c-more 2: observing life, measuring the phytoplankton

Upload: rucool

Post on 07-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    1/56

    C-MORE 2: Observing life, measuring the phytoplanktonOscar Schofield (RU COOL)

    Picture by Chris Gotschalk

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    2/56

    Enough energy make something new( )rearrange a molecule

    Enough energy to excite( )vibrate a molecule Enough energy move electrons

    Phytoplankton growth and nutrient assimilation is tied to ambient light levels.

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    3/56

    Photosynthesis = PAR * aph *

    aph =

    a(l )*Eo(l )dl400nm

    700nm

    Eo(l )dl400nm

    700nm

    Spectrally averaged absorption

    Energy that is into the cell, ,Varies cell pigmentation light history

    and size

    ~ 1%

    )()()(

    ddd EKdz

    dE=

    0.00 0.20 0.40 0.60 0.80 1.00

    Irradiance

    0.00

    20.00

    40.00

    60.00

    80.00

    100.00

    Depth

    (m

    )

    lar visible irradiance

    gy in

    to the oceanes with depth according to the IOPs

    with radiative transfer eqns describe the AOPS

    Efficiency of converting energy in( , ,End product electrons oxygen carb

    Varies with end product and physiol

    ..Quantum efficiency of

    Hi

    gh

    Low

    Absorption

    Fluorescenceor charge

    separation

    oxygen

    carbonfixation

    growth

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    4/56

    Every day, the ocean changes colourEvery day, the ocean changes colour

    or rather, it passes though a varietyor rather, it passes though a variety

    of hues between the morning, noonof hues between the morning, noon

    and night of a single day. The subtleand night of a single day. The subtle

    shapes of clouds, the glittering lightshapes of clouds, the glittering light

    of the sun, and the shifts inof the sun, and the shifts inatmospheric pressure tint the seaatmospheric pressure tint the sea

    with deep tones, cheerful tomes,with deep tones, cheerful tomes,

    plaintive tones that would cause anyplaintive tones that would cause any

    painter to pause in wonder.painter to pause in wonder.

    fromfrom The SamuraiThe Samurai by Shusaku Endoby Shusaku Endo

    (1980)(1980)

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    5/56

    Eyeball Optics

    The Secchi Disk:

    First systematic usage reported in 1866, butobserved and remarked upon much earlier.

    Early experiments carried out by CommanderCialdi, head of the Papal Navy, and ProfessorSecchi onboard the SS LImmacolataConcezione (Cialdi, 1866).

    Used operationally for establishing aids tonavigation over shallow water.

    Thanks to Marlon Lewis

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    6/56

    From John T. O. Kirks billabongs

    Measuring the light into the system

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    7/56

    Reflectance( ) = G* bb( )/{bb( ) +a( )}

    Wh t f th l i l DIMS?

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    8/56

    What are some of the classical DIMS?

    Claustre et al.

    Diatoms 0.114 + 0.051Cryptophytes 0.053 + 0.011

    = P/(Qpar(0+))

    Localweather

    seasonal

    Morel and Platt show * variabilityOf 50% around a value of at specific

    chl values

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    9/56

    Penetration of light is determined by the material in the waterwhich is determined by the overall inherent optical properties (IOPs)

    ( )Absorption a color

    .Photos by S Etheridge

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    10/56

    ( )Scattering b clarity

    + =a b c=c attenuation

    From Collin Roesler

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    11/56

    detector detector

    ( )Absorption a ( )Attenuation b

    WetLabs

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    12/56

    Scattering Case I waterscp(660) bp(660)

    Loisel and Morel 1998B

    p ChlAc =)660(

    Positivelycorrelated Non-linear, B 0.7

    High

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    13/56

    Particle backscattering

    Cannizzaro et al. 2002

    West Florida Shelf

    Karenia brevisbloom

    POC S i (C I )

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    14/56

    POC Scattering (Case I waters)

    Loisel and Morel 1998

    Bp POCAc =)660(

    B 1

    Subtropical Pacific, North Atlantic

    Contrast with non-linear

    dependence on Chl

    POC-Chl variationsare important

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    15/56

    Bottom layer

    POC-Scattering

    Gardner et al. 2001

    New England Continental Shelf

    Surface layer

    cp(660)

    Under specific conditions, the cp POC relationship varies

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    16/56

    E.m. radiation propagating as plane waves;E.m. radiation propagating as plane waves; gg

    geometric crossgeometric cross

    section (its shadow )section (its shadow )

    EFFICIENCY FACTORSEFFICIENCY FACTORS

    Energy absorbed withinEnergy absorbed withinEnergy scattered out by..Energy scattered out by..

