capacitive micro machined ultrasonic transducers arrays (cmuts… · 2020. 3. 20. · nitride layer...

27
Capacitive Micro machined Ultrasonic Transducers arrays (CMUTs) for Structural Health Monitoring (SHM). Journée nationale contrôle sante et monitoring des structures March 12, 2020, Paris, France Presented by : Redha BOUBENIA In collaboration with: Gilles BOURBON Patrice LE MOAL Vincent PLACET Éric JOSEPH Emmanuel RAMASSO

Upload: others

Post on 27-Jan-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

  • Capacitive Micro machined Ultrasonic

    Transducers arrays (CMUTs) for

    Structural Health Monitoring (SHM).

    Journée nationale contrôle sante et monitoring des structures

    March 12, 2020, Paris, France

    Presented by : Redha BOUBENIA

    In collaboration with: Gilles BOURBON

    Patrice LE MOAL

    Vincent PLACET

    Éric JOSEPH

    Emmanuel RAMASSO

  • NuclearOiler…Aerospace Medical

    The real interest of the industrial sector for ultrasonic non-destructive testing

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    2

  • ❖ Maintenance is performed on immobilized devices

    ❖ Currently more than 25% of lifecycle costs are spent on inspection and reparation

    ❖ We develop acoustic instrumentation and technique for Structural Health Monitoring (SHM)

    • Detection of damage on real-time

    • Help for simulation validation

    • Collection of data

    • Predictive analysis

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    Introduction Characterisation techniques Experimental results Conclusion

    3

    Frequency range0.1 – 1 MHz

    Acoustic Emission Source

  • ❖ Size: little intrusive into the material

    ❖ High bandwidth

    Electrical connector Electrical conductor

    BackingActive element (piezoelectric)

    Front face (adaptation face)

    Piezoelectric sensor

    polysilicon membrane

    nitride layer

    ground electrode

    feed electrode

    anchor postsilicon substrate

    gap

    A-A

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    Introduction Characterisation techniques Experimental results Conclusion

    4

  • ❖ Size: little intrusive into the material

    ❖ High bandwidth

    Electrical connector Electrical conductor

    BackingActive element (piezoelectric)

    Front face (adaptation face)

    Piezoelectric sensor Capacitive sensor

    polysilicon membrane

    nitride layer

    ground electrode

    feed electrode

    anchor postsilicon substrate

    gap

    A-A

    ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    5

  • ❖ Frequency : 𝑓𝑟 = Τ𝑣2𝑒

    ❖ Size: 10 mm diameter X 12 mm height

    Electrical connector Electrical conductor

    BackingActive element (piezoelectric)

    Front face (adaptation face)

    Piezoelectric sensor Capacitive sensor

    polysilicon membrane

    nitride layer

    ground electrode

    feed electrode

    anchor postsilicon substrate

    gap

    A-A

    ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    ❖ Frequency :𝑓𝑟 =λ2

    2𝜋𝑅2ℎ

    𝐸

    12𝜌(1−ν2)

    ❖ Size: 16 mm diameter X 1.6 mm height

    6

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    polysilicon membrane

    nitride layer

    ground electrode

    feed electrode

    anchor postsilicon substrate

    gap

    A-A❖ Capacitive Micro machined Ultrasonic Transducer (CMUT):

    ▪ 2.5 mm X 2.5 mm chip

    ▪ 40 elementary cells

    ▪ PCB 12 mm diameter for electrical contact

    ▪ Wire bonded

    ▪ Encapsulated on 16 mm diameter

    7

  • polysilicon membrane

    nitride layer

    ground electrode

    feed electrode

    anchor postsilicon substrate

    gap

    A-A

    ❖ Validation of ability of CMUT to detect Acoustic Emission (AE)

    ❖ Validation of the ability to have an electrical measurement

    ❖ Improvement and development of the electrical measuring system

    ❖ Identification of the best configuration in the choice of electrical parameters

    ❖ Improvement of the signal noise ratio (S/N) : hard and soft

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    Introduction Characterisation techniques Experimental results Conclusion

