buck converter modeling, control, and compensator...

56
1 Buck Converter Modeling, Control, and Compensator Design

Upload: others

Post on 18-Mar-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

1

Buck Converter Modeling, Control,

and Compensator Design

Page 2: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

2

OUTLINE

• Three terminal PWM switch modeling

• Open loop transfer function

• Voltage Mode Control and Peak Current Mode Control

• Closed loop transfer functions

• Closed loop gain

• Compensator Design

• Pspice and Mathcad Simulation

• Experimental verification

Page 3: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

3

Voltage Mode Switching Regulator

Feedback Control To Achieve

• Accuracy: Steady-State Error

• Speed: Transient Response

• Stability Gain and Phase Margin

VIN +

PWM

Comparator

-

+Fm

Converter

Power Stage

-

+A(S)

VREF

R

VO

dLoop

Compensator

K

Page 4: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

4

Average Small Signal PWM Switch Modeling

Page 5: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

5

Average Model

Co

Q1

D

L

Vin +

RL

Rc Ro

Nonlinear Characteristics for Switching Elements Q1 and Q2

Modeling Method:

1. Space Average Model-----Middlebrook (CIT)

2. Three Terminal Switch --- Vorperian (VPEC)

3. DC Transformer Based

?

Page 6: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

6

Co

Q1

D

L

Vin + Ro?+

L

D

CoR

VIN

Q1

P

A CP

A

CBuck

Boost

Co

Q1

L

D

Vin + Ro

?

PA C

Buck-Boost

• A: Active Switch Node

• C: Common Node

• P: Passive switch (Diode)

PWM Switch in Basic DC-DC Converters

?

Page 7: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

7

Q1

D

P

CA

D

P

CA

D’

DC Model

d

P

CA

d’

AC Model

Where D’ = 1 - D

Non-Linear PWM Switch

Page 8: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

8

Average Model for Buck Regulator (Cont.)

Co

Q1 L

Vin+

RL

Rc

iL

+

-

vPH

iin

dvv

dii

inPH

Lin

=

=

iin

iL

VinvQ2

Ip

Iv

d

Transformer Characteristics

DC Average ModelL

vpin i d d

2

IIi =•

+=

?

A C

P

iL

+

-

vPH

iin 1:dA C

PModel valid only at CCM

Page 9: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

9

What is Small Signal Model?

PHPHPH

LLL

ininin

ininin

vVv

iIi

dDd

iIi

vVv

+=

+=

+=

+=

+=

Co

Q1 L

Vin+

RL

Rc

iL

+

-

vPH

iin

?

A C

P

• Adding a small signal near the operating point

Page 10: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

10

Small Signal Average Model of three Terminal PWM Switch

dvv

dii

inPH

Lin

=

=

Linearization

PHPHPH

LLL

ininin

ininin

vVv

iIi

dDd

iIi

vVv

+=

+=

+=

+=

+=

ininPH

LLin

v DdVv

i DdIi

+=

+=

Small Signal Average Model

iL

+

-

vPH

iin 1:dA C

P

Q1

?P

A C

dVindIL

ini

1:D

+A C

P

Page 11: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

11

dVindIL1:D

+A C

P

+

L

Co

R

dVindIL1:D

+A C

P

+

L

Co

RVIN

A C

P

Small Signal Average Model Buck Converter

inV

Page 12: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

12

DV

VG

1

1D

v

vG

0Sin

ov

2oω

2S

oωQS

zωS

0din

ov

==

++

+==

=

=

CL

LzL

czo

RQ ,

L

Rω ,

CR

1ω ,

LC

1ω ≈≈ ==

Open Loop Line to Output Transfer Function (Buck)

dVindIL1:D

+A C

P

+

L

C

RRC

RL ov

inV

1:D

A C

P

+

L

C

RRC

RL ov

inV

Page 13: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

13

CL

LzL

czo

RQ ,

L

Rω ,

CR

1ω ,

LC

1ω ≈≈ ==

DGv

ESR Zero

Q factor

-40db/dec

-20db/dec

Open Loop Line to Output Transfer Function (buck)

