calum fowler

Upload: darwin-patino-perez

Post on 07-Jul-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Calum Fowler

    1/36

    Review of  Composite Toroidal 

    and Development for On‐Board CNG 

    and Hydrogen Storage

     – Melbourne, Australia

    Supervisors:

    Prof. Chun Wang   – Primary supervisor   – RMIT University

     – –

    Composites Australia and CRC  – ACS Conference 2014

    .  

    Dr. Stephen Daynes – Associate supervisor  – RMIT University

  • 8/18/2019 Calum Fowler

    2/36

    Personal Background•   Graduated from Deakin University, Geelong in 2012

    with Bachelor of Engineering (Mechanical)•   Completed final year project on “Clamp load loss of 

    compos te o te o nts n con unct on w t Car on

    Revolution•   omp e e e ence ng neer ng n erns p rogram

    with CRC‐ACS over summer of 2012/ 2013

     – 

      “ ”

    •   Began PhD at RMIT in September 2013

    Composites Australia and CRC  – ACS Conference 2014

  • 8/18/2019 Calum Fowler

    3/36

    Project Overview•   PhD Project

      Sponsored by AutoCRC 2020 –   Gaseous Fuels: “to address both technological and social

     –  Toroidal vessels for gaseous fuel storage previously studied

    in AutoCRC Visionary Project (RMIT contributions)

    •   Begun in September 2013

    •   Aim: –    To optimise the design of filament wound carbon fibre composite

    toroidal vessels for high‐pressure CNG and hydrogen storage for

    vehicular usa e

    Composites Australia and CRC  – ACS Conference 2014

  • 8/18/2019 Calum Fowler

    4/36

    Aims of  this Presentation1. Briefly review the current “state‐of ‐the‐art” in

    regar s o on‐   oar s orage o an y rogen

    using composite pressure vessels (CPVs)

    2. Review recent research on the design, optimisation

    .further research and development of toroidal CPV

    Composites Australia and CRC  – ACS Conference 2014

  • 8/18/2019 Calum Fowler

    5/36

  • 8/18/2019 Calum Fowler

    6/36

    CNG and H dro en Gas

    •  3

     –  Stored in internally pressurised vessels

    •   Current CNG vessel standards allow u to 20 MPa

    (200 bars) of internal pressure

    •   H dro en vessels are able to store as at u to 35‐40MPa (350‐400 bars)

    •   Cylindrical and spherical vessels are traditional

    options due to constant/near‐constant curvature

    Composites Australia and CRC  – ACS Conference 2014

    Zheng et al, International   Journal  of  Hydrogen Energy , 37(1), pp. 1048‐1057, 2012

    ISO 11439:2013: Gas cylinders  – High pressure cylinders for on‐board storage on natural gas as a fuel for automotive vehicles, 2013

  • 8/18/2019 Calum Fowler

    7/36

    Limitations to Natural Gas Vehicle (NGV) Uptake•   Storage tanks difficult to integrate into vehicles

    •   ‐

    conventional retro‐fits•   Stora e tank o eratin ressures and internal volumes

    are too low

     –   Limited driving ranges

    •   Little current infrastructure

    •   Slow, inconvenient refuelling

    Figure 1:Composite H2   storage tank used in a

    Composites Australia and CRC  – ACS Conference 2014

    .,Flynn, Energy  Policy , vol. 30, pp. 613‐619, 2002

    http://www.autocrc.com/activities/research/gaseous ‐fuels‐program, AutoCRC – Gaseous Fuels Program Overview, Accessed, 31/03/2014

  • 8/18/2019 Calum Fowler

    8/36

  • 8/18/2019 Calum Fowler

    9/36

    C lindrical Pressure Vessels•   Disadvantages:

     –  Structural weaknesses due to use of end‐caps

    (changes of curvature; differing wall thicknesses)

     –  L m te to c rcu ar cross‐sect ons

      Deviations require additional wall thicknesses and

     –  Can be volumetrically inefficient in certain

    situations

     –  Nozzles/valves protrude from cylinder ends

    Composites Australia and CRC  – ACS Conference 2014

    White et al.,  AutoCRC Visionary  Project  C2‐24: Volume Efficient  High Pressure Storage Vessel  – Internal   AutoCRC Report , 2012

  • 8/18/2019 Calum Fowler

    10/36

    Toroidal Tank Exam les in Industr(a)   (c)

