bs 5950: part 3.1

12
Structural Products & Systems Compliance Guidelines Multideck 60 & Multideck 80 Guidelines for the Minimum Degree of Shear Connection Required to Comply with BS 5950: Part 3.1: 1990 + A1: 2010

Upload: vuhuong

Post on 03-Jan-2017

1.422 views

Category:

Documents


108 download

TRANSCRIPT

Page 1: BS 5950: Part 3.1

Structural Products& Systems

ComplianceGuidelines

Multideck 60 & Multideck 80Guidelines for the Minimum Degree of Shear Connection Required to Comply with BS 5950: Part 3.1: 1990 + A1: 2010

Page 2: BS 5950: Part 3.1

2

Multideck 60 &Multideck 80

Page 3: BS 5950: Part 3.1

3

Multideck 60 &Multideck 80 Contents

Scope of Application

Stud Reduction Factors

Minimum Degree of Shear Connection Required

Type of Applicable Loading

Maximum Longitudinal Stud Spacing

Deflection Calculation

References

AppendicesA: Composite Beam Design ExampleB: Minimum Degree of Shear Connection Tables

Notes:

The concepts and rules contained in this document are applicable

only to Multideck 60 and Multideck 80, and are not applicable

to any other deck no matter how similar to Kingspan’s steel floor

decking systems they may be.

4

4

5

6

6

6

6

78

Page 4: BS 5950: Part 3.1

4

Multideck 60 &Multideck 80

The adoption of BS 5950: Part 3.1: 1990 + A1: 2010 (Structural use of Steelwork in Building. Design in Composite Construction. Code of Practice for Design of Simple and Continuous Composite Beams) for the design of composite steel beams with composite metal decks, results in lower stud capacities than have previously been the norm.

The design code now stipulates reduced shear stud capacities,

limiting the number of studs to a maximum of 2 per trough.

These reduced stud capacities and limits to the degree of shear

connection can make it very difficult to obtain a composite beam

solution when using 60mm and 80mm trapezoidal composite steel

floor decking slabs.

Recognising these difficulties, Kingspan Insulated Panels has

commissioned tests and detailed analysis to provide safe and

practical solutions, as described in this document, for composite

beams up to 18m span, with a minimum of 1 stud per trough

in many design cases, using its Multideck 60 and Multideck 80

composite steel decking systems.

Scope of Application  Beams up to and including 18m clear span.

 Beams that are doubly symmetric.

 Beams that are propped or unpropped during construction.

 Multideck 60 and Multideck 80 composite steel floor decks in

steel grades up to and including S450 N/mm2 and gauges

between 0.8mm and 1.5mm.

 Multideck 60 and Multideck 80 running either transverse or

parallel to the supporting beam.

 Shear studs that have mesh placed either at nominal cover

above or below the stud head (by at least 10mm).

Stud Reduction FactorsBS 5950: Part 3.1: 1990 + A1: 2010 provides rules for the stud

reduction factors applied to the stud capacity in solid concrete.

19mm Diameter Studs

Characteristic Qk of headed studs in normal weight concrete.

Shear Stud DimensionShank Full As Weld Characteristic Strength of Concrete

Diameter Height Height 25 30 35 40(mm) (N/mm2)

19 100 95 95kN 100kN 104kN 109kN19 125 120 95kN 100kN 104kN 109kN

Multideck 60 or Multideck 80 Transverse to Beam

Reduction factors k to apply to solid slab resistance for transverse

Multideck.

Table 1: Gauge of Deck 0.8mm to 1.5mm

Multideck 60 Multideck 80100 Stud* 125 Stud*

1 Stud 2 Studs 1 Stud 2 StudsMesh Below

Head of Stud0.82 0.58 0.59 0.41

Mesh at

Nominal Cover0.82 0.45 0.59 0.32

Notes:* 100 stud is typically 95 LAW, 125 stud is typically 120 LAW.

Multideck 60 or Multideck 80 Parallel to Beam

Reduction factors k to apply to solid slab resistance for parallel

Multideck. Stud reductions shown are for the standard Multideck

60 and Multideck 80 deck trough widths.

Table 1: Gauge of Deck 0.8mm to 1.5mm

Multideck 60 Multideck 80 100 Stud* 125 Stud*

1 Stud 2 Studs 1 Stud 2 StudsReinforcement Below

Head of Stud1.0 1.0 1.0 1.0

Notes:* 100 stud is typically 95 LAW, 125 stud is typically 120 LAW.

