case studies for fluid flow

Upload: imran-unar

Post on 08-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/7/2019 Case Studies for Fluid Flow

    1/30

    1

    N-S equations are 2nd order , nonlinear , non-homogeneous

    partial differential equations . They are very difficult to solve .

    Only for very limited number of cases , they can be solved in

    closed form .

    CASE STUDIES: Application of Equations of Motion

    (N-S Equations)

  • 8/7/2019 Case Studies for Fluid Flow

    2/30

    2

    Flow of a Falling Film

    The first example is the flow of a falling film . Consider the

    Flow of a liquid at steady state along an inclined plate.

    We are looking for (1) Volume flow rate

    (2) Velocity profile perpendicular to the inclined plate

  • 8/7/2019 Case Studies for Fluid Flow

    3/30

    3

    Take a control

    volume from

    the system

    Assumptions:(1) Constant temperature Constant density , viscosity .

    (2) Laminar Flow

    (3) Neglect entrance & exit effects .

  • 8/7/2019 Case Studies for Fluid Flow

    4/30

    4

    Start from the Navier-Stokes equation

    For vz

    :

    vx=0 vz is not function of z vz is not function of y

    0(steady state) vy=0 Assuming vz is not function of z

    uniform pressure

    Driving force-

    Gravity only

    GDE (Governing Differential Equation)

    zzzzz

    zz

    yz

    xz g

    z

    v

    y

    v

    x

    v

    zz

    vv

    y

    vv

    x

    vv

    t

    v

    x

    x

    x

    x

    x

    x

    x

    x!

    x

    x

    x

    x

    x

    x

    x

    x)(

    2

    2

    2

    2

    2

    2

    RJ

    02

    2

    !x

    x@

    z

    zg

    x

    vR

    0cos !x

    x Fg

    x

    v

    gz g

    Fcos!g

    gz

  • 8/7/2019 Case Studies for Fluid Flow

    5/30

    5

    2nd order , needs 2 Boundary Conditions.

    B.C.

    ,2

    ,

    !!

    !xx!

    xx!!

    z

    zz

    xz

    vx

    x

    v

    x

    vx

    H

    QX

  • 8/7/2019 Case Studies for Fluid Flow

    6/30

    6

    FVQ

    F

    VQ

    cos1

    cos

    2

    2

    2

    2

    gx

    v

    g

    x

    v

    z

    z

    !x

    x

    !xx

    From GDE

    ,vz is a function of x only

    Integrate

    dx

    dv

    x

    v zz !x

    x@

    1cos

    1cxg

    dx

    dvz ! FVQ

    From B.C.(1) c1=0

    xgdx

    dv! FV

    Qcos

    1

  • 8/7/2019 Case Studies for Fluid Flow

    7/30

    7

    Integrate again

    From B.C. (2)

    Velocity Profile

    2

    2co

    2

    cxgvz

    ! FV

    Q

    ])([H

    HFVQ

    HFV

    Q

    FV

    Q

    HFVQ

    HFVQ

    xgv

    gxgv

    gc

    cgv

    z

    z

    z

    !

    !@

    !@

    !!

  • 8/7/2019 Case Studies for Fluid Flow

    8/30

    8

    When x=0 , vz=vz,max

    For average velocity vz

    For volume flow rate

    0

    3

    00

    co3

    ]3

    co

    |]3

    co

    ]co

    HFVQ

    HHHFV

    Q

    HHFV

    Q

    HFHV

    QHH

    H

    HH

    !

    !

    !

    !!

    gv

    g

    xxg

    dxx

    gdxvv

    z

    zz

    2

    max,

    cos2

    1HFV

    Q!@ gv

    z

    3cos3

    1)( HFV

    QH

    wgwvQ z

  • 8/7/2019 Case Studies for Fluid Flow

    9/30

    9

    Flow Between Parallel Plates

    Consider the flow of fluid between parallel plates .

    Assumption :

    (1) Constant density , viscosity

    (2) Laminar flow

    (3) Neglect entrance effect

  • 8/7/2019 Case Studies for Fluid Flow

    10/30

    10

    Start from the Navier-Stokes equation

    For vz

    :

    vx is not function of x vz=0 vx is not function of z

    steady state vy=0 vz is not function of x 0

    Driving force-Pressure gradient

    GDE

    z

    xxxxz

    xy

    xx

    x gz

    v

    y

    v

    x

    v

    xz

    vv

    y

    vv

    x

    vv

    t

    v

    x

    x

    x

    x

    x

    x

    x

    x

    x

    x

    x

    x

    x

    x

    x

    x)(

    2

    2

    2

    2

    2

    2

    RJ

    xy

    vx

    x

    x

    !x

    x J

    R 2

    2

  • 8/7/2019 Case Studies for Fluid Flow

    11/30

    11

    B.C. 1

    !!