    Figure 

    3:(a) Thiokol   – toroidal tank liner

    fabrication

    o o   – omp e e oro a

    vessel (created by hand)

    (c) San Diego Composites   – FW

    toroidal vessel (automatedmanufacture)

    (d) San Diego Composites – RTM

    mold and accompanying

    toroidal vessel

    (b) (d)

    http://www.sdcomposites.com/Products/p_product1.html, San Diego Composites Website  – Pressurant and Propellant Tanks Product 

    Overview, Accessed 31/03/2014

    Composites Australia and CRC  – ACS Conference 2014

    Delay & Roberts, Toroidal Tank Development for Upper Stages, in 5th Conference on  Aerospace Materials, Processes and  Environmental  

    Technology , 2003

  • 8/18/2019 Calum Fowler

    11/36

    Toroidal Theory•   An axisymmetric shell of revolution formed by

    rotatin a 2D sha e 360 de rees about a central axis

    (no intersection at axis)•   A “donut” structure

    •   A bent, endless cylinder

    •   Advanta es:

     –  Fixed centre of mass

     –  No end‐caps

    Figure 

    4:A toroidal structure with circular 

    cross‐section (Li & Cook, 2002)

     –  Able to protect valve/nozzle/pressure regulator

     –   Potential to innovate design (circular cross‐section,

    Composites Australia and CRC  – ACS Conference 2014

    un orm c ness are no op ma

  • 8/18/2019 Calum Fowler

    12/36

    a

    R/r = 1.25  R/r = 2.5  R/r = 5

    (a) Toroids of various aspect ratio

    (R/r), and (b) geometrical parameters

    of a toroidal shell including major/circumferential radius (R) and minor/

    (b)

    cross‐sectional radius (r)

    r

    R

    Composites Australia and CRC  – ACS Conference 2014

    Vu, Structural  and  Multidisciplinary  Optimization, vol. 42(3), pp. 351‐369, 2010

  • 8/18/2019 Calum Fowler

    13/36

  • 8/18/2019 Calum Fowler

    14/36

    Hoop stress distribution for various

    toroidal aspect ratios around circular

    cross section

    Composites Australia and CRC  – ACS Conference 2014

    Vu, Structural  and  Multidisciplinary  Optimization, vol. 42(3), pp. 351‐369, 2010

  • 8/18/2019 Calum Fowler

    15/36

    Blachut, 2005•   Concluded that wall thickness variation was required

    to provide uniform stress distribution

    Figure 8:Side‐on view of metallic toroidal

    shells before and after internal

    pressurisation

    Vu & Blachut, 2009•

    specimens (location of maximum hoop stress)

     

    (a) Shape of metallic toroidal shell

    after burst and (b) burst failure

    location of the toroidal shell

    Composites Australia and CRC  – ACS Conference 2014

    Blachut,  Journal  of  Pressure Vessel  Technology  – Transactions of  the  ASME , vol. 127(2), pp. 151‐156, 2005

    Vu & Blachut,  Journal  of  Pressure Vessel  Technology  – Transactions of  the  ASME , vol. 131(5), p. 051203, 2009

  • 8/18/2019 Calum Fowler

    16/36

    oro a  amen   n ng

    a

    (b)

    (a) Overhead view of a FW toroidal vessel with some geometrical and winding parameters, and (b)

    layout of a toroidal filament‐winder with an associated coordinate system

    Composites Australia and CRC  – ACS Conference 2014

    Zu, Zhang, Xu & Xiao, International   Journal  of  Hydrogen Energy , vol. 37(1), pp. 1027‐1036, 2012

  • 8/18/2019 Calum Fowler

    17/36

     Geometry

    Figure 12:Isotensoid cross‐sections for

    increasin volume outlined

    Figure 11:Toroidal cross‐sections investigated by

    Composites Australia and CRC  – ACS Conference 2014

    by Zu et al., 2010,

  • 8/18/2019 Calum Fowler

    18/36

    Steele, 1965•   ons ere vo ume r c an mass e c enc es o c rcu ar an

    elliptically cross‐sectioned toroidal PVs

    •   Deviations from circular cross‐sections caused large decreases in

    structural performance

    •   Concluded, for practical purposes, circular cross‐sections produced

    lowest mass for constant and variable wall thicknesses

    Vu, 2010•

    methods to design isotropic toroidal pressure vessels of minimum

    weight

    ,•   Circular cross‐sections with thickness variation were the best

    balance between material saving and manufacturability

    Composites Australia and CRC  – ACS Conference 2014

    Steele,  Journal  of  Spacecraft  and  Rockets, vol. 2(6), pp. 937‐943, 1965

    Vu, Structural  and  Multidisciplinary  Optimization, vol. 42(3), pp. 351‐369, 2010

