and the capacitances are the same.

• After scaling so that Z01 = Z02:

57

Page 59: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Case Study: Parallel Coupled-Line Combline Filter. Part I

Step 7: Inverter Realization

58

// / // // // / / Z 03C 3Z 022C1C Z 01

Z 012 Z 023

Page 60: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Outline● The prototype filter from Step 6 is

● Realize inverters using stubs.

● Combine adjacent stubs.

● Result of this step (Step 7):

/ / // / // / Z 01 Z 02 Z 032C1C C 3

56.9084 56.9084

59

// / // // // / / Z 03C 3Z 022C1C Z 01

Z 012 Z 023

Page 61: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

60

Realization using short‐circuited stubs resonant at twice the passband center frequency.

56.9084

-j -j

j

56.910256.9084

56.9084

j

j

j

Inverter realization using stubs

Impedance inverter

Realization as alumped‐element circuit

Equivalence was established using ABCD parameters.

60

Page 62: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Inverter translation

/ / // / // / Z 01 Z 02 Z 032C1C C 3

56.9102 56.9102

/ / / / / / /1 3 2

/01 03 02

21.0881 pF

7.54713

C C C

Z Z Z

j

j

j

j

-j

Z 01= 56.9102Z x

7.54713 56.9102

= 7.54713 Stubs can be combined.

61

Page 63: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

62

j

-j

Z 01= 56.9084Z x

7.54713 56.9084

= 7.54713

-jj 7.54713 56.9084

j 8.70106

j

Z 01= 8.70106

8.70106

Combining stubs

Represent impedance as one stub.

Represent parallel stubs as parallel impedances.

Convert to a single impedance.

62

Page 64: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

63

// / // // // / / Z 03C 3Z 022C1C Z 01

Z 012 Z 023

Bandpass filter prototype without inverters

/ / / / / / /1 3 2

/01 03

012 023/ /02

21.0881 pF

8.70106 56.9084

10.2715

C C C

Z ZZ Z

Z

fr = 2f0f0 is the center frequency of the design.

Note that in many designs fr = 2f0.This is simply assumed sometimes. But fr could have another relationship.

63

Page 65: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Compare prototype with comblinenetwork model

1

2

4

3

Combline section 

Z

Z

012

1 2Z 011 022

64

Model: 

// / // // // / / Z 03C 3Z 022C1C Z 01

Z 012 Z 023

Z

Z

012

1 2Z 011 022

Z

Z

012

1 2Z 011 022

C 1 C32C

Output

1 2

InputWith capacitors: 

Page 66: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

An issue with resonant frequency

● So the f0’s are different!

● What do we do?

● We need to re-examine the development the lead to the assignment of fr .

1

2

4

3

Combline section 

( fr = f0 )

Z

Z

012

1 2Z 011 022

Model: 

// / // // // / / Z 03C 3Z 022C1C Z 01

Z 012 Z 023

( fr = 2f0 )

Here f0 is the center frequency of the match.

Here f0 is the center frequency of the bandpass filter.

65

Page 67: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Consider exact network model of combline section

1

2

4

3

Combline section 

66

There is nothing here that depends on the relationship of fr and f0 .

Z 0 oo21: 2

1: 21: 2

1: 2

V1

V2

2 :1

2 :1 2 :1

2 :1

V4

V3

VX

WV

ZV

YVWI YI

ZIIX

I4

I3I1

I2

Z 0 e e2

Exact model:

Page 68: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Reconsider network models of comblinesection1

2

4

3

Combline section 

67

There is nothing here that depends on the relationship of fr and f0 .

Z 0 oo21: 2

1: 21: 2

1: 2

V1

V2

2 :1

2 :1 2 :1

2 :1

V4

V3

VX

WV

ZV

YVWI YI

ZIIX

I4

I3I1

I2

Z 0 e e2

Exact model:

1: n n

4

3

:1

1

201Z

02Z

Approximate model:This is believed to be most accurate when fr = f0 .That is, when the lines are /4 long at the operating frequency.But it is a reasonably good model all frequencies, even when it is /8 long .

Here f0 is the operating frequency

Page 69: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Reconsider simplified network model of combline section

1

2

4

3

Combline section 

1: n n

4

3

:1

1

201Z

02Z

2

1: n

Z 02

Z 012

1

( fr = f0 ) Z1: n

02

Z011 2

Z

Z

012

1 2Z 011 022

68

Pretty good model even when fr = f0 (e.g when it is /8 long).