The capacity of the headed stud in a composite slab with the ribs

running parallel to the beam, should be taken as the capacity in a

solid slab multiplied by the reduction factor k as shown in the table

above or the equations below:

ComplianceGuidelines

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

≥ 1.5, 𝑘𝑘 = 1

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

< 1.5, 𝑘𝑘 = 0.6 (𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

) { ℎ𝐷𝐷𝑝𝑝

− 1} but 𝑘𝑘 ≤ 1.0

Where 𝑏𝑏𝑟𝑟,𝐷𝐷𝑝𝑝and ℎ are as in 𝟓𝟓. 𝟒𝟒. 𝟕𝟕. 𝟐𝟐. 𝑛𝑛 ≥ 1 − (355

𝑓𝑓𝑦𝑦) (2.019 − 0.070𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (2.048 − 0.081𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.433 − 0.054𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.577 − 0.072𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.802 − 0.029𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.833 − 0.034𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.75 − 0.03𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.855 − 0.048𝐿𝐿𝑒𝑒

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.5(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.3(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

≥ 1.5, 𝑘𝑘 = 1

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

< 1.5, 𝑘𝑘 = 0.6 (𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

) { ℎ𝐷𝐷𝑝𝑝

− 1} but 𝑘𝑘 ≤ 1.0

Where 𝑏𝑏𝑟𝑟,𝐷𝐷𝑝𝑝and ℎ are as in 𝟓𝟓. 𝟒𝟒. 𝟕𝟕. 𝟐𝟐. 𝑛𝑛 ≥ 1 − (355

𝑓𝑓𝑦𝑦) (2.019 − 0.070𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (2.048 − 0.081𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.433 − 0.054𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.577 − 0.072𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.802 − 0.029𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.833 − 0.034𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.75 − 0.03𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.855 − 0.048𝐿𝐿𝑒𝑒

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.5(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.3(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

≥ 1.5, 𝑘𝑘 = 1

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

< 1.5, 𝑘𝑘 = 0.6 (𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

) { ℎ𝐷𝐷𝑝𝑝

− 1} but 𝑘𝑘 ≤ 1.0

Where 𝑏𝑏𝑟𝑟,𝐷𝐷𝑝𝑝and ℎ are as in 𝟓𝟓. 𝟒𝟒. 𝟕𝟕. 𝟐𝟐. 𝑛𝑛 ≥ 1 − (355

𝑓𝑓𝑦𝑦) (2.019 − 0.070𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (2.048 − 0.081𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.433 − 0.054𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.577 − 0.072𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.802 − 0.029𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.833 − 0.034𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.75 − 0.03𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.855 − 0.048𝐿𝐿𝑒𝑒

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.5(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.3(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

Where there is more than one longitudinal line of studs in a

concrete rib, the mean width br of the profiled deck trough should

be at least 50mm greater than the transverse spacing of the line of

studs. The trough of the Multideck sheet may be split longitudinally

and separated to form a wider concrete rib over the flange of

the steel beam, br is then based on the new mean width in the

equation for stud reduction.

Page 5: BS 5950: Part 3.1

5

Multideck 60 &Multideck 80

ComplianceGuidelines

Minimum Degree of Shear ConnectionThe minimum degree of shear connection required for a composite

beam design using Multideck 60 or Multideck 80 is given by the

following equations.

In all cases, Le is defined as the span of the non-continuous

composite beam.

In some cases the equation gives a negative value which should be

evaluated as a zero shear connection requirement. Practically, the

minimum requirement is one stud per trough.

Please refer to appendix B for tabulated values of the minimum

degree of shear connection required.

Multideck 60 or Multideck 80 Transverse to Beam

1. Beam unpropped during construction, ultimate applied load up

to 9.0kN/m2.

2. Beam unpropped during construction, ultimate applied load

greater than 9.0kN/m2 and up to 12kN/m2.

3. Beam propped during construction, ultimate applied load up

to 9.0kN/m2.

4. Beam propped during construction, ultimate applied load

greater than 9.0kN/m2 and up to 12kN/m2.