  • 8/18/2019 Calum Fowler

    19/36

    Z l. v ri •   The majority of recent studies into optimal cross‐

    sec ona geome ry an c ness o amen  ‐woun

    toroidal pressure vessels have involved Lei Zu: –    “   ‐

    filament‐wound toroidal pressure vessels,” in   17 th International 

    Conference of Composite Materials (ICCM‐17), Edinburgh, UK, 2009

     –    Zu, Koussios & Beukers, “Optimal cross sections of filament‐wound

    toroidal hydrogen storage vessels based on continuum lamination theory,”

    International Journal of Hydrogen Energy , vol. 35(19), pp. 10419‐10429,

    2010

     –   Zu, Koussios & Beukers, “A novel design solution for improving the

    performance of composite toroidal hydrogen storage tanks,”  International 

     Journal of Hydrogen Energy , vol. 37(19), pp. 14343‐14350, 2012

    Composites Australia and CRC  – ACS Conference 2014

  • 8/18/2019 Calum Fowler

    20/36

    Zu et al., 2010•   Optimal toroidal FWPVs had lower and wider profiles than

    circular toroidal FWPVs of equal volume

    Figure 13:(a) Optimal and circular profiles of 

    ,

    performance comparison of circular

    and optimal toroidal and cylindrical

    PVs

    •   Optimal toroids became circular at small internal volumes

     –    As internal volume increased, the optimal toroidal profile became

    more non‐circular•   Optimal toroids were lighter than circular equivalents at any

    e ual volume

    Composites Australia and CRC  – ACS Conference 2014

    Zu, Koussios & Beukers, International   Journal  of  Hydrogen Energy , vol. 35(19), pp. 10419‐10429, 2012

  • 8/18/2019 Calum Fowler

    21/36

     •   Optimal toroids produced lower stresses than geodesic

    equivalents

     –    Due to winding angle decrease, not the change in cross‐sectional

    shape

    gure :Sectional views of   (a)   a circular‐shaped toroidal vessel, and   (b)   an isotensoidal, non‐geodesically

    wound toroidal vessel obtained by Zu et al. (ρmin  = 0.2,  λ = 0.04), where  λ  is the friction coefficient

    between the non‐geodesic fibres and he mandrel surface

    (a)   (b)

    Composites Australia and CRC  – ACS Conference 2014

    Zu, Koussios & Beukers, International   Journal  of  Hydrogen Energy , vol. 37(19), pp. 14343‐14350, 2012

  • 8/18/2019 Calum Fowler

    22/36

     the “Natural Thickening Effect”

     

    Various wall thickness variations and cross‐sectional shapes of isotropic

    toroidal PVs investigated by Vu, 2010

    Composites Australia and CRC  – ACS Conference 2014

  • 8/18/2019 Calum Fowler

    23/36

     •  Performed thickness optimisation study on an

    re oro a an us ng an   a ec s

    Logic

    •  Approximately 50% weight saving predicted

    Figure 16:(a) Uniform thickness and (b)

    th

    iteration using Mattheck’s Logic

    Composites Australia and CRC  – ACS Conference 2014

    White et al.,  AutoCRC Visionary  Project  C2‐24: Volume Efficient  High Pressure Storage Vessel  (Internal  report), 2012

  • 8/18/2019 Calum Fowler

    24/36

      .  , •   The study then considered identical toroidal FW tanks that

    had ex erienced natural thickenin

         P    a     ]

    Figure 17:Comparison of hoop stress distribution

    between 80 litre toroidal FW tanks of     o    n    a

         l     S    t    r    e    s    s     [

    optimisations performed by White et al.