Page 70: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Compare prototype with comblinenetwork model

1

2

4

3

Combline section 

Z

Z

012

1 2Z 011 022

69

Model: 

// / // // // / / Z 03C 3Z 022C1C Z 01

Z 012 Z 023

Z

Z

012

1 2Z 011 022

Z

Z

012

1 2Z 011 022

C 1 C3

50

50 2COutput

1 2

Input

With capacitors:

These lines are /8 long at f0.

( fr = 2f0 )

Page 71: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

70

Summary, Step 7

70

// / // // // / / Z 03C 3Z 022C1C Z 01

Z 012 Z 023

/ / / / / / /1 3 2

/01 03

012 023/ /02

21.0881 pF

8.70106 56.9084

10.2715

C C C

Z ZZ Z

Z

Page 72: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Case Study: Parallel Coupled-Line Combline Filter. Part J

Step 8:Scaling Characteristic Impedances of Stubs

71

t tt

tt

2C

Z0 23Z0 12

C 30Z t 1 0Z t 2 0Z t 3C 1

Page 73: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Outline● From Step 7

● Want the characteristic impedances of the shunt stubs to be between 30 and 80 .

/ / / / / / /1 3 2

/01 03

012 023/ /02

21.0881 pF

8.70106 56.9084

10.2715

C C C

Z ZZ Z

Z

// / // // // / / Z 03C 3Z 022C1C Z 01

Z 012 Z 023

72

Page 74: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Desired stub impedances

73

// / // // // / / Z 03C 3Z 022C1C Z 01

Z 012 Z 023

• The impedances of the shunt stubs are mostly determined by the impedances of the individual microstrip lines.

• For manfacturability reasons we would like the microstriplines to have reasonable width. 

• On Alumina (r around 10) that means that we want the characteristic  impedances of the stubs to be between 30 and 80 .

• The impedances of the series stubs are mostly determined by the coupling of the individual microstrip lines.

Page 75: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Scale Impedances

/ / / / / / /1 3 2

/01 03

012 023/ /02

21.0881 pF

8.70106 56.9084

10.2715

C C C

Z ZZ Z

Z

// / // // // / / Z 03C 3Z 022C1C Z 01

Z 012 Z 023

Scale to 80 .

Multiply impedances by a factor of 80/10.2715.

74

Want characteristic  impedances of the stubs to be between 30  and 80 .

Page 76: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Scale Impedances/ / / / / / /

1 3 2/

01 03

012 023/ /02

21.0881 pF

8.70106 56.9084

10.2715

C C C

Z ZZ Z

Z

// / // // // / / Z03C3Z022C1C Z01

Z012 Z023

Multiply impedances by a factor of 80/10.2715.

t tt

tt

2C

Z0 23Z0 12

C 30Z t 1 0Z t 2 0Z t 3C 1

1 3 2/

0 1 03

0 12 0 23

0 2

2.70759 pF

67.7683 443.232

80

t t t

t

t t

t

C C C

Z ZZ Z

Z

75

Page 77: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

76

Summary, Step 8

76

t tt

tt

2C

Z0 23Z0 12

C 30Z t 1 0Z t 2 0Z t 3C 1

1 3 2/

0 1 03

0 12 0 23

0 2

2.70759 pF

67.7683 443.232

80

t t t

t

t t

t

C C C

Z ZZ Z

Z

Page 78: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Case Study: Parallel Coupled-Line Combline Filter. Part K

Step 9: 50 Match

77

ttt

tt

139.404

139.404

Z0 23Z0 12

C 30Z t 1 0Z t 22C 0Z t 3C 1

Page 79: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

78

Use Impedance Inverters

t tt

tt

2C

Z0 23Z0 12

C 30Z t 1 0Z t 2 0Z t 3C 1

Result of Step 8:

78

ttt

tt

139.404

139.404

Z0 23Z0 12

C 30Z t 1 0Z t 22C 0Z t 3C 1

Page 80: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

79

Summary, Step 9

79

1 3 2/

0 1 03

0 12 0 23

0 2

2.70759 pF

67.7683 443.232

80

t t t

t

t t

t

C C C

Z ZZ Z

Z

ttt

tt

139.404

139.404

Z0 23Z0 12

C 30Z t 1 0Z t 22C 0Z t 3C 1

Page 81: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Case Study: Parallel Coupled-Line Combline Filter. Part L

Step 10: Implementing the Input/Output Inverters

80

t

tt Z0 23Z0 12

1C 3C

CbCb

0Z t 1 2C 0Z t 2 0Z t 3

Page 82: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Outline● From Step 9

● Implement input and output inverters.