    !x

    x!!

    x

    x

    yx

    vy

    y

    vy

    H

    X

    L

    PP

    y

    vL

    PP

    xLx

    L

    )(1

    1

    0

    0

    !

    x

    x

    !

    x

    x

    Q

    V

    J

  • 8/7/2019 Case Studies for Fluid Flow

    12/30

    12

    2

    20

    0

    1

    10

    )(

    2

    1

    )(1

    0)1.(.

    )(1

    cyL

    PPv

    y

    L

    PP

    y

    v

    cCFromB

    cy

    L

    PP

    Y

    V

    Lx

    Lx

    LX

    !

    !

    x

    x

    !

    !

    x

    x

    Q

    Q

    Q

  • 8/7/2019 Case Studies for Fluid Flow

    13/30

    13

    From B.C. (2)

    L

    PPyv

    L

    PPyL

    PPv

    L

    PPc

    cLPP

    Lx

    LL

    x

    L

    L

    )()(

    2

    1

    )(21)(

    21

    )(

    2

    1

    )(21

    22

    22

    2

    2

    22

    !

    !

    !

    !

    HQ

    HQQ

    HQ

    HQ

  • 8/7/2019 Case Studies for Fluid Flow

    14/30

    14

    At y=0 , vx=vx,max

    For average velocity

    For volume flow rate

    L

    PP

    v Lx 0max, 1 ! HQ

    L

    PPdyvv Lxx

    0

    2

    03

    1 !!

    Q

    H

    H

    H

    L

    PPwL 0

    3

    3

    2

    H

  • 8/7/2019 Case Studies for Fluid Flow

    15/30

    15

    Flow through a Circular Tube

    Consider the fully developed flow of a fluid in a along tube of

    Length L and radius R .

    Some assumptions

    (1) Constant density and viscosity

    (2) Laminar Flow

    (3) Neglect entrance effect

  • 8/7/2019 Case Studies for Fluid Flow

    16/30

    16

    Start from the Navier-Stokes eq in cylindrical coordinate

    r

    z L

    Area=2rL Area=2(r+r)L

    r

    zzzzz

    zzz

    rz g

    z

    vv

    rr

    vr

    rrzz

    vv

    v

    r

    v

    r

    vv

    t

    v

    x

    x

    x

    x

    x

    x

    x

    x

    x

    x!

    x

    x

    x

    x

    x

    x

    x

    x]

    1)(

    1[

    2

    2

    2

    2

    2 UR

    J

    U

    U

    vr=0 vz not function of z

    steady state v=0 vz not function of vz not function of z

    gzr

    vr

    rr

    gr

    vr

    rrz

    z

    z

    xx

    !x

    x

    xx

    x

    x

    xx

    xx

    !

    JR

    RJ

    )(1

    )(1

    0GDE , Driving force

    gravity+pressure gradient

  • 8/7/2019 Case Studies for Fluid Flow

    17/30

    17

    B.C. (1) 0,0 !x

    x!

    r

    vr

    z

    0, !!z

    vR

  • 8/7/2019 Case Studies for Fluid Flow

    18/30

    18

    1

    1

    1

    cgr

    r

    Lr

    v

    r

    Integrate

    gL

    rr

    vr

    r

    gz

    Pr

    r

    vr

    r

    Lz

    Lz

    z

    !

    !

    !

    VL

    VL

    L

    V

    L

    From B.C. (1) c1=0

    2(

    1 20

    gr

    r

    L

    PP

    r

    v

    r

    Lz

    VL

    !x

    x

    )2

    (1

    0 gr

    L

    PP

    r

    vLz

    VL

    !x

    x

  • 8/7/2019 Case Studies for Fluid Flow

    19/30

    19

    Integrate again

    From B.C.(2)

    2

    2

    )

    4

    (1

    cgrr

    L

    v Lz

    !

    V

    L

    )4

    (1

    )4

    (1

    0

    0

    0

    grRL

    c

    cgrR

    L

    L

    L

    VL

    VL

    !

    !

    ])(1)[4

    )((

    )4

    (1

    )4

    (1

    22

    0

    2

    0

    2

    0

    R

    rRgr

    L

    PPv

    grR

    L

    PPgr

    r

    L

    PPv

    Lz

    LLz

    !

    !

    LV

    VL

    VL

    Velocity Profile

  • 8/7/2019 Case Studies for Fluid Flow

    20/30

    20

    At r=0 , vz=vz,max

    For average velocity

    For volume flow rate

    Hagen-Poiseuille Law

    related melt penetration into porous refractory

    4((

    2

    0

    max,LV

    R

    gL

    PP

    vL

    z

    !@

    UT

    T

    8)(1

    2

    0

    2

    0 02

    R

    gL

    PPd d

    Rv L

    R

    zz

    !!

    )()(

    4

    LTU Rg !