         M    e    r     i     d     i

    Degrees around the toroidal meridian [˚]

    •   The naturally thickened toroidal vessel was found to be 27%

    li hter com ared to one of uniform thickness

    (0˚ at upper crest, clockwise direction)

    Composites Australia and CRC  – ACS Conference 2014

    White et al.,  AutoCRC Visionary  Project  C2‐24: Volume Efficient  High Pressure Storage Vessel  (Internal  report), 2012

  • 8/18/2019 Calum Fowler

    25/36

    ,  , Figure 18:(a) A comparison of equal volume cylindrical and toroidal vessels worn on a persons back and (b)

    diagram of the toroidal breathing apparatus showing the natural thickening variation in the cross‐section

    Maximum thickness

    Minimum thickness

      Natural thickness build‐up almost exactly accounted for hoopstress variation for the given example

     –    No eometrical dimensions or toroidal as ect ratio iven

    Composites Australia and CRC  – ACS Conference 2014

    Cook et al., in 19th International  SAMPE Europe Conference, pp. 125‐138, 1998

  • 8/18/2019 Calum Fowler

    26/36

    O timisation of  Toroidal Windin  Angles ([α/‐α]n)

    Figure 

    20:Model depicting the geodesic helical winding of a

    toroidal vessel (White et al, 2012)

    Figure 

    19:Non‐geodesic winding pattern after 40 rotations of 

    mandrel using single helical winding (Zu et al., 2007)

    Composites Australia and CRC  – ACS Conference 2014

  • 8/18/2019 Calum Fowler

    27/36

    Zu et al, various dates

    •   Like toroidal geometry, the majority of recent studies into winding angle

    optimisation of toroidal FWPVs has involved Lei Zu: –    u, e an , attern es gn or non‐geo es c w n ng toro a pressure vesse s, n

    International Conference on Composite Materials (ICCM‐16), Kyoto, Japan, 2007

     –    Zu, Koussios and Beukers, “Pattern design and optimization for filament‐wound toroidal pressure

    vessels,” in   23rd  Technical Conference of the American Society for Composites, Memphis, TN, USA,

     –    Zu, Koussios and Beukers, “Design of filament‐wound circular toroidal hydrogen storage vessels

    based on non‐geodesic fiber trajectories,”   International Journal of Hydrogen Energy , vol 35(2), pp.

    660‐670, 2010

     –    Zu, Koussios and Beukers, “Minimum wei ht desi n of helicall and hoo wound toroidal h dro en

    storage tanks with variable slippage coefficients,”  Polymer Composites, vol. 33(12), pp. 2218‐2227,

    2012

     –    Zu, Koussios and Beukers, “A novel design solution for improving the performance of composite

    toroidal hydrogen storage tanks,” International Journal of Hydrogen Energy, vol. 37(19), pp. 14343‐

    ,

     –    Zu, Zhang, Xu and Xiao, “Integral design and simulation of composite toroidal hydrogen storage

    tanks,” International Journal of Hydrogen Energy, vol 37(1), pp. 1027‐1036, 2012

     –    Zu, “Stability of fiber trajectories for winding toroidal pressure vessels,” Composite Structures, vol.

    Composites Australia and CRC  – ACS Conference 2014

    , .   ‐   ,

  • 8/18/2019 Calum Fowler

    28/36

    Zu et al., 2008•   Created an optimisation algorithm to determine optimal

    winding paths and thickness distributions of circular helical‐

    and‐hoop wound toroidal PVs

     –    To obtain minimum weight while satisfying strength, non‐slippage and

    non‐bridging criteria

    •   Toroidal PV example:R/r = 4.0

    allowable sli a e coefficient = 0.3

    pburst (burst pressure) = 70 Mpa

    Xf  (filament tensile strength) = 4.9 Gpa

     –    Optimal average thickness: 1.8 mm

     –    Optimal average winding angle: 50.83˚   Figure 

    21:Comparison of geodesic and optimal

    non‐geodesic winding trajectories on

    toroidal mandrel

    Composites Australia and CRC  – ACS Conference 2014

    Zu, Koussios and Beukers, in 23rd  Technical  Conference of  the  American Society   for  Composites, Memphis, TN, USA, 2008

  • 8/18/2019 Calum Fowler

    29/36

    Zu et al., 2010•   Extended previous work to include continuum theory

     –    Netting theory used in previous study

    50˚‐56˚

    Zu et al., 2012•   se var a e s ppage coe c en s o crea e op ma

    non‐geodesic minimum weight toroidal vessels

    °.periphery to 55.12° at inner periphery

    Composites Australia and CRC  – ACS Conference 2014

    Zu, Koussios & Beukers, International   Journal  of  Hydrogen Energy , vol. 35(2), pp. 660‐670, 2010

