fluid flow practical

Upload: richardt-loots

Post on 21-Feb-2018

258 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 Fluid Flow practical

    1/24

    CAPE PENISULA UNIVERSITY OF TECHNOLOGYBELLVILLE CAMPUS

    DEPARTMENT OF CHEMICAL ENGINEERINGND : CHEMICAL ENGINEERING

    FLUID FLOW

    SUBJECT : CHEMICAL PLANT III

    LECTURER : Mr L. Kloppers, Mr. W Maree

    STUDENT : Richardt Johan Loots

    STUDENT NO. : 214196585

    Topic Mark

    allocation

    Mark

    Title Page 5

    Synopsis 5

    Intro!ction 5

    Literat!re "e#ie$ an

    T%eory &incl!ing in

    te't re(erencing)

    *+

    E'periental Set-!p

    an Proce!re*+

    "es!lts an isc!ssion

    Calc!lations5+

    Concl!sions 5

    /i0liograp%y *+

    Total *++

    I certi(y t%at t%is report is y o$n !naie $ork, e'cept (or t%e assistance

    recei#e (ro t%e teac%ing sta1. I !nertake not to pass t%is report onto

    any ot%er st!ent

  • 7/24/2019 Fluid Flow practical

    2/24

    Contents

    List o( Sy0ols........................................................................................................................................................ii

    I.Synopsis.................................................................................................................................................................i#

    *.Intro!ction...........................................................................................................................................................*

    2.Literat!re "e#ie$ an T%eory...............................................................................................................................2

    2.* 3l!i 4elocity..................................................................................................................................................2

    2.2 "eynols n!0er...........................................................................................................................................2

    2.2.* Lainar o$...........................................................................................................................................2

    2.2.2 T!r0!lent 3lo$.........................................................................................................................................2

    2.2.6 Transitional o$......................................................................................................................................2

    2.6 Hea Losses..................................................................................................................................................6

    2.6.* 3riction Losses........................................................................................................................................6

    2.6.2 S%ock Losses...........................................................................................................................................76.E'periental Proce!re........................................................................................................................................8

    6.* E'periental Set!p........................................................................................................................................8

    6.2 Apparat!s.......................................................................................................................................................8

    6.2.* Pipes !se...............................................................................................................................................8

    6.2.2 4al#es !se.............................................................................................................................................8

    6.6 Proce!re.......................................................................................................................................................9

    :. "es!lts an isc!ssion.........................................................................................................................................;

    :.* "ecore 4al!es.............................................................................................................................................;

    :.2 Calc!late 4al!es.........................................................................................................................................*+

    :.6 isc!ssion....................................................................................................................................................**

    :.6.* Pipes.....................................................................................................................................................**

    :.6.24al#es....................................................................................................................................................**

    :.6.6 "eccoenations.................................................................................................................................*2

    5. Concl!sions.........................................................................................................................................................*2

    7."e(erences...........................................................................................................................................................*6

    Appeni'...................................................................................................................................................................A

    Pipe Calc!lations..................................................................................................................................................A

  • 7/24/2019 Fluid Flow practical

    3/24

    A Cross-sectional area o( pipe 2

    d Pipe iaeter

    f 3riction (actor iensionless

    g =ra#itational acceleration constant >s2

    h Hea

    h C%ange in Hea

    hf 3riction Hea loss in a pipe syste H2?

    K Minor loss coe@cients (or 0ens an ttings iensionless

    L Pipe lengt%

    P Press!re kPa or H2?

    P Press!re rop kPa or H2?

    Q 4ol!etric o$ rate 6>s

    "e "eynolBs N!0er iensionless

    # 3l!i #elocity >s

    Greek symbols

    Pipe ro!g%ness

    3l!i #iscosity Pa.s

    ensity kg>6

    Subscripts

    E Cali0rate #al!es Incl!ing error (actor

    F 3anning

    H2O Properties o( $ater &!i)

    arcyBs

    6

  • 7/24/2019 Fluid Flow practical

    4/24

    I.Synopsis

    1.Introduction

    3l!i o$ or !i ec%anics is t%e !nerstaning o( $%at in!ences t%e o$ o(

    !is or gases It is 0ase on t%e analysis o( t%e 0e%a#io!r o( !is an gases

    $%ic% is 0ase on t%e (!naental la$s o( ec%anics an t%eroynaics

    $it%in a a close syste.