DV

VG

1

1D

v

vG

0Sin

ov

2oω

2S

oωQS

zωS

0din

ov

==

++

+==

=

=

Page 14: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

14

2oω

2S

oωQS

zωS

IN0inv

od

1

1V

d

vG

++

+==

=

CL

LzL

czo

RQ ,

L

Rω ,

CR

1ω ,

LC

1ω ≈≈ ==

Open Loop Control to Output Transfer Function (Buck)

dVindIL1:D

+A C

P

+

L

C

RRC

RL ov

inV

dVin+

C

P

L

C

RRC

RL ov

IN

0S2oω

2S

oωQS

zωS

INo

d V

1

1V

D

V)DC(G =

++

+==

=

Page 15: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

15

2oω

2S

oωQS

zωS

IN0inv

od

1

1V

d

vG

++

+==

=

CL

LzL

czo

RQ ,

L

Rω ,

CR

1ω ,

LC

1ω ≈≈ ==

VINGd

ESR Zero

Q factor

-40db/dec

-20db/dec

Control to Output Transfer Function (buck)

Page 16: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

16

( )

( ) R//R sZ

R//R0SZ

1

)1()1(R//R

i

vZ

cp

Lp

2oω

2S

oωQS

zLω

S

zωS

Lo

op

==

==

++

+•+•==

dVindIL1:D

+A C

P

+

L

C

RRC

RL ov

inV

0invdo

op

i

vZ

==

=

L

C

RRC

RL ov

ZO

Open Loop Output Impedance

Page 17: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

17

( )

( ) R//R sZ

R//R0SZ

1

)1()1(R//R

i

vZ

cp

Lp

2oω

2S

oωQS

zLω

S

zωS

Lo

op

==

==

++

+•+•==

CL

LzL

czo

RQ ,

L

Rω ,

CR

1ω ,

LC

1ω ≈≈ ==

Zp

ESR Zero

Q factor

20db/dec

-20db/decRL //R

Rc //R

ωZL

ωZ

L

C

RRC

RL ov

ZO

Open Loop Output Impedance

Page 18: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

18

Single Close Loop Controlled Switching Regulator

Page 19: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

19

Small Signal Close Loop Controlled Switching Regulator

PWM

Comparator

Fm

Converter

Power Stage

Compensator

... ,d

v ,

i

v ,

v

v o

o

o

in

inv

ov

oi

d -A(S)

GV

ZP

inv

Xov

-A(S)

Fm

Gd

T

d

oi

Small Signal Block Diagram

Power Stage

Page 20: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

20

0d and 0i @v

vG

lity)Susceptibi audio loop (Open

Gain Voltage Loop Open

oin

ov ===

0v and 0d @ i

vZ

Impedance Output Loop Open

o

op ===

Open-loop Transfer Function

GV

ZP

inv

Xov

-A(S)

Fm

GdT

d

oi

Cv

Page 21: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

21

0iv @ d

vG oin

od ===

Open-loop Transfer Function (Cont.)

GV

ZP

inv

Xov

-A(S)

Fm

GdT

d

oi

Cv

o

c

v

vA(s) =

Control to Output Transfer Function

Loop Compensator Gain

PWM Comparator Gain

cv

dFm =

Page 22: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

22

vcomp

vramp

DTs

VP

Small Signal PWM Comparator Gain Fm

PWM Comparator

Fm

cv+

-

dVc

vc

cv

sTd

Pccm V

1

v

d

dv

ddF ===

Page 23: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

23

Closed Loop Audio-Susceptibility (Line Trans. Response)