81

ttt

tt

139.404

139.404

Z0 23Z0 12

C 30Z t 1 0Z t 22C 0Z t 3C 1

Page 83: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

RL

Yin

C

C

a

b

K RL

Yin

An inverter as a capacitor network

K C

C

a

b

These are equivalent but only for resistive loads.

Equate admittances, note that Yin of inverter is real.

This is not the same as general matching which works with complex conjugate impedances.

It is the same as matching If input and output are resistances.

82

Page 84: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

An inverter as a capacitor network

K C

C

a

b

These are equivalent but only for resistive loads.

This is can be shown by using a complex load and calculating the input impedance of the capacitive network with a complex load.

83

Page 85: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Derivation capacitor network (at 1 GHz)

84

in 22

50 1 1389.426 1139.540

La

b L

RY sCK sC R

1.06484 pF1.22170 pF

a

b

CC

C

C

a

b

389.426  50 

inYLR

Page 86: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

85

External inverters as capacitive networks

ttt

tt

139.404

139.404

Z0 23Z0 12

C 30Z t 1 0Z t 22C 0Z t 3C 1

Ca

Cb

Ca

Cb

85

Note that Ca and C1 are in parallel.

Page 87: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

86

t

tt Z0 23Z0 12

1C 3C

CbCb

0Z t 1 2C 0Z t 2 0Z t 3

Summary, Step 10

1 1 3

2

0 1 0 3

0 12 0 23

0 2

1.64276 pF

2.70759 pF

1.22170 pF

67.7683 443.232

80

a t

t

b

t t

t t

t

C C C C

C

C

Z ZZ Z

Z

Page 88: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Case Study: Parallel Coupled-Line Combline Filter. Part M

Physical Design of Combline Filter

87

Cb CbC1 C3

50

50 t 2COutput

1 2

Input

Page 89: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Outline● From Step 10

● Capacitors stay as lumped-element capacitors● Implement the following in microstrip:

88

t

tt Z0 23Z0 12

1C 3C

CbCb

0Z t 1 2C 0Z t 2 0Z t 3

tt Z0 23Z0 12

0Z t 1 0Z t 2 0Z t 3

Page 90: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Key Concept

89

1

22

1

2

1

• Can treat three coupled lines as two pairsof coupled lines with the center line shared.

• Error is small.

• One transmission path that is missing is direct coupling of the first line to the third line. This coupling is very small.

Page 91: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

90

w2w1

L

s1

w3w2

L

s2

Cb C1 C3t 2C Cb

w3w2w1

L

s s21

tt Z0 23Z0 12

0Z t 1 0Z t 2 0Z t 3

tZ0 12

0Z t 1 0Z t 2

t

0Z t 3

Z0 23

0Z t 2

Physical design of the three coupled lines

90

Page 92: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

91

w2w1

L

s1

tZ0 12

0Z t 1 0Z t 2

Implement one pair at a time.

91

Equivalent circuits for a combline section.

Z011 Z022

Z012

21

1: n

Z 02

Z01

1

2

1

2

4

3

Page 93: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

92

Derivation of parameters

92

Equivalent circuits for a combline section:

Z011 Z022

Z012

21

1: n

Z02

Z01

1

2

012

011

011 02202 012 01

011 022 012

11 7.540 0.1326

3342 and 69.17

Zn KZ n

Z ZZ nZ Z nZ Z Z

From model theory:

Page 94: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

93

Derivation of parameters

93

Equivalent circuits for a combline section.1: n

Z02

Z01

1

2

1

2

4

3

Two estimates of coupled line system impedance:2

20 ,1 01 0 ,2 02 2

1 68.56 and 55.80 1

S SKZ Z K Z Z

K

This happened because the shunt stubs in the  Pi arrangement of stubs is not symmetrical.  So take mean:

0 0 ,1 0 ,2 63.8 S S SZ Z Z

Page 95: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

94

Derivation of parameters

94

Equivalent circuits for a combline section.