    T%e li(e-cycles o( stars, t%e creation o( atosp%eres, t%e so!ns $e %ear, t%e

    #e%icles $e ri#e, t%e systes $e 0!il (or ig%t, energy generation an

    prop!lsion all epens in an iportant $ay on t%e ec%anics ant%eroynaics o( !i o$ an t%e interaction o( t%e !i $it% its

    s!rro!nings.

    In t%is practical it $as set o!t to eterine t%e losses occ!rre $it%in a close

    syste o( o$. T%e losses $it%in a pipe epens on t%e "eynols n!0er an

    o$ rate o( t%e !i 0eing eas!re. /y kno$ing t%e "eynols n!0er it can 0e

    eterine $%at type o( o$ is present an t%e losses can 0e calc!late

    accoringly

    In t%e in!strial sense or in t%e processing o( !is an transport o( !is t%ese

    #al!es are o( !tost iportance an can in!ence #ario!s (actors s!c% as t%eaterials o( constr!ction, t%e sies o( t%e pipes, lengt%s o( pipes, $%ere !is

    0!st 0e coole or %eate, $%en !is !st 0e i'e etc. /y kno$ing all t%is t%e

    ost e@cient an econoical plant can 0e 0!ilt accoring to t%e specications

    an reD!ireents o( t%e !i or gas 0eing processe.

    T%e #ario!s (actors t%at play a role on t%e 0e%a#io!r o( a !i or gas $ill 0e

    isc!sse in t%e ne't section to o0tain a 0etter !nerstaning o( %o$ !is

    0e%a#e $it%in a certain syste an %o$ t%e aterials a1ect t%e o$ o( t%e !i.

    :

  • 7/24/2019 Fluid Flow practical

    5/24

    2.Literature Review and Teory

    2.1 !luid "elocity

    3lo$ #elocity in !is is t%e #ector el t%at pro#ies t%e #elocity o( !is at a

    certain tie an position. T%e #elocity o( a !i is epenant on #ol!etric

    o$rate an t%e area o( t%e pipe. T%e i1erence in press!re ca!se 0y a p!p

    ca!ses a !i to o$ in a pipe.

    v=QA F*G

    $%ere,v=velocity ( ms)

    Q=volumetric flowrate(m

    3

    s )

    A=area of pipe(m2)

    2.2 Reynolds number

    In !i ec%anics, t%e "eynols n!0er, "e, is a iensionless n!0er t%at

    gi#es a eas!re o( t%e ratio o( inertia (orces to #isco!s (orces an D!anties t%e

    relati#e iportance o( t%ese t$o types o( (orces (or gi#en o$ conitions

    N= v d

    .F2G

    W%ere,=density of the fluid (

    kg

    m3 )=viscosity of the fluid(Pa. s)

    v=Velocity of fluid( ms)

    d=diameter of the pipe( ms)

    Wit% t%e "eynols n!0er T%e type o( o$ can 0e eterine 0y t%e (ollo$ing

    5

  • 7/24/2019 Fluid Flow practical

    6/24

    2.2.1 Laminar #ow

    ?cc!rs $%en t%e !i o$s in parallel layers, $it% no i'ing 0et$een t%e layers.

    W%ere t%e center part o( t%e pipe o$ t%e (astest an t%e cyliner to!c%ing t%e

    pipe isnBt o#ing at all. T%e o$ is lainar $%en "eynols n!0er is less t%an

    26++.

    2.2.2 Turbulent !low

    In t!r0!lent o$ occ!rs $%en t%e liD!i is o#ing (ast $it% i'ing 0et$een

    layers. T%e spee o( t%e !i at a point is contin!o!sly !nergoing c%anges in

    0ot% agnit!e an irection. T%e o$ is t!r0!lent $%en "eynols n!0er

    greater t%an :+++.

    2.2.$ Transitional #ow

    Transitional o$ is a i' o( lainar an t!r0!lent o$, $it% t!r0!lent o$ in t%e

    centre an lainar o$ near t%e eges o( t%e pipe ."eynols n!0er is in

    0et$een 26++ an :+++ (or transitional o$.