T1vG

AmFdG1vG

invov

+=

+=

A dG mFT =Loop Gain:

om

dinvo

v AFd

dGvGv

-=

+=

• High loop gain T will improve the line transient response

Audio-Susceptibility Physical meaning: Line transient response

in

o

v

v Audio Susceptibility GV

ZP

inv

Xov

-A(S)

Fm

GdT

d

oi

Cv

0io =

Page 24: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

24

T1

pZ

AmFdG1

pZ

oi

ov

+=

+=

GVinv

Xov

-A

Fm

GdT

d

ZPoi

omdopo v A F Gi Zv -=

Closed Loop Output Impedance (Load Transient Response)

• The smaller the output impedance, the faster the transient response

• Higher loop gain is desired

Output Impedance Physical meaning: Load step transient response

o

o

i

v

0v in =Closed Loop Output Impedance

Page 25: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

25

Loop Gain Analysis

Loop Gain Provides:

• System performance analysis: Transient response

• Stability analysis:

• Absolute stability

• Degree of stability

• Design insight

• Measurement verification

Page 26: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

26

Function of Loop Gain T: Closed-Loop Audio Susceptibility

T1

G

v

vG

v

in

oCL +

==

1+T

GV

GCL

T

ESR Zero

of

fC (bandwidth)

• The smaller GCL, the faster line transient response

• Require higher bandwidth fc

GVinv

Xov

-A

Fm

GdT

d

ZPoi

2o

2S

oQS

z

S

in

ov

1

1D

v

vG

ωω

ω

++

+==

Page 27: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

27

T1

Z

i

vZ

p

o

oCL +

==

• ZCL used for load transient analysis

• The smaller ZCL, the faster load transient response

• The minimum high frequency Zo is ESR

1+T

ZP

ZCL

TESR Zero

of

fC (bandwidth)

ESR

Function of Loop Gain T: Closed-Loop Output Impedance

GVinv

Xov

-A

Fm

GdT

d

ZPoi2

o

2S

oQS

zL

S

z

S

Lo

op

1

)1()1(R//R

i

vZ

ωω

ωω

++

+•+•==

L

R

LzL =ω

Page 28: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

28

Co

Q1

Q2

L

+

RL

RcRo

ZO

1+T

ZP

ZCL

TESR Zero

of

fC (bandwidth)

ESRL

R

LzL =ω

When f • C shorts and L open

• Minimum ZO: ESR

• Smaller ESR, better load transient

• Higher T, better load transient

T1

Z

i

vZ

p

o

oCL +

==

Closed-Loop Output Impedance

Page 29: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

29

Ideal Loop Gain Characteristics

• High DC gain (Low frequency) for small DC error

• Wide bandwidth for fast transient response

• -20dB/dec slope near cross-over frequency for higher phase margin

• High attenuation at high frequency for noise reduction

|T|

of

fC (bandwidth)

-180omΦ

Gm: Gain margin

Phase margin

0dB

∠∠∠∠T

Page 30: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

30

Examples of Loop Gain T

T pω

-90o

-45o

0o

p

m

ω

S1

GT

+

=• Single Order System ;

ω

• Always stable

• 90o phase margin

-20dB/Dec

Phase Margin: 90o

-180o

(-1,0) Gm (S=0)

S-Plane

S=jω

Definition

( )TAnglePhase

Tlog20Magnitude

=

=

T=1/(1 + j) @ S=jωp

Magnitude = -20 log

Phase = -45 degree2

Page 31: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

31

Examples of Loop Gain T

T oω

-180o

-90o

0o

2o

2

o

m

ω

S

S1

GT

++

=• 2nd Order System ;

ω

• Stable

• ϕϕϕϕ phase margin: may be very small

• Gain margin: infinite (theoretical)

-40dB/Dec(-1,0) Gm (S=0)

S-Plane

ϕϕϕϕ

|T|=1

S = jωo

j

QGT

m=

Page 32: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

32

Basic Pole and Zero Characteristics

One Pole

• 45 degree at the Pole (frequency fp)