1: n

Z02

Z01

1

2

1

2

4

3

0

0

0 0

20 0

63.8

1 55.8 1

/ 72.9 S

S

o S

e o

Z

nZ Zn

Z Z Z

Dimensions of microstriplines determined using tables or iteratively solving coupled line equations.

Page 96: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

95

Cb C1 C3t 2C Cb

w3w2w1

L

s s21

Physical design of the three coupled lines

95

rh w

Conductor pattern

Stript

0

0

0

63.8 55.8 72.9

S

o

e

ZZZ

Choose alumina substrate with r = 10, h = 635 m.

Use lookup  table for a 50  system impedance.

1 2 3

1 2

591 m (600 m rounded)635 m (650 m rounded)

7.24, 5.95

Take 6.56ee eo

e ee eo

w w ws s

Page 97: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

96

Physical design

Cb C1 C3t 2C Cb

w3w2w1

L

s s21

r = 10, h = 635 mw1 = w2 = w3 = 600 ms1 = s2 = 650 mL = g/8 = 14.65 mm

w1

w2

w3

L

via

s

s1

2

Layout (to scale)

Capacitor values are unchanged (e.g. implement using surface‐mount capacitors).

96

0

0

30 cm @ 1 GHz

/g e

(recall fr = 2f0 )

Page 98: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

97

Revisit Assumptions

Cb C1 C3t 2C Cb

w3w2w1

L

s s21

r = 10, h = 635 mw1 = w2 = w3 = 600 ms1 = s2 = 650 mL = 14.65 mm

These values were derived looking up a table for a50  system impedance.

However Z0S = 63.8

97

Page 99: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

98

Revisit Assumptions, wCb C1 C3

t 2C Cb

w3w2w1

L

s s21

r = 10, h = 635 mw1 = w2 = w3 = 600 ms1 = s2 = 650 mL = 14.65 mmThese values were derived looking up a table for a50  system impedance.

Have three system impedances:

20 ,1 01

2

0 ,2 02 2

0 0 ,1 0 ,2

1 68.56

55.80 1

63.8

S

S

S S S

Z Z K

KZ ZK

Z Z Z

This choice mostly affects w1, w2, and w3.

Could optimize in EM simulation, but better to get closer now.

Choose Z0S = 55.8 .98

Page 100: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

99

Update w

Cb C1 C3t 2C Cb

w3w2w1

L

s s21

r = 10, h = 635 mw1 = w2 = w3 = 500 ms1 = s2 = 650 mL = 14.65 mm

Use Z0S = 55.8 .

99

Page 101: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

100

Revisit Assumption, LCb C1 C3

t 2C Cb

w3w2w1

L

s s21

r = 10, h = 635 mw1 = w2 = w3 = 500 ms1 = s2 = 1150 mL = 14.65 mm

For e , used geometric mean of even and odd mode effective permittivity (affects L). 

100

LC C0 Z 1Z 01

Instead of adjusting L in EM‐based optimization (to get Z1 right) we can tune capacitor (C0) .

Page 102: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

101

Summary, physical design

1 3

2

1.64276 pF

2.70759 pF

1.22170 pFt

b

C C

C

C

101

Cb C1 C3t 2C Cb

w3w2w1

L

s s21

Alumina (r = 10), h = 635 mw1 = w2 = w3 = 500 ms1 = s2 = 650 mL = 14.65 mm

Page 103: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Case Study: Parallel Coupled-Line Combline Filter. Part N

Microwave Circuit Simulation

102

Cb CbC1 C3

50

50 t2COutput

1 2

Input

Page 104: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Outline● Physical Design

● First developed lumped-element BPF reference● Microwave circuit simulation

– Use microstrip coupled line element (MCLIN)– Compare and interpret response– Optimize

103

Cb C1 C3t 2C Cb

w3w2w1

L

s s21

w1

w2

w3

L

via

s

s1

2

Page 105: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

104

Z0 = 50 ΩC13 = C33 = 27.107 pFL13 = L33 = 934.47 pHC23 = 288.54 fFL23 = 87.787 nH

Z0

Vg

L13 C13

L23 C23

L33 C33

Z0

Lumped-Element BPF for Reference

10

20

30

40

60

50

S214

8

12

16

24

20

11S(d

B)