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

≥ 1.5, 𝑘𝑘 = 1

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

< 1.5, 𝑘𝑘 = 0.6 (𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

) { ℎ𝐷𝐷𝑝𝑝

− 1} but 𝑘𝑘 ≤ 1.0

Where 𝑏𝑏𝑟𝑟,𝐷𝐷𝑝𝑝and ℎ are as in 𝟓𝟓. 𝟒𝟒. 𝟕𝟕. 𝟐𝟐. 𝑛𝑛 ≥ 1 − (355

𝑓𝑓𝑦𝑦) (2.019 − 0.070𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (2.048 − 0.081𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.433 − 0.054𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.577 − 0.072𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.802 − 0.029𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.833 − 0.034𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.75 − 0.03𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.855 − 0.048𝐿𝐿𝑒𝑒

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.5(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.3(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

≥ 1.5, 𝑘𝑘 = 1

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

< 1.5, 𝑘𝑘 = 0.6 (𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

) { ℎ𝐷𝐷𝑝𝑝

− 1} but 𝑘𝑘 ≤ 1.0

Where 𝑏𝑏𝑟𝑟,𝐷𝐷𝑝𝑝and ℎ are as in 𝟓𝟓. 𝟒𝟒. 𝟕𝟕. 𝟐𝟐. 𝑛𝑛 ≥ 1 − (355

𝑓𝑓𝑦𝑦) (2.019 − 0.070𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (2.048 − 0.081𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.433 − 0.054𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.577 − 0.072𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.802 − 0.029𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.833 − 0.034𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.75 − 0.03𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.855 − 0.048𝐿𝐿𝑒𝑒

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.5(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.3(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

≥ 1.5, 𝑘𝑘 = 1

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

< 1.5, 𝑘𝑘 = 0.6 (𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

) { ℎ𝐷𝐷𝑝𝑝

− 1} but 𝑘𝑘 ≤ 1.0

Where 𝑏𝑏𝑟𝑟,𝐷𝐷𝑝𝑝and ℎ are as in 𝟓𝟓. 𝟒𝟒. 𝟕𝟕. 𝟐𝟐. 𝑛𝑛 ≥ 1 − (355

𝑓𝑓𝑦𝑦) (2.019 − 0.070𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (2.048 − 0.081𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.433 − 0.054𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.577 − 0.072𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.802 − 0.029𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.833 − 0.034𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.75 − 0.03𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.855 − 0.048𝐿𝐿𝑒𝑒

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.5(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.3(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

≥ 1.5, 𝑘𝑘 = 1

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

< 1.5, 𝑘𝑘 = 0.6 (𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

) { ℎ𝐷𝐷𝑝𝑝

− 1} but 𝑘𝑘 ≤ 1.0

Where 𝑏𝑏𝑟𝑟,𝐷𝐷𝑝𝑝and ℎ are as in 𝟓𝟓. 𝟒𝟒. 𝟕𝟕. 𝟐𝟐. 𝑛𝑛 ≥ 1 − (355

𝑓𝑓𝑦𝑦) (2.019 − 0.070𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (2.048 − 0.081𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.433 − 0.054𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.577 − 0.072𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.802 − 0.029𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.833 − 0.034𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.75 − 0.03𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.855 − 0.048𝐿𝐿𝑒𝑒

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.5(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.3(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

Multideck 60 or Multideck 80 Parallel to Beam

1. Beam unpropped during construction, ultimate applied load up

to 9.0kN/m2.

2. Beam unpropped during construction, ultimate applied load

greater than 9.0kN/m2 and up to 12kN/m2.

3. Beam propped during construction, ultimate applied load up

to 9.0kN/m2.

4. Beam propped during construction, ultimate applied load

greater than 9.0kN/m2 and up to 12kN/m2.

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

≥ 1.5, 𝑘𝑘 = 1

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

< 1.5, 𝑘𝑘 = 0.6 (𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

) { ℎ𝐷𝐷𝑝𝑝

− 1} but 𝑘𝑘 ≤ 1.0

Where 𝑏𝑏𝑟𝑟,𝐷𝐷𝑝𝑝and ℎ are as in 𝟓𝟓. 𝟒𝟒. 𝟕𝟕. 𝟐𝟐. 𝑛𝑛 ≥ 1 − (355

𝑓𝑓𝑦𝑦) (2.019 − 0.070𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (2.048 − 0.081𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.433 − 0.054𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.577 − 0.072𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.802 − 0.029𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.833 − 0.034𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.75 − 0.03𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.855 − 0.048𝐿𝐿𝑒𝑒

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.5(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.3(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