• Total of 90o phase delay after >10 fp

• -20 db/dec

One Zero

• 45o phase lead at the zero

• Total of 90o phase lead after >10 fz

• +20db/dec

5

3

10

S1

10

S1

)S(G

+

+

=

T

90o

45o

0o

ω20dB/Dec

Page 33: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

33

DC Loop Gain

GV

inv

oV

AFm

GdT

d

ZPoi +

+VREF-

Error

0iv oin ==

)gain loop DC(T

V

GAF

VVVError DC

o

0Sdm

ooREF ===

=

-

• The higher DC loop gain, the smaller the DC steady-state error

• 40dB DC loop gain, 1% error

OUTPUT

Page 34: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

34

Compensator Design Considerations

Page 35: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

35

GV

inv

ov

-A(S)

Fm

GdT

d

ZPoi +

md F)S(AGT ••=

Objectives of Loop Gain Design

Objective:

• To shape the loop gain T for achieving

High DC gain at low frequency

>40 degree phase margin

> 10 dB gain margin

High bandwidth for fast transient response

Page 36: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

36

Crossover

Frequency

0 5 10 15 200

0.5

1

1.5

21.659

1.177 104−

×

v t 15,( )

v t 30,( )

v t 45,( )

v t 60,( )

200.015 ω c t⋅

Load Transient Step Response vs Phase Margin

• The amount of ringing determines the phase margin

– 45º phase margin is sufficient

• The crossover frequency is equal to the ringing frequency

– Crossover frequency should be 1/5 or 1/10 of the converter

switching frequency ϕϕϕϕ=15°°°°

ϕϕϕϕ=30°°°°

ϕϕϕϕ=45°°°°

ϕϕϕϕ=60°°°°

Page 37: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

37

c

2oω

2S

oωQS

zωS

INm

cmd

K

1

1VFT

;KA(s) ,AFGT

++

+=

==

CLc

zo

RQ ,

CR

1ω ,

LC

1ω ≈≈ =

Compensator Design Considerations (Voltage mode)

Buck Converter

T

ESR Zero

fC (bandwidth)

-180o

-90o

• Low DC gain, need an integrator

• Almost 0o phase margin if ωz > 3 ωo

• Stable if ESR zero ωz < 3 ωo

Compensator: Constant Gain

0o ωZ

Page 38: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

38

ScK

2oω

2S

oωQS

zωS

INm

ScK

md

1

1VFT

;A(s) ,AFGT

++

+=

==

CLc

zo

RQ ,

CR

1ω ,

LC

1ω ≈≈ =

T

ESR Zero

ωC (bandwidth)

-180o

-90o

• Integrator: 90o delay; Double pole: 180o delay

• low bandwidth or unstable

• Need to introduce two zeros before cross-over frequency ωC

Compensator Design Considerations (cont.)

Compensator: Integrator

-270o

ωZ

-20db/dec

-60db/dec

-40db/dec

Unstable

Page 39: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

39

GdFm

ESR Zero

of

A(S)Two Zeros x x

Two PolesIntegrator

|T|

fC

∠∠∠∠T-90o

-180o

Type III Compensator Characteristics

• Design based on OPEN LOOP GAIN

• An integrator for high DC gain

• Place two zeros around fo for

compensating phase delay due to

the integrator and double poles

• Two high frequency poles

• to cancel ESR zero

• to attenuate high frequency noise

• to ensure the gain decreasing after fc

• to ensure the phase lag minimum at fc

( )sAFGT

FGT

mdCLOSE

mdOPEN

=

=

Page 40: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

40

R2

-+

VREF

R1

C3

R3C1 C2

vovC

ZFZI

)SC

1R//(RZ

);SC

1R( //

SC

1Z

,Z

Z

v

v)S(A

231I

12

3F

I

F

o

c

+=

+=

== -

)2pω

S1()

1pωS

1(

)2zω

S1()