    2.$ %ead Losses

    Hea losses occ!r $%en t%ere is a resistance o( o$ present , $%ic% is al$ays

    present in pipes, t%is ca!ses a press!re rop $%ic% can 0e eas!re $it%

    anoeters in t%is case it $as eas!re in H2?

    Factors afecting head loss

    3lo$ "ate Pipe iaeter

    Pipe lengt%

    4iscosity

    "o!g%ness o( pipe $all

    Corrosion an scale eposits

    Pipe ttings an 0ens

    Pipe linearity or straig%tness

    &Hyroatic.co, 2+*5)

    2.$.1 !riction Losses

    3riction losses occo!r !e to t%e nat!re o( t%e aterial it is tra#elling t%ro!g% as

    entione a0o#e t%is can 0e !e to t%e ro!g%ness o( a pipe, (riction !e to

    eposits in t%e pipe etc.

    Calc!lating press!re losses in lainar o$ is ac%ie#e $it% 2 anoetric t!0es

    an t$o isplaceent sensors, $%earas calc!lationg press!re losses in t!r0!lent

    o$ is ac%ie#e $it% t$o press!re sensors.

    T%e calc! lation can 0e one $it% t%e arcyBs (or!la

    7

  • 7/24/2019 Fluid Flow practical

    7/24

    h f=4 fF v

    2

    2 gd

    .F6G

    W%ere, h f=head loss due f riction(m)

    =engthof pipe(m)

    v=velocity of the fluid (

    m

    s)

    d=diameter of pipe(m)

    fF=fanning factor

    g=gravitational constant(m

    s2)

    Wit% t%is (or!la t%e %ea loss can 0e calc!late, in o!r case $e calc!late t%e

    (anning (actor.

    The Moody Chart

    W%en t%e (riction (actor is !nkno$n it can 0e eterine $it% a ooy c%art

    gi#en t%at yo! kno$ t%e "eynols n!0er&N"E), t%e iaeter o( t%e pipe&) an

    t%e relati#e ro!g%ness & ! /" ) o( t%e pipe. T%is $ill yiel a t%eoretical (riction

    (actor i1erent (ro t%e one eterine $it% a kno$n %ea loss.

    Absolute roughness( ! )

    A0sol!te Pipe "o!g%ness is a eas!re o( pipe $all irreg!larities o( coercial

    pipes. ?t%er t%an pipes, it is also !se (or representing ro!g%ness o( ot%er

    eD!ipent $alls. a0sol!te ro!g%ness %as iensions o( lengt% an is !s!ally

    e'presse in illieter &). &Enggcyclopeia.co, 2+*5)

    /elo$ is a ta0le listing a0sol!te ro!g%ness o( soe coon aterials

    8

  • 7/24/2019 Fluid Flow practical

    8/24

    Table 1 & 'bsolute Rou(ness)

    Surface Maer!a" A#$%"ue R%u&'(e$$C%eff!c!e( ) * !( ++

    Aluminum, Lead 0.001 - 0.002

    ra!n "rass, ra!n #o$$er 0.0015

    Aluminum, Lead 0.001 - 0.002

    %, %lastic %i$es 0.0015

    'i(er)lass 0.005

    *tainless steel 0.015

    *teel commercial $i$e 0.045 - 0.09

    P4C pipes $ere !se in t%e practical

    Relatie Roughness ( ! /" )

    "elati#e "o!g%ness o( a pipe $all can 0e ene as t%e ratio o( a0sol!te

    ro!g%ness to t%e pipe noinal iaeter. &Enggcyclopeia.co, 2+*5)

    #elativeroughness=! /"

    .F:G

    I( t%e relati#e ro!g%ness an a "eynols n!0er is kno$n t%e (riction (actor cant%en 0e eterine (ro t%e ooy c%art.

    9

  • 7/24/2019 Fluid Flow practical

    9/24

    2.$.2 Soc* Losses

    S%ock losses is inor losses !e to ttings, #al#es an 0ens in pipes. W%en a

    pipe is connecte to a 0en, #al#e or tting ,to connect one pipe to anot%er,

    inor losses $ill 0e present !e to irreg!lar s%ape or geoetry t%at c%anges t%eirection o( t%e o$ $%ic% ca!ses t!r0!lence

    T%is is !e to t%e (act t%at all !is %a#e $eig%t an t%!s %a#e oent!.