    DividedbyDividedby

    Energy impinging onEnergy impinging on ggQaQa andand QbQb , respectively, respectively

    From beautiful work of Morel, Bricaud, and Kirk

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    17/56

    Durand et al. 2002

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    18/56

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    19/56

    Positivelycorrelated

    Chl: 0.02 25mg m-3

    (eutrophic,mesotrophic, and

    oligotrophicwaters)

    Bricaud et al. 1995Non-linear dependence

    Thanks to Heidi Sosik

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    20/56

    Chl-specific phytoplanktonabsorption

    Second-order

    variability in aph ()

    )(* )()( Bph ChlAa =

    Chl

    aa

    ph

    ph

    )()(*

    =

    A( ) and B( )

    statistically determined

    This reflects effects of changing growth conditions andcommunity structure with trophic status

    Note: unexplained variability

    Negatively correlated

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    21/56

    Low light

    High light

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    22/56

    Low light

    High light

    Photosyntheticpigments

    Photo-protectivepigments

    chlorophyte alga Haematococcus pluvialis

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    23/56

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    24/56

    2 0 22 0 42 0 62 0 82 1 02 1 22 1 4

    0

    2

    4

    6

    8

    0

    2

    D

    e

    p

    th

    (m

    )

    2 0 22 0 42 0 62 0 82 1 02 1 22 1 4

    0

    2

    4

    6

    8

    0

    2

    D

    e

    p

    th

    (m

    )

    0

    0.3

    0.6

    0.9

    1.2

    400 450 500 550 600 60

    500

    1000

    1500

    2000

    molph

    otons(m

    -2

    s-1

    )

    Depth( m

    )

    Calendar Day

    B

    mol photons m-2 s-1

    C

    Calendar Day

    D

    (m-1)pha

    Depth( m

    )

    0 22 0 42 0 62 0 82 1 02 1 22 1 4

    500

    1000

    1500

    2000

    0

    0

    0.3

    0.6

    0.9

    1.2

    400 450 500 550 600 650

    0

    0 . 3

    0 . 6

    0 . 9

    1 . 2

    4 0 04 5 05 0 05 5 06 06 57

    surface

    1m

    2m

    5m13m

    Wavelength (nm)Calendar Day

    A

    0 6 3 31 2 6 71 9 0 0

    0 .0 0 0 .1 6 0 .3 1 0 .4 7

    .Oliver et al 2004

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    25/56

    Vertical migration ofKarenia brevis

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    26/56

    0.0

    0.02

    0.04

    0.06

    0.08

    400 450 500 550 600 650 700

    chl achl b

    chl c

    PSC

    PPC

    wavelength (nm)

    absor

    ption

    coef

    ficient( m

    2 m

    g-1

    )

    From Bidigare

    Individual pigments can be measured on discrete samples biochemically

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    27/56

    0

    5

    10

    15

    20

    400 450 500 550 600 650 700

    Wavelength (nm)

    SpectralIrra

    di ance(

    W

    cm-2

    nm

    -1)

    chl a chl achl b

    chl c

    chl bcarotenoids

    phycobilins

    0

    0.25

    0.50

    0.75

    1.0

    1.25

    Relativ

    eAbsorption

    chl a-chl c-carotenoidschl a-chl b-carotenoids

    chl a-phycobilins

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    28/56

    0

    20

    40

    60

    80

    1000 1 2 3

    D

    epth

    (m)

    Relative pigment-specific

    spectrally weighted absorption

    B)