1zωS

1(I

S

K)S(A

+•+

+•+

= - ( )

( )

3C1C3C1C

2R

12p2C3R

1p1

3R1R2C1

2z1C2R1

z1

3C1C1R1

I

ω ,ω

ω ,ω

,K

+

+

+

==

==

=

Type III Loop compensator Circuit

Compensator

output

• Zeros:

1. R2, C1;

2. R1+R3, C2

• Poles:

1. DC

2. R2, C3 if C1>>C3

3. R3, C2

Page 41: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

41

)1()1(S

)1()1(K

1

1VFT

AFGT

2pωS

1pωS

2zωS

1zωS

c

2oω

2S

oωQS

zωS

INm

md

+•+•

+•+

++

+=

=

Gd(S)

GV

inv

ov

-A

Fm

GdT

d

ZPoi +

A(S): Compensator

• Type III compensator: two zeros (ωz1, ωz2) and three poles (0, ωp1, ωp2)

• Loop gain is proportional to the input voltage.

Need input voltage feed-forward function

Loop Gain Design (voltage mode)

CLc

zo

RQ ,

CR

1ω ,

LC

1ω ≈≈ =

Page 42: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

42

Objective of Compensator Design

)1()1(S

)1()1(K

1

1VFT

AFGT

2pωS

1pωS

2zωS

1zωS

c

2oω

2S

oωQS

zωS

INm

md

+•+•

+•+

++

+=

=

• Objective is to design a compensator, Kc, ωz1, ωz2, ωp1, ωp2, to SHAPE

the loop gain T for stability and optimum performance for given power

stage parameters, ωz, ωo, Q, VIN, and PWM gain Fm.

Page 43: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

43

A(S)Gd(S)

Tωp1

ωp2

Loop Gain Design Procedure (Case 1)

)1()1(S

)1()1(K

1

)1(VFT

2pωS

1pωS

2zωS

1zωS

c

2oω

2S

oωQS

zωS

IN

m+•+•

+•+

++

+=

ωc

FmGd

ESR Zero ωz

ωo

Integrator

-20db/dec

ωz1, ωz2

-40deb/dec

• Bandwidth fc = (1/5-1/10) fs

• ωz1, ωz2 near ωo

• ωp1 cancel ESR zero ωz

• ωp2 = 10 ωc

• Determine Kc

• Select compensator R’s and C’s

Page 44: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

44

GdFm

ESR Zero

of

A(S)Two Zeros x x

Two PolesIntegrator

|T|

fC

∠∠∠∠T-90o

-180o

Type III Compensator Design (Case II)

• An integrator for high DC gain

• Place two zeros around fo

• Two high frequency poles to

cancel ESR zero and increase

gain attenuation at high frequency

Open loop Gain

Page 45: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

45

GdFmType II Compensator

• One zero and two poles

• if ESR zero is close to double pole

ωz< 3 ωo

A(S) One ZeroxOne Pole

Integrator

|T|

ωC

∠∠∠∠T

-90o

-180o

ωz

Type II Compensator

1pω

S1

1zω

S1

I

S

K)S(A

+

+

•=

Page 46: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

46

)1()1(S

)1()1(K

1

)1(VFT

2pωS

1pωS

2zωS

1zωS

c

2oω

2S

oωQS

zωS

IN

m+•+•

+•+

++

+=

Loop Gain T function of Input Voltage

fC

-90o

-180o

VIN

VIN

Very little phase margin

• T is function of VIN

• Need feed-forward function to cancel

VIN effect

Page 47: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

47

Pcomp V

1

V

d=

Pcompcompm V

1

v

d

dv

ddF ===

vcompvramp

d

VP

Comparator Gain with Feed-Forward Function

PWM Comparator

Fm

compv+

-

d

VP = K VININ

m KV

1F =

Feed-Forward:

PWM ramp is function of the input voltage

Page 48: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

48

Loop Gain with Feed-Forward Function

)1()1(S

)1()1(K

1

1V FT

AFGT

2p

S

1p

S2z

S

1z

Sc

2o

2S

oQS

z

S

INm

md

ωω

ωω

ωω

ω

+•+•

+•+

++

+=

=

INm KV

1F =

)1()1(S

)1()1(K

1

1V

KV

1T

2p

S

1p

S2z

S

1z

Sc

2o

2S

oQS

z

S

ININ ωω

ωω

ωω

ω

+•+•

+•+

++

+=

• Loop Gain is INDEPENDENT of input voltage.