    I( a c%ange in s!r(ace occ!rs in a pipe s!c% as a #al#e or tting t%e irectional

    oent! $ill 0e c%ange, t!r0!lence occ!rs an t%!s s%ock losses occ!rs.

    W%en a !i o$s aro!n a 0en,t%e !i %as to c%ange irection 0!t its

    oent! carries it to t%e o!ter ege o( t%e 0en, t%is e1ecti#ely ecreases t%e

    pipe iaeter an increases t%e o$rate an t%is ca!ses an increase in %ea

    &Coecogs.co, 2+*5)

    T%e general eD!ation (or t%e %ea loss !e to an o0str!ction is as (ollo$s

    h=$ v

    2

    2 g

    ........F5G

    $%ere, h=headl oss due shock

    $=shock constant

    v=velocity of the fluid (m

    s)

    g=gravitational constant(m

    s2)

    $it% t%is (or!la t%e %ea loss can 0e calc!late. Again in o!r case $e

    calc!late t%e e'periental s%ock constant K

    Shock Constants (!)

    T%e K-#al!e represents t%e !ltiple o( #elocity %eas t%at $ill 0e lost 0y !i

    passing t%ro!g% a tting or #al#e.

    /elo$ is a ta0le o( s%ock constants (or ttings !se in t%e practical

    ;

  • 7/24/2019 Fluid Flow practical

    10/24

    Table 2 & Soc* loss constants

    $.+,perimental -rocedure

    $.1

    +,perimental

    Setup

    *+

    !i(ure 1 & +dibon computer controlled #uid #ow benc

    "alve type Soc* Constant

    =ate 4al#e, 3!lly ?pen +.*5

    =ate 4al#e, *>: Close +.27

    =ate 4al#e, *>2 Close 2.*

    =ate 4al#e, 6>: Close *8

    /all 4al#e, 3!lly ?pen +.+5

    /all 4al#e, *>6 Close 5.5

    /all 4al#e, 2>6 Close 2++

    iap%rag 4al#e, ?pen 2.6

    iap%rag 4al#e, Hal( ?pen :.6

    iap%rag 4al#e, *>: ?pen 2*

  • 7/24/2019 Fluid Flow practical

    11/24

    $.2 'pparatus

    $.2.1 -ipes used

    *. Soot% pipe &P4C) $it% an e'ternal iaeter o( 2+ an an internaliaeter o( *7.5.2. Soot% pipe &P4C) $it% an e'ternal iaeter o( 62 an an internaliaeter o( 27.5.

    $.2.2 "alves used

    *. =ate #al#e $it% inner iaeter o( 2+.2. iap%rag #al#e $it% inner iaeter o( 2+.6. /all #al#e $it% inner iaeter o( 2+.

    **

  • 7/24/2019 Fluid Flow practical

    12/24

    $.$ -rocedure

    *. T%e t!0es 0et$een t%e %yra!lic 0enc% an t%e !i o$ 0enc% $ere

    c%ecke to ens!re t%at t%ey $ere in orer. It $as iportant t%at t%e t!0e(ro t%e !i o$ 0enc% raine onto t%e tank o( t%e %yra!lic 0enc%.

    2. T%e $iring o( t%e !nit $as c%ecke to ens!re t%at it $as connecte an

    t!rne on.6. T%e p!p $as s$itc%e on.:. T%e 42 #al#e $as opene an it $as iportant to $ait !ntil all t%e air $as

    e'pelle (ro t%e pipe.5. A pipe, to 0e !se in t%e e'perient, $as ientie an t%e inner

    iaeter $as note.7. T%e press!re taps o( t%e corresponing anoeter $as connecte to t%e

    inlet an o!tlet o( t%e pipe. T%e anoetric t!0es $ere c%osen $%en t%e

    $ater col!n i1erences $ere lo$er t%an 9++ .8. T%e o$ rate an press!re rops across t%e pipe $as recore.9. Steps 7 8 $as repeate (or t%ree i1erent o$ rates.;. Steps 5 9 $ere repeate (or se#eral pipes.*+.T%e gate #al#e $as ientie an t%e press!re taps o( t%e corresponing

    anoeter $ere connecte to t%e inlet an o!tlet o( t%e gate #al#e. T%e

    anoetric t!0es $ere c%osen $%en t%e $ater col!n i1erences $ere

    lo$er t%an 9++ . 7 an 8.**.T%e o$ rate an press!re rop across t%e gate #al#e $as recore (or

    t%ree i1erent o$ rates.*2.Steps *+ an ** $ere repeate (or t%e iap%rag #al#e an 0all #al#e.