21S(d

B) S11

1.00.90.80.70.60.5 1.1 1.31.2 1.4 1.5

0

Frequency (GHz)

0

104

Page 106: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

105

0

Frequency (GHz)

60 24

20

10

30

40

50

4

8

12

16

20

11S(d

B)

S 21(d

B)

0.5 6.53.5

11S

S21

8.5

0

Wideband Response

Z0

Vg

L11 C11

L21 C21

L31 C31

Z0

105

Page 107: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

106

0.80 GHz

1.20 GHz

0.90 GHz

0.94 GHz

0.92 GHz

1.10 GHz1.08 GHz

1.06 GHz1.02 GHz

0.98 GHz

S11 of the lumped-element BPF

Z0

Vg

L11 C11

L21 C21

L31 C31

Z0

10

20

30

40

60

50

S214

8

12

16

24

20

11S(d

B)

21S(d

B) S11

1.00.90.80.70.60.5 1.1 1.31.2 1.4 1.5

0

Frequency (GHz)

0

106

Page 108: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

107

The zeros of the S11response, and hence the poles of the S21response, are at 0.96, 1.00, and 1.04 GHz.

0.80 GHz

1.20 GHz

0.90 GHz

0.94 GHz

0.92 GHz

1.10 GHz

1.08 GHz

1.06 GHz1.02 GHz

0.98 GHz

0.96 GHz1.00 GHz1.04 GHz

S11 of the lumped-element BPF

Z0

Vg

L11 C11

L21 C21

L31 C31

Z0

107

zeros

Page 109: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

108

0.80 GHz

1.20 GHz

0.90 GHz

0.94 GHz

0.92 GHz

1.10 GHz

1.08 GHz

1.06 GHz1.02 GHz

0.98 GHz

0.96 GHz1.00 GHz1.04 GHz

S11 of the lumped-element BPF

108

S214

8

12

16

24

20

11S(d

B)

S11

1.00.90.80.70.60.5 1.1 1.31.2 1.4 1.5Frequency (GHz)

0

zeros

zeros

Page 110: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

109

Details: 6 μm gold metallization

Cb CbC1 C3

50

50 t2COutput

1 2

InputCb CbC1 C3

50

50 t 2COutput

1 2

MCLIN

Input

1 2 3

Circuit model using MCLIN element

1 3

2

1.64276 pF

2.70759 pF

1.22170 pFt

b

C C

C

C

Alumina (r = 10), h = 635 mw1 = w2 = w3 = 500 ms1 = s2 = 650 mL = 14.65 mm

109

Page 111: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

110

Response with MCLIN element

10

20

30

40

60

50

S214

8

12

16

24

20

11S(d

B)

21S(d

B)

S11

1.00.90.80.70.60.5 1.1 1.31.2 1.4 1.5

0

Frequency (GHz)

0

Response of lumped‐element BPF

110

(a) s1 = s2 = 650 m (b) s1 = s2 = 1150 m

20

10

30

40

50

4

8

12

16

20

11S(d

B)

S 21(d

B)

1.060 24

0

0.5 1.5

0

Frequency (GHz)

S21(a)

S21(b)

S11(b)

Page 112: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

1.06 GHz

0.88 GHz

1.20 GHz

1.12 GHz

1.08 GHz

1.10 GHz

1.04 GHz

1.00 GHz0.98 GHz

0.96 GHz

0.94 GHz 0.92 GHz

0.90 GHz

1.02 GHz

0.80 GHz

111

S11 response with MCLIN element

Locus gets close to origin twice. 

11S(d

B)

4

8

12

16

20

S11

0

0.5 1.0 1.5Frequency (GHz)

24

Page 113: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Frequency (GHz)

40

11 , MCLIN

S 21, Lumped

S21 , MCLIN60

20

10

30

S50

S21

(dB

)

0

4

8

12

16

20

11S

(dB

)

240.5 1.0 1.5

0

112

1 3

2

1.22170 pF

1.64276 pF

2.70759 pF

b

t

C

C C

C

Alumina (r = 10), h = 635 mw1 = w2 = w3 = 500 ms1 = s2 = 1150 mL = 14.65 mm

1 3

2

1.9076 pF

2.8748 pFt

C C

C

Optimized S11 response with MCLIN element

Values for optimized response. Account for error in L.