≥ 1.5, 𝑘𝑘 = 1

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

< 1.5, 𝑘𝑘 = 0.6 (𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

) { ℎ𝐷𝐷𝑝𝑝

− 1} but 𝑘𝑘 ≤ 1.0

Where 𝑏𝑏𝑟𝑟,𝐷𝐷𝑝𝑝and ℎ are as in 𝟓𝟓. 𝟒𝟒. 𝟕𝟕. 𝟐𝟐. 𝑛𝑛 ≥ 1 − (355

𝑓𝑓𝑦𝑦) (2.019 − 0.070𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (2.048 − 0.081𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.433 − 0.054𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.577 − 0.072𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.802 − 0.029𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.833 − 0.034𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.75 − 0.03𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.855 − 0.048𝐿𝐿𝑒𝑒

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.5(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.3(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

≥ 1.5, 𝑘𝑘 = 1

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

< 1.5, 𝑘𝑘 = 0.6 (𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

) { ℎ𝐷𝐷𝑝𝑝

− 1} but 𝑘𝑘 ≤ 1.0

Where 𝑏𝑏𝑟𝑟,𝐷𝐷𝑝𝑝and ℎ are as in 𝟓𝟓. 𝟒𝟒. 𝟕𝟕. 𝟐𝟐. 𝑛𝑛 ≥ 1 − (355

𝑓𝑓𝑦𝑦) (2.019 − 0.070𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (2.048 − 0.081𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.433 − 0.054𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.577 − 0.072𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.802 − 0.029𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.833 − 0.034𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.75 − 0.03𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.855 − 0.048𝐿𝐿𝑒𝑒

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.5(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.3(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

≥ 1.5, 𝑘𝑘 = 1

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

< 1.5, 𝑘𝑘 = 0.6 (𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

) { ℎ𝐷𝐷𝑝𝑝

− 1} but 𝑘𝑘 ≤ 1.0

Where 𝑏𝑏𝑟𝑟,𝐷𝐷𝑝𝑝and ℎ are as in 𝟓𝟓. 𝟒𝟒. 𝟕𝟕. 𝟐𝟐. 𝑛𝑛 ≥ 1 − (355

𝑓𝑓𝑦𝑦) (2.019 − 0.070𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (2.048 − 0.081𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.433 − 0.054𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.577 − 0.072𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.802 − 0.029𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.833 − 0.034𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.75 − 0.03𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.855 − 0.048𝐿𝐿𝑒𝑒

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.5(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.3(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

Page 6: BS 5950: Part 3.1

6

Multideck 60 &Multideck 80

ComplianceGuidelines

References1. SCI RT 1601. Minimum Degree of Shear Connection Rules for

use by Kingspan Insulated Panels.

2. BS EN 1994-1-1: 2004. Eurocode 4. Design of Composite Steel

and Concrete Structures. General Rules and Rules for Buildings.

3. PN002a-GB NCCI: Modified Limitations on Partial Shear

Connection in Beams for Buildings.

4. Banfi, M., 2004. Published Composite Construction V. (South

Africa, 2004).

5. Fontana, M. & Baertchi, R., Published Composite Construction

V. (South Africa, 2004).

6. Hicks, S. (May 2007) The Structural Engineer. 85 (10).

7. MCRMA Technical Paper No. 13, SCI P300 (2009). Composite

Slabs and Beams using Steel Decking: Best Practice for Design

and Construction.

8. Civil and Structural Computer Services Ltd. MasterSeries

Composite Beam Design Software.

Type of LoadingWhere the applied load on the composite beam is a mixture of

uniform distributed and line or point loads, it is important to ensure

that the ratio of the moment due to the factored dead load alone

is at least 22% of the design plastic bending resistance of the

composite beam.

Maximum Longitudinal Stud SpacingThe maximum stud spacing for use with these rules is 450mm.

Where Multideck 60 or Multideck 80 is used transverse to the

beam, the maximum stud spacing of 450mm equates to a

minimum of one stud per trough, applied in all cases.

Deflection CalculationThe effect of incomplete interaction may be accounted for by

applying the following.

For propped construction:

For unpropped construction:

Where:

is the deflection for the steel beam acting alone;

is the deflection of a composite beam with full shear connection

for the same loading. This can be determined using the second

moment of area of the composite beam calculated using BS 5950:

Part 3.1: 1990 B3.