    *2

  • 7/24/2019 Fluid Flow practical

    13/24

    /. Results and

    Discussion

    /.1 Recorded "alues

    Table $ & Recorded -ipe "alues

    Table / & Recorded "alve "alues

    *6

    0r. -

    run3l4min5 3dm%265

    D176.6

    189m

    * 68.6 +.:

    2 7*.; 6.:

    6 8:.: 5.8

    D276.6

    289m

    * 69.* -*

    2 75.2 -+.;

    6 87.; -+.5

  • 7/24/2019 Fluid Flow practical

    14/24

    /.2 Calculated

    "alues

    Table 9 & Calculated -ipe"alues

    calculated variables e,perimental

    values

    calibratedvalues

    teoreticalvalues

    J 4 "e A %( (3 %( (3 ((3

    6>s >s"eynols

    Nr.2

    H2+

    -H2

    +- ooy

    -

    D176.6

    189m

    *+.+++7

    22.;+

    ;56;28.;5

    9

    +.+++2*

    +.+:+

    +.+++69

    +.67+

    +.++6:: +.+2+*

    +.++5+6

    2 +.++*+6

    :.928

    9;:;:.697

    +.6:+

    +.++**9

    +.;7+

    +.++666

    +.+*9;+.++:

    *:

    -

    run 3l4min5 3dm%265

    :ate"alve

    * 69.5 -*.*

    2 75.6 -+.;

    6 87.9 -+.7

    Diapra(m

    * 62 -+.*

    2 56.* 2.*

    6 77.: :.6

    ;all"a

    lve

    * 65.; -*

    2 5;.9 -+.;

    6 8:.9 -+.7

  • 7/24/2019 Fluid Flow practical

    15/24

    86

    6 +.++*2:

    5.9+2

    *+8577.859

    +.58+

    +.++*68

    *.:2+

    +.++6:* +.+*66

    +.++666

    D

    276.6

    289m

    * +.+++7:

    *.*52

    6:2;8.;52

    +.+++55

    -+.*+

    +

    -+.++;

    9++.+9

    ++.++89

    : +.+26++.++5

    85

    2 +.++*+;

    *.;8*

    597;6.7+9

    -+.+;

    +

    -+.++6

    +*+.*+

    ++.++66

    5 +.+2+:+.++5

    *

    6 +.++*29

    2.625

    7;227.+5+

    -+.+5

    +

    -+.++*

    2++.*9

    ++.++:6

    6 +.+*;8+.++:

    ;6

    *5

  • 7/24/2019 Fluid Flow practical

    16/24

    Table 8 & Calculated valve "alues

    /.$ Discussion

    T%e (riction (actors an s%ock constants o0taine is in close range o( t%e

    t%eoretical #al!es $%ic% leans to$ars correct calc!lations.

    T%ese res!lts $ere only o0taine !e to t%e application o( a correction (actor

    $%ereas i( no correction (actor $as !se a negati#e %ealoss $o!l 0e o0taine

    $%ic% is is not possi0le e'cept i( ot%er e'ternal (orces $ere present or energy

    *7

    calculated

    variables

    e,perimental

    values

    Calibrated

    values

    teoretical

    values

    " ' f * f * *

    6>s >s 2 H2+ - H2+ - -

    :ate"alve

    *+.+++7:

    2.+:25

    +.+++6*:*5

    -+.**+ -+.5*86* +.+7+.292*77

    +.*52+.++*+;

    6.:7::

    -+.+;+ -+.*:8*6 +.*+.*76:8:

    6+.++*29

    :.+8:5

    -+.+7+ -+.+8+;* +.*7+.*9;+;2

    Diapr

    a(m

    *+.+++56

    *.7;88

    -+.+*+ -+.+79+8 +.27*.87;;+*

    2.62 +.+++9; 2.9*8* +.2*+ +.5*;*77 +.8 *.86+552

    6+.++***

    6.5228

    +.:6+ +.78;9:2 *.*:*.9+2682

    ;all

    "alve

    *+.+++7+

    *.;+:7

    -+.*++ -+.5:+97 +.+9 +.:627;

    +.+52+.++*

    ++

    6.*8

    27-+.+;+ -+.*85:6 +.*

    +.*;:;2

    9

    6+.++*25

    6.;79:

    -+.+7+ -+.+8:85 +.*7+.*;;66;

  • 7/24/2019 Fluid Flow practical

    17/24

    $as ae to t%e syste. T%e !ncali0rate #al!es $ill not 0e incl!e in t%e

    isc!ssion.

    /.$.1 -ipes

    3or t%e soot% P4C pipes it can rsly 0e seen t%at $it% a increase in o$ratet%ere is a increase in t%e "eynols n!0er an t%at t%e o$ is t!r0!lent.

    Concerning pipe *, $it% a iaeter o( +.+*75 t%e cali0rate res!lts (or (anning

    (riction (actor is 0asically constant $it% increase in #elocity, $%ereas t%e

    t%eoretical #al!es s%o$ a ecrease in (anning (riction (actor, t%is res!lt can ay

    0e !e to incorrect calc!lation or incorrect eas!reent ?t%er reasons co!l 0e

    t%at t%e error (actor applie $as not correct or t%at t%ere $as air trappe in t%e

    pipe.

    Concerning pipe 2 $it% a iaeter o( +.+275 it can 0e seen t%at t%at t%e rate

    o( increase in #elocity is a0o!t %al( o( pipe one $%ic% is !e to t%e i1erence iniaeter. Coparing t%e cali0rate an t%eoretical (anning (actors it can 0e seen

    t%at 0ot% s%o$ an o#erall ecrease in (anning (actor $it% a increase in !i

    #elocity an "eynols an yet a increase in %ea loss.

    So it can 0e sai t%at $it% a increase in #elocity an "eynols t%ere is a

    ecrease in (riction (actor, ree0ering t%at e#en t%o!g% t%ere is a ecrease in

    (riction (actor , (riction losses is still increasing. T%is ay 0e !e to t%e (act t%at

    $it% a increase in #elocity t%e o$ o( t%e !i tens to t%e centre o( t%e pipe

    t%!s ecreasing (riction in t%e centre 0!t a increase in total (riction losses is still

    present collecti#ely.

    It ay also 0e sai t%at t%e %ig%er t%e "eynols n!0er, t%e ore constant t%e

    (riction (actor.

    ?#erall it can 0e seen t%at ost e'periental (anning (actors is lo$er t%an t%e

    t%eoretical #al!es o0taine an soe %ig%er $%ic% leas to t%e (act t%at t%ese

    #al!es are not in per(ect agreeent.

    /.$.2"alves

    T%e e'periental (anning (riction (actors o0taine (or t%e #al#es is in closeostly in close pro'iity o( t%e t%eoretical #al!es e'cept (or t%e 0all #al#e $%ere

    t%e #al!es are as !c% as 9 tie %ig%er t%an preicte 0y t%eory. W%en

    coparing t%e 0all #al#e s%ock constants (ro ta0le 2 it can 0e seen t%at i( it is

    *>6 close t%e constant is 5.5 $%ic% leas e to 0elie#e t%at t%e #al#e $as not

    opene (!lly or t%at t%e #al#e is e(ecti#e an co!l not 0e opene (!lly. T%is

    co!l also 0e !e to iper(ections o( t%e 0all an or #al#e.

    It can 0e seen t%at $it% a increase in #elocity t%ere is an o#erall ecrease in t%e

    s%ock constant an a increase in %ea loss.

    *8

  • 7/24/2019 Fluid Flow practical

    18/24

    /.$.$ Reccomendations

    Most iportantly is to $ork $it% a syste t%at is properly cali0rate an to

    alreay e'perientally kno$ t%e (riction (actors an s%ock coeecients, t%is ay

    0e one 0y repetiti#e e'periental testing or it ay 0e kno$n (ro t%e

    an!(act!rerBs specications.