    Decreasing efficiency Increasing efficiency

    Chl a

    Chl bPSCChl c

    Wavelength (nm)

    0.00001

    0.0001

    0.001

    0.01

    0.1

    1

    10

    400 500 600 700

    Spectralirra

    diance(

    Wcm

    -2s-

    1)

    1

    25

    90

    Sun stimulatedfluorescence

    A)

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    29/56

    Absorbed photon Charge stabilization &

    photosynthesis

    Heat

    Fluorescence

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    30/56

    ChlorophyllChlorophyll a -a - Fate of photonsFate of photonsabsorbed by an isolated moleculeabsorbed by an isolated molecule

    Diagram of energy states in chlorophyll and possibletransitions

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    31/56

    Alexander Graham Belldeveloped spectrophone,

    essentially an ordinaryspectroscope equipped with

    a hearing tube instead of aneyepiece listening to lightinduced changes in the

    thermal sound.

    Light Absorption

    Heating

    Thermal Expansion

    PressureWave

    Photoacousticsignal

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    32/56

    Weak light flash

    Strong light flash

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    33/56

    Light

    Quantu

    m

    yield

    max

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    34/56

    Fluorescence

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    35/56

    Chlorop h

    yllfluorescen

    ce

    Chlorophyll concentration

    An

    idealw

    orld

    Stress(light, nutrients)

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    36/56

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    37/56

    8:00 12:00 18:00 22:00

    5

    10

    15

    20

    Local DaylightTime

    0

    Depth(m)

    CDOM

    8:00 12:00 18:00 22:00

    5

    10

    15

    20

    0

    D

    epth( m

    )

    Chl a

    mixed

    chromop

    hyte

    community

    m

    onospe

    cific

    G.breve

    c

    ommunity

    Local DaylightTime

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    38/56

    Fluorescence: The Basics

    F0 = aph PAR

    kf

    kp +kf+kd

    Fm = aph PARkf

    kf+kd

    Fv = aph PARkf

    kp(Q)+kf+kd

    Fm - F0

    Fm=

    kp

    kp +kf+kd=fIIe

    o

    time

    Fluores

    cencei n

    tensity

    F0

    Fm

    Ft

    Saturating flash

    Fm

    Other useful indices

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    39/56

    Time

    Fluores

    cencer i

    se

    Integrated area isreflection of the absorption

    cross-section

    Flash is onRC2

    Highlightcells

    Lowlightcells

    Photo-acclimation

    Photons

    Other useful indicesFLUORESCENCE INDUCTION

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    40/56

    Fluorescence

    deca

    yconstan

    ts

    Localtimeofday

    Time

    Other useful indicesFLOURESCENCE DECAY CONSTANTS

    LightFlash

    TurnedOff

    Fluores

    cenc

    e

    RC

    Pheo

    Qa

    Qb

    PQ

    D1

    D2

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    41/56

    0

    2

    4

    6

    8

    10

    0.1 1 10 100 1000

    0.4

    0.5

    0.6

    0.7

    0.8

    Irradiance ( mol photons m-2 s-1)Produ

    ctivity

    (mgCmgC

    hl

    a-2h

    -1)

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    CarbonQ

    ua n

    tumY

    ield

    (molCmol p

    hoton

    sabsorb

    ed-1

    )

    Fv/Fm

    Pmax

    Ik

    max

    Environmentalstress

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    42/56

    From Jassby and Platt 1976

    Is a cell a puddle or lake?

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    43/56

    fluorescence-based predictions of oxygen evolution

    m

    easur

    edoxygenev

    olution

    0

    1

    2

    3

    4

    5

    6

    0 1 2 3 4 5 6

    R

    2

    =0.92, P

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    44/56

    Photosynthesis a chain of cascading reactions:

    Each step sets the upper limit efficiency for each following step down the line

    mpsii (0.65) > m02 (on the order 0.125)> mco2 (on the order 0.07)

    For each use of energy go to one process, it is the expense of

    another reaction, this impacts the overall efficiency

    Nutrient source mco2Ammonium 0.09Nitrate 0.07

    Simplest expression for photosynthesis is

    P = * aph * PAR

    While chlorophyll specific absorption varies 3-4 fold

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    45/56

    From Babin et al.

    p y p pquantum yields vary by an order of magnitude

    Even in 1980s was treated as a constant

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    46/56

    From Behrenfeld et al.