Creep and shrinkage may be accounted for by using an

appropriate value of modular ratio.

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

≥ 1.5, 𝑘𝑘 = 1

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

< 1.5, 𝑘𝑘 = 0.6 (𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

) { ℎ𝐷𝐷𝑝𝑝

− 1} but 𝑘𝑘 ≤ 1.0

Where 𝑏𝑏𝑟𝑟,𝐷𝐷𝑝𝑝and ℎ are as in 𝟓𝟓. 𝟒𝟒. 𝟕𝟕. 𝟐𝟐. 𝑛𝑛 ≥ 1 − (355

𝑓𝑓𝑦𝑦) (2.019 − 0.070𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (2.048 − 0.081𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.433 − 0.054𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.577 − 0.072𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.802 − 0.029𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.833 − 0.034𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.75 − 0.03𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.855 − 0.048𝐿𝐿𝑒𝑒

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.5(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.3(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

≥ 1.5, 𝑘𝑘 = 1

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

< 1.5, 𝑘𝑘 = 0.6 (𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

) { ℎ𝐷𝐷𝑝𝑝

− 1} but 𝑘𝑘 ≤ 1.0

Where 𝑏𝑏𝑟𝑟,𝐷𝐷𝑝𝑝and ℎ are as in 𝟓𝟓. 𝟒𝟒. 𝟕𝟕. 𝟐𝟐. 𝑛𝑛 ≥ 1 − (355

𝑓𝑓𝑦𝑦) (2.019 − 0.070𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (2.048 − 0.081𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.433 − 0.054𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.577 − 0.072𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.802 − 0.029𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.833 − 0.034𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.75 − 0.03𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.855 − 0.048𝐿𝐿𝑒𝑒

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.5(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.3(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

≥ 1.5, 𝑘𝑘 = 1

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

< 1.5, 𝑘𝑘 = 0.6 (𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

) { ℎ𝐷𝐷𝑝𝑝

− 1} but 𝑘𝑘 ≤ 1.0

Where 𝑏𝑏𝑟𝑟,𝐷𝐷𝑝𝑝and ℎ are as in 𝟓𝟓. 𝟒𝟒. 𝟕𝟕. 𝟐𝟐. 𝑛𝑛 ≥ 1 − (355

𝑓𝑓𝑦𝑦) (2.019 − 0.070𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (2.048 − 0.081𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.433 − 0.054𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.577 − 0.072𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.802 − 0.029𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.833 − 0.034𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.75 − 0.03𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.855 − 0.048𝐿𝐿𝑒𝑒

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.5(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.3(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

≥ 1.5, 𝑘𝑘 = 1

When 𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

< 1.5, 𝑘𝑘 = 0.6 (𝑏𝑏𝑟𝑟𝐷𝐷𝑝𝑝

) { ℎ𝐷𝐷𝑝𝑝

− 1} but 𝑘𝑘 ≤ 1.0

Where 𝑏𝑏𝑟𝑟,𝐷𝐷𝑝𝑝and ℎ are as in 𝟓𝟓. 𝟒𝟒. 𝟕𝟕. 𝟐𝟐. 𝑛𝑛 ≥ 1 − (355

𝑓𝑓𝑦𝑦) (2.019 − 0.070𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (2.048 − 0.081𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.433 − 0.054𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (1.577 − 0.072𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.802 − 0.029𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.833 − 0.034𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.75 − 0.03𝐿𝐿𝑒𝑒

𝑛𝑛 ≥ 1 − (355𝑓𝑓𝑦𝑦

) (0.855 − 0.048𝐿𝐿𝑒𝑒

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.5(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

𝛿𝛿 = 𝛿𝛿𝑐𝑐 + 0.3(1 − 𝑛𝑛) (𝛿𝛿𝑠𝑠 − 𝛿𝛿𝑐𝑐

Page 7: BS 5950: Part 3.1

7

Multideck 60 &Multideck 80

Appendix A - Composite Beam Design Example BS 5950: Part 3.1: 1990 + A1: 2010

Notes:** From Table B1, minimum degree of shear connection required is 0 so actual value of 0.362 is acceptable - use one stud per trough.

© MasterBeam : Composite - C:\Program Files\MasterSeries\MASTER\Premier Inn - Newton Abbot

12141Kingspan Metl-Con LimitedSherburnMaltonNorth Yorkshire, YO17 8PQTel: (01944) 712000

Job RefSheetMade byDateCheckedApproved

:: /:: 17 December 2014 / Ver. 2013.05::

Software produced by www.MasterSeries.co.uk © Civil and Structural Computer Services Limited.