    Seconly is to ens!re t%at t%ere is no leaks or air entering t%e syste $%ic%

    co!l res!lt in press!re losses an increase !npreicta0ility.

    Lastly, to eliinate all roo (or error $%en taking reaings an oing

    calc!lations, 0y staying (oc!se on t%e s!0ect at %an

    9. Conclusions

    T%e practical $as an s!ccess, t%e t%eory 0e%in t%e (anning (actor an s%ock

    constants is no$ properly !nerstoo an T%e role it plays in %ea losses

    T%e e'periental an t%eoretical #al!es (or (anning (actor an s%ock coe@cients

    $as s!ccess(!lly calc!late an copare to one anot%er 0y isc!ssion

    Alt%o!g% soe #al!es $ere inconsistent $it% t%eoretical #al!es it $as seen t%at

    $it% a increase in #elocity t%ere $as an increase in "eynols n!0er, a increase

    in %ea losses an a ecrease in (riction coe@cients.

    It $as isc!sse t%at t%is ecrease in t%e (riction coe@cient is ostly !e to t%e

    (act t%at !is tens to t%e centre o( a pipe as #elocity is increase an s%ear

    stress is ecrease on t%e 0!lk o( t%e !i 0!t still occ!rs at a increase rate on

    t%e !i at t%e o!terost point o( t%e pipe.

    It ay also 0e concl!e t%at t%e %ig%er t%e "eynols n!0er t%e saller t%e

    c%ange in (riction coe@cients is $it% a increase in o$. T%is is !e to t%e

    increase in oent! o( t%e !i.

    *9

  • 7/24/2019 Fluid Flow practical

    19/24

    8.References

    F*GStreeter, 4. Wylie, E. *;8;. Fluid mechanics. Ne$ ork Mc=ra$-Hill.

    F2GHyroatic.co,. 2+*5. Hea Loss in Piping Systes - Tec%In(o.

    %ttp>>$$$.%yroatic.co>"esientialPageOtec%in(opageO%ealoss.asp' *+

    ?cto0er 2+*5.

    F6GEnggcyclopeia.co,. 2+*5. A0sol!te Pipe "o!g%ness Enggcyclopeia.

    %ttp>>$$$.enggcyclopeia.co>2+**>+;>a0sol!te-ro!g%ness> *+ ?cto0er 2+*5.

    F:GCoecogs.co,. 2+*5. Hea Loss - Pipes - 3l!i Mec%anics - Engineering

    N!erical Coponents in C an CQQ.

    %ttp>>$$$.coecogs.co>li0rary>engineering>!iOec%anics>pipes>%eaOloss>in

    e'.p%p ** ?cto0er 2+*5.

    'ppendi,

    -ipe Calculations

  • 7/24/2019 Fluid Flow practical

    20/24

    $ead loss

    hf

    =1dm &2

    ' /10RTa0le 6

    #al!es

    h f=0.1m &2 '

    $?

    2' 7

    6.666@A -a.s

    N= v d

    N=1000 kg /m3 (1.152m/s (0.0265m

    0.00089Pa . s

    N=34297.95

    R(ro eD!ation : an ta0le ta0le *-P4C

    ##=!

    "=0.0015

    0.0265=0.00006

  • 7/24/2019 Fluid Flow practical

    21/24

    Uncalibrated Soc* constant

    Area o" ale

    +.+2+ Rapparat!s

    A=% "

    2

    4

    A=%0.020

    2

    4

    A=0.00031415m2

    Fluid #elocity

    Q=35.9 l

    min1min=60 s Q= 0.0

    0060 m3/s 1000l=1m

    3

    &2'=1000

    kgm

    3

    1?

    v=QA

    v=

    0.00060m3/s

    0.00031415m2

    v=1.9046m/s

    $ead loss

    h f=1dm &2 ' /10 RTa0le 6

    #al!es

    h f=0.1m &2 '

    9?

    h=$ v

    2

    2 g

    $=

    h2 g

    v2

    $=0.1(2(9.81m /s2

    1.90462

    $=0.54086

    Calibrated soc* constant

  • 7/24/2019 Fluid Flow practical

    22/24

    22

  • 7/24/2019 Fluid Flow practical

    23/24

    26

  • 7/24/2019 Fluid Flow practical

    24/24