    Zu, Koussios & Beukers, Polymer  Composites, vol. 33(12), pp. 2218‐2227, 2012

  • 8/18/2019 Calum Fowler

    30/36

    Zu et al., 2012•   Determined optimal cross‐sectional shapes of non‐

    geodesically wound, isotensoid toroidal PVs

    •   ye s ape oro resu e n w n ng ra ec or es

    varying from 5° at outer periphery to approximately°

    Zu, 2012•

    helical and helical‐and‐hoop winding methods

    •   Toroidal FWPVs with aspect ratios less than 3 should avoid

    netting‐based non‐geodesic winding –    Should employ geodesic or semi‐geodesic winding

    Composites Australia and CRC  – ACS Conference 2014

    Zu, Koussios & Beukers, International   Journal  of  Hydrogen Energy , vol. 37(19), pp. 14343‐14350, 2012

    Zu, Composite Structures, vol. 94(5), pp. 1855‐1860, 2012

  • 8/18/2019 Calum Fowler

    31/36

    Zu et al., 2012(a)   (c)

    Single Single

    Figure 22:Optimal geodesic trajectories after 300

    Helical

    Winding

    Helical

    Winding

    wound circuits of mandrel for:

    (a) single helical winding, and

    (b) symmetrically helical winding, and

    Optimal non‐geodesic trajectories

    (b)   (d)

    after 160 wound circuits of mandrel

    for:

    (c) single helical winding, and

    (d) symmetrically helical winding

    Symmetrical

    Helical

    Winding

    Symmetrical

    Helical

    Winding

    Geodesics   Non‐geodesics

    Composites Australia and CRC  – ACS Conference 2014

    Zu et al., International   Journal  of  Hydrogen Energy , vol. 37(1), pp. 1027‐1036, 2012

  • 8/18/2019 Calum Fowler

    32/36

    Conclusions drawn from Literature•   Majority of studies into toroidal FWPVs have been

    urel numerical theoretical

     – 

     Dedicated toroidal winding machinery is highly desirable –  Experimental validation required

      Uniform wall stress in toroidal FWPVs can beachieved by:

     –  Isotensoid cross‐sections

     – 

      a t c ness var at ons –  Optimal geodesic, semi‐ or non‐geodesic winding patterns

    Composites Australia and CRC  – ACS Conference 2014

  • 8/18/2019 Calum Fowler

    33/36

    Conclusions drawn from Literature•   Circular cross‐sections with wall thickness variations

    ‐ ‐

    weighting and manufacturability compared toelli tical isotensoid cross‐sections

     –  White et al. suggested further studies to determine if there

    is an optimal toroidal aspect ratio (R/r) where naturalt ic ening ten s towar s geometry o unconstraine

    thickness optimisations

    •   Utilising natural thickening would potentially simplify

    the toroidal FWPV desi n and manufacturin rocess

    Composites Australia and CRC  – ACS Conference 2014

  • 8/18/2019 Calum Fowler

    34/36

    Conclusions drawn from Literature•

    by Zu et al. should be utilised to maximise volumetricpotential of toroids

     –  Winding pattern optimisation is still needed for such ratios

    •   s u es re a ng o oro a s ave on y

    considered flawless and pristine vessels

    placement or impact damage) on design are required

    Composites Australia and CRC  – ACS Conference 2014

  • 8/18/2019 Calum Fowler

    35/36

    Research Questions

    1. Are optimal winding angles ([α/‐α]n) of toroidal

    FWPVs affected by the presence of holes and/or

    impact damage?

     –    a c oa ng

     –    Fatigue loading?

    2. Is there an optimal toroidal aspect ratio (R/r) where

    natural wall thickenin tends towards the eometr

    of unconstrained thickness optimisations?

    Composites Australia and CRC  – ACS Conference 2014

  • 8/18/2019 Calum Fowler

    36/36

     

    Li & Cook,  Journal  of  Pressure Vessel  Technology  – 

    Transactions of  the  ASME , vol. 124(2), pp. 215‐222, 2002

    I would like to thank AutoCRC, RMIT University and my supervisors for their on‐going support 

    Composites Australia and CRC  – ACS Conference 2014

    o  y  o   u .