Cb CbC1 C3

50

50 t 2COutput

1 2

Input

L

Page 114: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Frequency (GHz)

40

11 , MCLIN

S 21, Lumped

S21 , MCLIN60

20

10

30

S50

S21

(dB

)

0

4

8

12

16

20

11S

(dB

)

240.5 1.0 1.5

0S11 response with optimized MCLIN element

Cb CbC1 C3

50

50 t 2COutput

1 2

Input

Path 1Path 2

Path 2 not considered in synthesis.

At 1.2 GHz Path 1 and Path 2 cancel.

At 0.8 GHz Path 1 and Path 2 reinforce.

There is partial reinforcement below 0.9 GHz.

There is partial cancellation above 1.1 GHz.

113

Page 115: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

1.06 GHz

0.94 GHz

0.92 GHz

0.90 GHz0.80 GHz

1.20 GHz1.04 GHz

1.02 GHz

1.00 GHz0.98 GHz

0.96 GHz

1.10 GHz1.08 GHz

114

S11 response with optimized MCLIN element

Page 116: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

1.06 GHz

0.94 GHz

0.92 GHz0.90 GHz

0.80 GHz

1.20 GHz1.04 GHz1.02 GHz

1.00 GHz0.98 GHz

0.96 GHz

1.10 GHz1.08 GHz

115

Comparison of S11 response

0.80 GHz

1.20 GHz

0.90 GHz

0.94 GHz

0.92 GHz

1.10 GHz

1.08 GHz

1.06 GHz1.02 GHz

0.98 GHz

Lumped BPF BPF with optimized MCLIN

Page 117: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

1.06 GHz

0.94 GHz

0.92 GHz0.90 GHz

0.80 GHz

1.20 GHz1.04 GHz1.02 GHz

1.00 GHz0.98 GHz

0.96 GHz

1.10 GHz1.08 GHz

116

S11 response with with optimized MCLIN

40

11 , MCLIN S21 , MCLIN60

20

10

30

S50

S21

(dB

)

0

4

8

12

16

20

11S

(dB

)

240.5 1.0 1.5

0

During manual tuning look at both rectangular S11 plot and Smith chart plot.

Page 118: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

117

0

Frequency (GHz)

60 24

20

10

30

40

50

4

8

12

16

20

11S(d

B)

S 21(d

B)

0.5 6.53.5

11S

S21

8.5

0

Wideband response of lumped-element BPF

Z0

Vg

L11 C11

L21 C21

L31 C31

Z0

117

Page 119: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

10

30

40

50

4

8

12

16

20

11S

(dB

)

S21

(dB

)

0.5 6.53.5

S 21

0

8.5

0

Frequency (GHz)

11S

60 24

20

118

Optimized S11 response with MCLIN element

Cb CbC1 C3

50

50 t 2COutput

1 2

Input

Recall that fr = 2f0.So transmission lines look the same atfr , 3fr , 5fr …, i.e. f0 , 6f0 , 10f0 …

BUT impedance of capacitance is not the same, hence the spurious passbands are shifted.

Spurious basebands at  f0 , 4f0 , 7.5f0 , …

fr = 2f0

Page 120: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

10

30

40

50

4

8

12

16

20

11S

(dB

)

S21

(dB

)

0.5 6.53.5

S 21

0

8.5

0

Frequency (GHz)

11S

60 24

20

119

Effect of higher fr ?

Cb CbC1 C3

50

50 t 2COutput

1 2

InputWhat if fr = 3f0?

Spurious passbandswould be shifted higher in frequency. BUT diminishing returns, design becomes more sensitive.

fr = 2f0

Page 121: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Frequency (GHz)

40

11 , MCLIN

S 21, Lumped

S21 , MCLIN60

20

10

30

S50

S21

(dB

)

0

4

8

12

16

20

11S

(dB

)

240.5 1.0 1.5

0

120

Alumina (r = 10), h = 635 mw1 = w2 = w3 = 500 ms1 = s2 = 1150 mL = 14.65 mm

1 3

2

1.22170 pF

1.9076 pF

2.8748 pF

b

t

C

C C

C

Summary, optimized physical design

Cb CbC1 C3

50

50 t 2COutput

1 2

Input

LOnly adjusted C1, Ct2, and C3.