• Fast line step transient response, Only depends on conversion speed

of Vramp= f(VIN)

Page 49: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

49

How to Measure the Loop Gain

VOL

PWM

Comparator

-+VREF

Compensator

VIN RCo

Q1

Q2

+RESR

Gate

driver

R1

VC

s

on

T

TD = -

+

R2

A(S)

Vexcite = 10-20mV

• Network Analyzer

• AP200

• a and b: 20-50mV perturbation; c: depends on output voltage

ab

c

Page 50: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

50

Modeling, Simulation and Test Example

TPS40200

• Voltage mode PWM controller

• Input Voltage range: 4.5V to 50V

• Input Voltage Feed Forward function

PWM ramp voltage = VIN/10

• Programmable switching frequency

• Vout: 0.7V to 90% of VIN

VIN=20V, VOUT= 5V, fs = 300kHz, L=47uH, Co=22uF/10mΩΩΩΩ

Page 51: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

51

VO

L: 47uH, 0.25ΩΩΩΩ

PWM

Comparator

-+

VREF

0.7V

VIN20V RCo

22µµµµF

Q1

D+

RESR

5mΩΩΩΩ

Gate

driver

VC

s

on

T

TD = -

+Rx

4.99k

A(S)

R2: 23.2k C1:1.5n10

VIN

C3: 10p

R1

30.9k

C2

1n

R3

1.15k

+

Buck Converter with Voltage Mode and Type III Compensator

Page 52: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

52

Pspice Simulation Schematic

PWM small signal average model

Type III CompensatorLoop gain test perturbation

PWM gain

Page 53: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

53

PSPICE Simulation Results Test Results

VOUT

IOUT

Load Step Transient: 0.4A to 0.8A

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0 40 80 120 160 200 240 280 320 360 400

Time (us)

Ou

tpu

t V

olt

ag

e (

V)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Lo

ad

Cu

rre

nt

(A)

Output Voltage

Load Current

Simulation and Test Results

VOUT

IOUT

Page 54: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

54

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

0 100 200 300 400 500 600 700 800 900 1000

Time (us)

Ou

tpu

t V

olt

ag

e (

V)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Lo

ad

Cu

rre

nt

(A)

Output Voltage

Load Current

VOUT

IOUT

PSPICE Simulation Results Test Results

Simulation and Test Results

Load Step Transient: 0.1A to 1.5A

Page 55: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

55

Loop Bandwidth Simulation: Mathcad and Pspice

-60

-40

-20

0

20

40

60

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06100 1 .103

1 .104

1 .105

1 .106

50

0

5060

80−

gain Tv S fi( )( )( )

1 106

×100 f fi( )

-200

-150

-100

-50

0

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+0610 100 1 .10

31 .10

41 .10

51 .10

6200

150

100

50

00

200−

phase Tv S fi( )( )( )

180−

1 106

×10 f fi( )

-180

Mathcad Pspice

Bandwidth

35kHzBandwidth

45kHz

Phase Margin

65 degree

Phase Margin

70 degree

Page 56: Buck Converter Modeling, Control, and Compensator Designencon.fke.utm.my/nikd/skee4643/Compensator-design-TI.pdf · 6 Co Q1 D L Vin +? Ro + L D Co R VIN Q1 P A C P A C Buck Boost

56

Thanks!

Current Mode Loop Compensator Design will be next time