    The con ersion efficienc can aries bet een end prod cts

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    47/56

    0

    2

    4

    6

    8

    10

    12

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    Absorbed Quanta by phytoplankton

    Light-saturated photosynthesis

    Light-limitedphotosynthesis

    RatioofOxyge

    ntoCa

    rbonQ

    uantum

    Y

    ields

    The conversion efficiency can varies between end products

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    48/56

    These instruments can be carried on remote platforms

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    49/56

    0.00

    0.25

    0.50

    0.75

    5:00 9:00 13:00 17:00 21:00

    0

    400

    800

    1200

    1600

    PAR

    molm

    -2s

    -1)

    Fv/Fm

    EPS

    Local Daylight Time

    0

    0.2

    0.4

    0.6

    6:00 10:00 18:0014:00

    Local Daylight Time

    Fv/F

    m

    0

    200

    400

    600

    800Visible light downregulation

    UVBdamage

    PAR(

    molm

    -2s

    -1)

    UVB + UVA + PARUVB + UVA + PAR

    UVA + PARUVA + PAR

    PARPAR

    Ik>PAR Ik>PAR

    Physiological response Environmental Stress

    )Rough seas

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    50/56

    50 100 150 200 250 300 3500.005

    0.025

    0.045

    0.065

    0.085

    0.105

    0.125

    1

    2

    3

    45

    6

    7

    8 9

    10

    11

    12

    13

    14

    1516

    171819

    20

    21

    22

    23

    New Jersey Coastal Region22 Southern California Bight21 NW Atlantic Continental Shelf (Spring)

    20 Gulf Stream (Spring)19 NW Atlantic Subtropical Gyre (Spring)18 NE Atlantic Subtropical Gyre (Spring)17 Canary Islands (Spring)16 NW Atlantic Continental Shelf (Fall)15 Gulf Stream (Fall)14 NW Atlantic Subtropical Gyre (Fall)13 NE Atlantic Subtropical Gyre (Fall)12 Canary Islands (Fall)11 Antarctic (Palmer Station)10 Antarctic (Transitional Weddell Water)9 Antarctic (Bellingshausen Warm water)8 Antarctic (Bellingshausen Cold water)7

    Arabian Sea (NE Monsoon)

    6

    Arabian Sea (Inter Monsoon)

    5

    Arabian Sea (SW Monsoon)

    4321

    Antarctic (Bransfield-Bellingshausen water)Antarctic (Bransfield-Weddell water)Antarctic (Ice-Edge water)Antarctic (Weddell-Scotia Confluence waters)

    23

    Ek(PAR) (mol photons m-2 s-1)

    max

    (molC m

    olp

    hotonsa

    bs

    orbed

    -1)

    Oligotrohicseas

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    51/56

    -caroteneglobules

    thylakoids

    Low lightHigh light

    NUTRIENT LIMITATIONS

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    52/56

    NUTRIENT LIMITATIONS

    Iron-Ex

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    53/56

    Nutrient concentration (can be nitrogen, phosphorus)

    Nutrie nt

    Uptake(V

    )

    Vmax

    Ks (usually at Vmax/2)

    Austin Powers FatBastard System

    Miss Manner System

    V=Vmax*S/(Ks+S)V=Vmax*S/(Ks+S)

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    54/56

    Diatoms

    High VmHigh Ks

    Coccolithophores

    Low VmLow Ks

    High or fluctuating nutrientsHigh mixing, upwellingLow average irradiance, light

    fluctuationsHigh turbulence

    Chronically oligotrophicStratified conditionsHigh average irradiance

    Low turbulence

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    55/56

    0.8

    1Vmax

    y

    10

    12

  • 8/6/2019 C-MORE 2: Observing life, measuring the phytoplankton

    56/56

    depth

    light

    Chlorophyll

    Ek