    LU

    U

    1

    4

    w

    w R

  • 8/7/2019 Case Studies for Fluid Flow

    21/30

    21

    Creeping flow around a solid sphere

    Consider the flow of an incompressible fluid about a solid sphere.The fluid approaches the sphere upward along the z-axis with a

    uniform velocity v

    Assumptions

    (1) Const ,

    (2) V is 0

    (3) Very slow flow ( , Reynolds number < 1)

    Application : Inclusions Removal

    Rg

    Dv

  • 8/7/2019 Case Studies for Fluid Flow

    22/30

    22

    Start from the Navier-Stokes equations in sphere coordinates(r, , )

    For r-component

    rrr

    rrr

    r

    r

    gv

    rv

    r

    v

    rv

    rv

    r

    P

    r

    vvv

    r

    vv

    r

    v

    r

    vv

    t

    v

    VJU

    UU

    L

    JUUV

    J

    UU

    JUJU

    xx

    xx

    xx!

    x

    x

    x

    x

    x

    x

    x

    x

    )sin

    2cot222(

    )sin

    (

    2222

    2

    22

    Accelerationterms=0 due to very slow flow

    0 v=0

  • 8/7/2019 Case Studies for Fluid Flow

    23/30

    23

    : known as nabla or del is the vector differential operator .

    For Cartesian coordinate

    kz

    jy

    ix

    x

    x

    x

    x

    x!

    2 known as Laplacian operator

    2

    2

    2

    2

    2

    22

    zyx xx

    xx

    xx!

    For spherical coordinate

    !

    xx

    xx

    xx!

    sinJU H

    JUH

    UH

    rrrr

  • 8/7/2019 Case Studies for Fluid Flow

    24/30

    24

    For the component

    U

    JUU

    JUUJUUUU

    VJU

    U

    UUL

    U

    U

    JUUV

    gv

    rr

    vv

    rV

    P

    r

    r

    v

    r

    vvv

    r

    vv

    r

    v

    r

    vv

    t

    v

    r

    r

    r

    x

    x

    x

    x

    x

    x

    x

    x

    x

    x

    x

    x

    x

    x

    )sin

    cos

    sin(

    1

    )cot

    sin(

    Accelerationterms=0

    V=0

    Forcontinuity equation

    0)(sin

    1)sin(

    sin

    1)(

    1!

    x

    x

    x

    x

    x

    x

    x

    xJ

    VJ

    VVV

    vr

    vr

    vrrrt

    r

    const v=0

  • 8/7/2019 Case Studies for Fluid Flow

    25/30

    25

    G.D.E.

    )si

    2(

    )cot222

    (

    )si(si

    )(

    222

    2

    222

    2

    2

    2

    !xx

    xx

    !x

    x

    xx

    !xx

    xx

    UU

    U

    UU

    U

    VUUU

    VUU

    UUU

    gvvv

    gvv

    vv

    vv

    3 eqns , 3 unknowns (P , vr , v)

  • 8/7/2019 Case Studies for Fluid Flow

    26/30

    26

    Solve the above equations , we obtain

    U

    U

    UL

    V

    UL

    X

    U

    U

    sin]

    os]22

    os2

    sin2

    2

    r

    R

    r

    Rvv

    r

    R

    r

    Rvv

    r

    R

    R

    vgzPP

    r

    R

    R

    v

    r

    r

    !

    !

    !

    !

    g

    g

    g

    g

  • 8/7/2019 Case Studies for Fluid Flow

    27/30

    27

    The normal force acting on the solid surface is due to the pressure

    at the solid surface , where r=R , z=Rcos

    JUUUL

    UV

    UL

    UV

    T TddR

    R

    vgRPF

    R

    vgRPP

    n

    Rr

    si]s2

    3s[

    cos2

    3cos|

    22

    0 0 0

    0

    g

    g

    !

    !@

    !

    g! RvgRFn TLVT 2

    Buoyant force when Buoyant force due to

    the fluid is stegnant fluid movement

    Fn : Buoyant force on form drag

  • 8/7/2019 Case Studies for Fluid Flow

    28/30

    28

    As the surface , there is also shear stress acting tangentially , r

    We are only interested in the z-component of the shear stress ,

    rsin

  • 8/7/2019 Case Studies for Fluid Flow

    29/30

    29

    at the surface

    g

    g

    g

    !

    !

    !

    !

    Rv

    ddRR

    vF

    R

    v

    t

    Rrr

    TL

    JL

    L

    XT T

    U

    4

    ii2

    3

    i2

    3

    |

    2

    0 0

    2

    Ft=frictio drag

  • 8/7/2019 Case Studies for Fluid Flow

    30/30

    30

    Total force acting upward

    Stokes Law

    Fs Fk

    g! RvgRF TLVT 6

    3

    4 3

    stegnant with fluid movement

    R F

    (inclusions rise fast)