Page 122: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

Case Study: Parallel Coupled-Line Combline Filter. Part O

EM Simulation

121

Cb CbC1 C3

50

50 t2COutput

1 2

Input

Page 123: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

400 μm× 400 μm tantalum vias6 μm gold metallization. EM enclosure has perfect conducting walls withXDIM = 22 mm, YDIM = 20 mm and height = 5.635 mm.

Cb CbC1 C3

50

50 t2COutput

1 2

Input

Cb CbC1 C3

50

50 t 2COutputInput

EM Subcircuit

231

1

3

2

w1

w2

w3

XDIM

YDIM

L

via

Enclosure

s

s1

2

122

Alumina (r = 10), h = 635 mw1 = w2 = w3 = 500 ms1 = s2 = 1150 mL = 14.65 mm

1 3 2

1.22170 pF

1.9076 pF , 2.8748 pFb

t

C

C C C

Use optimized MCLIN‐based BPF values

Page 124: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

S 21

(dB

)

10

20

30

40

60

50

0

1.00.90.80.70.60.5 1.1 1.31.2 1.4 1.5

4

8

12

16

24

20S11, EM

S21, MCLIN

S21, EM 11S(d

B)

Frequency (GHz)

0

123

Comparison of responses

Could further optimize . . .

Page 125: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

S 21

(dB

)

10

20

30

40

60

50

0

1.00.90.80.70.60.5 1.1 1.31.2 1.4 1.5

4

8

12

16

24

20S11, EM

S21, MCLIN

S21, EM 11S(d

B)

Frequency (GHz)

0

124

Comparison of responses

• Bandwidth is smaller• Indicates lower overall coupling

• Notch above passband has shifted lower.

• Overall response is almost the same as with MCLIN‐based analysis

• Perhaps slight mismatch at center of passband.

• Use MCLIN‐based analysis to optimize design.

• Gridding in EM analysis (50 m used here could have resulted in EM analysis differences).

• Some subtle effects are captured in EM Simulation not in MCLIN analysis

• E.G. via coupling.

Page 126: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

S11 response on a Smith chart

EM Analysis

0.80 GHz

1.00 GHz

0.98 GHz

0.96 GHz

0.94 GHz

0.92 GHz

1.08 GHz

0.90 GHz

1.06 GHz

1.20 GHz

1.04 GHz

1.02 GHz

1.10 GHz

Page 127: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

1.06 GHz

0.94 GHz

0.92 GHz

0.90 GHz0.80 GHz

1.20 GHz1.04 GHz

1.02 GHz

1.00 GHz0.98 GHz

0.96 GHz

1.10 GHz1.08 GHz

126

S11 response (optimized)

MCLIN Analysis

Page 128: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

S11 response (optimized)

MCLIN Analysis

EM Analysis

127

Page 129: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

128

S11 response on a Smith chart

S 21

(dB

)

10

20

30

40

60

50

0

1.00.90.80.70.60.5 1.1 1.31.2 1.4 1.5

4

8

12

16

24

20S11, EM

S21, MCLIN

S21, EM 11S(d

B)

Frequency (GHz)

0

Page 130: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

129

Wideband response

Frequency (GHz)

60 24

20

10

30

40

50

4

8

12

16

20

11S(d

B)

S 21(d

B)

0.5 6.53.5

S21

11S

0

8.5

0

Same as with MCLIN‐based analysis

Page 131: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

130

Manufactured filter considerations

Cb CbC1 C3

50

50 t 2COutput

1 2

Input

L

w1

w2

w3

XDIM

YDIM

L

via

Enclosure

s

s1

2

It will be necessary to tune every filter manufactured.

Fabrication tolerances are about 1%.

Greater accuracy than that is required.

Tuning done by adjusting capacitor values.

Page 132: Case Study: Parallel Coupled- Line Combline Filter...Edition, by Michael Steer. SciTech Publishing, 2014. Presentation copyright Michael Steer Case Study: Parallel Coupled-Line Combline

131

Summary, Parallel Coupled-Line Combline Filter

Cb CbC1 C3

50

50 t2COutput

1 2

Input

L

Filter synthesized using a methodical process.

Microwave simulation required to optimize design.

EM simulation as a check as there are coupling mechanisms that cannot be captured otherwise.

Every filter manufactured will require tuning.