    8

  • ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    9

  • ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    ❖ Bias voltage is adjusted between 0V to collapse voltage

    ❖ We applied VAC=0.5V peak-to peak with a synthesizer function generator (Helwett Packard 3325 B

    ❖ We measured the maximum amplitude of CMUT-R100 with laser Polytec vibrometer

    ❖ Collapse voltage at 85 V

    ❖ We applied 80% of collapse voltage

    ❖ Bandwidth frequency between 300 KHz to 500 KHz

    10

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    11

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    Aluminium

    CMUTTransducteur µ80/E

    µ80/R

    12

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    13

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    14

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Introduction Characterisation techniques Experimental results Conclusion

    15

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    Introduction Characterisation techniques Experimental results Conclusion

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    Micro-80/E

    CMUT-R100

    Micro-80/R

    Flax / epoxy

    specimen

    Instron Electropuls E10000 machine

    ❖ MTS Criterion machine equipped with 100 kN

    ❖ Load sensor control 0,1 mm/s axial

    ❖ 3 sensors are placed on flax /epoxy plate

    ❖ Streaming data of AE signal was recorded during 50 seconds

    16

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    Introduction Characterisation techniques Experimental results Conclusion

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    ❖ CMUT-R100 depicts an important AE activity compared with Micro-80/R

    ❖ At the end of tensile test, three transducers have the same amplitude of AE activity (80 dB)

    17

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    Introduction Characterisation techniques Experimental results Conclusion

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    ❖ CMUT-R100 shows an important AE frequency activity

    ❖ The shape response of the three transducers is similar

    ❖ At the end of tensile test, the frequency response of CMUT-R100 is comparable to µ80 E and R

    18

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    Introduction Characterisation techniques Experimental results Conclusion

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    ❖ Improvement of the detected signal

    ▪ Amplitude CMUT-V1: 7 mV

    ▪ Amplitude CMUT-R100: 30 mV

    ❖ Miniaturisation of the capacitive transducer

    ▪ Volume CMUT-V1: 2304 mm3

    ▪ Volume CMUT-R100: 322 mm3

    19

  • ▪ Electrical characterisation

    ▪ Acoustical Characterisation▪ Tensile test on flat /epoxy

    ▪ Signal amplitude comparison

    ▪ Signal frequency comparison

    ▪ Conclusion

    ▪ Perspective

    Introduction Characterisation techniques Experimental results Conclusion

    ▪ Context

    ▪ Capacitive and piezoelectric sensors

    ▪ Problematic

    ❖ Improvement of signal noise ratio

    ❖ Increase number of elementary cell

    ❖ Acoustical mismatching

    ❖ Line impedance mismatching

    ❖ Study influence of diameter of electrode

    ❖ The goal is to reach S/N of CMUT-R100 to S/N of µ80/R

    20

  • Thank you for your attention

    Journée nationale contrôle sante et monitoring des structures

    March 12, 2020, Paris, France

    Presented by : Redha BOUBENIA

    In collaboration with: Gilles BOURBON

    Patrice LE MOAL

    Vincent PLACET

    Éric JOSEPH

    Emmanuel RAMASSO

  • 22Travaux 2019-2020 : Etude de la réponse acoustique d’une

    membrane en fonction du couplage

    Le signal reçu peut être divisé par deux dans certain cas

    VDC=65V

  • 23Travaux 2019-2020 : Etude de la réponse acoustique d’une

    membrane en fonction du couplage

    Le signal reçu peut être divisé par deux dans certain cas

    VDC=65V

  • 24Travaux 2018-2019 : Premier essai sur éprouvette

    (Aluminium) 1V

  • 25Travaux 2018-2019 : Premier essai sur éprouvette

    (Aluminium) 1V

  • 26Travaux 2019-2020 : Premier essai sur éprouvette

    (Aluminium) 200mV

  • 27Travaux 2019-2020 : Premier essai sur éprouvette

    (Aluminium) 200mV (après filtre Matlab)

    Filtrage sur bande passante du capteur