Unpropped Composite Secondary Internal BeamBeam Reference

Summary of Design Data EC4 - NA UK (Symmetrical Beam)EuroCode National Annex Using UK valuesSteel Section (60 kg/m) 406x178 UB 60 [S 355]Floor Area Supported 10 m Span, 3 m to LH Beam and 3 m to RH Beam (3 m Supported Directly)Non-Continuous Multideck 60 V2 (350) Trough Spacing 332, Height 60, Average Width 155 in 1 mm thickConcrete Slab 150 mm Thick @ 2350 kg/m³, Mod. Ratio 10, Gr C25/30 with 193 mm²/mHeaded Stud Connector 19x100 mm (as welded) Placed One per TroughFloor Loads (kN/m²) Live 5, Partitions 0, Services 0.6, Deck/Mesh 0.2, Construction 0.5Self Weight Loads Concrete Slab 2.721 kN/m², Steel Beam 0.589 kN/m

Section PropertiesConcrete Effective Area 90 x 2500 mm², b1= 1250 mm and b2= 1250 mmSteel Section Elastic Properties ye 203.2 mm, A 76.5 cm², Ix 21599 cm4, Zt 1063 cm³, Zb 1063 cm³Composite Section Elastic Properties ye 123.2 mm, Ix 77351 cm4, Zs.t 28984 cm³, Zs.b 1793 cm³, Zc.t 63029 cm³Headed Stud Connector 30 No. 19x100 mm, Qk 92.87 kN, Qp 74.29 kN, k 0.85, Pd 63.15 Welded

Ultimate Limit State (Final Stage)Maximum Shear

Support Reactions (kN) 182.19 kN each side < 709.13 kN OKCheck @ 5 m (Max. Moment) M = 455.48 kN.m, Fv = 0 kN

Shear Connection No of shear connectors from nearest support 15 < 43 PartialAxial Resistance (kN) Rc 3187.5 kN, Rs 2716.1 kN, Rq 947.25 kN 947.25 kNDegree of Shear Connection Higher Ductility, Na/Np = 15 / 43 < 0.4 0.349 WarningReduced Concrete Area Area required to resist 947.25 kN 26.7x2500mm²Moment Capacity Plastic neutral axis in web @ 184.3 mm 661.76 kN.m OK

Transverse ReinforcementVr = fn(Asv,fy, s, f, fck) 193, 500, 1.15, 26.5, 25 168.39 kNV= Fd/ x.Max(b1,b2)/(b1+b2) 947.25/5x1.25/(1.25+1.25) 94.73 kN OK

Ultimate Limit State (Construction Stage)Maximum Shear

Support Reactions (kN) 70.99 kN each side < 709.13 kN OKCheck @ 5 m (Max. Moment) M = 177.48 kN.m, Fv = 0 kN

Moment Capacity Plastic neutral axis in web @ 203.2 mm 425.82 kN.m OK

Serviceability Limit StateSupport Reactions (kN)

Live Loads 75 kN each sideSuper Imposed Dead Load 9 kN each sideDead Load (Self Weight) 46.75 kN each side

Maximum Deflection (Partial Connection All Loads)Live Loads 12.02 (18.30) mm @ 5 m < L / 360 = 27.8 mm 18.30 mm OKSuper Imposed Dead Loads 1.44 (2.20) mm @ 5 m 2.20 mmDead Loads (Self Weight) 26.84 mm @ 5 m 26.84 mm

Maximum Steel StressTOTAL (Tension) Live 104.6, Super Dead 12.6, SW 110 < 355 227.08 N/mm² OKTOTAL (Compression) Live 6.5, Super Dead 0.8, SW 110 < 355 117.20 N/mm² OK

Maximum Concrete Stress Live 2.97, Super Dead 0.36, SW 0 < 15 3.33 N/mm² OK

Vibration Analysis (Partial Connection)Beam Deflection Including Partial Connection 11.52 mmNatural Frequency 18/ (11.52/1.1) = 5.56 > 4 Hz 5.56 Hz OK

Kingspan Limited 12141

Sherburn Malton North Yorkshire, YO17 8PQ

Tel: (01944) 712000

Job Ref:Sheet:Made by:Date: 17 December 2014 / Ver. 2013.05Checked:Approved:

Unpropped Composite Secondary Internal BeamBeam Reference

Summary of Design Data BS 5950: Part 3.1: 1990 + A1: 2010 (Symmetrical Beam)Steel Section (60kg/m) 406 x 178 UB 60 [S 355]Floor Area Supported 10m span, 3m to LH beam and 3m to RH beam (3m supported directly)Non-Continuous Multideck 60-V2 (350) Trough spacing 332, height 60, average width, 155 in 1mm thickConcrete Slab 150mm thick @ 2350kg/m3, mod. ratio 10, Gr C25/30 with 193mm2/mHeaded Stud Connector 19 x 100mm (as welded) placed one per troughFloor Loads (kN/m2) Live 5, partitions 0, services 0.6, deck/mesh 0.2, construction 0.5Self Weight Loads Concrete Slab 2.721kN/m2, steel beam 0.589 kN/m

Section PropertiesConcrete Effective Area 90 x 2500mm2, b1=1250mm and b2=1250mm

Steel Section Elastic Properties ye 203.2mm, A 76.5cm2, Ix 21599cm4, Zt 1063cm3, Zb 1063cm3

Composite Section Elastic Properties ye 123.2mm, Ix 77351cm4, Zs.t 28984cm3, Zs.b 1793cm3, Zc.t 63029cm3

Headed Stud Connector 30No. 19 x 100mm, Qk 100kN, Qp 80kN, k 0.82, Pd 65.6 Welded

Ultimate Limit State (Final Stage)Maximum ShearSupport Reactions 198.05kN each side <683.85kN OKCheck @ 5m (Max. Moment) M=495.14kNm, Fv=0kNShear Connection No. of shear connectors from nearest support 15<41.4 Partial

Axial Resistance Rc 3037.5kN, Rs 2716.1kN, Rq 984kN 984kN

Degree of Shear Connection Higher ductility, Na/Np=15 / 41.4<0.4 0.362**

Reduced Concrete Area Area required to resist 984kN 29.2 x 2500mm2

Moment Capacity Plastic neutral axis in web @ 177.8mm 666.74kN.m OK

Transverse ReinforcementMax No. of Shear Connectors (N) Average minimum spacing 332mm 3.01 per m

Vr=fn(Asv,fy,Acv, fcu) 193, 460, 114000, 30 164.75kN

V=N.Pd.Max(b1, b2)/(b1+b2) 3.01x65.6x1.25/(1.25+1.25) 98.80kN OK

Ultimate Limit State (Construction Stage)Maximum ShearSupport Reactions 77.45kN each side <683.85kN OKCheck @ 5m (Max. Moment) M=193.64kN.m, Fv=0kN Moment Capacity Plastic neutral axis in web @ 203.2mm 425.82kN.m OK

Serviceability Limit StateSupport Reactions Live Loads 75kN each side Super Imposed Dead Load 9kN each sideDead Load (Self Weight) 46.75kN each sideMaximum Deflection (Partial Connection all Loads)Live Loads 12.32 (18.63)mm @ 5m<L / 360=27.8mm 18.63mm OKSuper Imposed Dead Loads 1.48 (2.24)mm @ 5m 2.24mmDead Loads (Self Weight) 27.50mm @ 5m 27.50mmMaximum Steel StressTOTAL (Tension) Live 104.6, super dead 12.6, SW 110<355 227.08N/mm2 OKTOTAL (Compression) Live 6.5, super dead 0.8, SW 110<355 117.20N/mm2 OKMaximum Concrete Stress Live 2.97, super dead 0.36, SW 0<15 3.33N/mm2 OK

Vibration Analysis (Partial Connection)Beam Deflection Including Partial Connection 11.52mm

Natural Frequency 18/√(11.78/1.1)=5.5>4Hz 5.50Hz OK

ComplianceGuidelines

Page 8: BS 5950: Part 3.1

8

Multideck 60 &Multideck 80

ComplianceGuidelines

Appendix B - Minimum Degree of Shear Connection RequiredTable B1 - Multideck 60 or Multideck 80 Transverse to an Unpropped Support Beam

Span Le Transverse Deck(m) Unpropped Beam Ys 275 Unpropped Beam Ys 355Beam Ult <=9kN/m3 Ult <=12kN/m3 Ult <=9kN/m3 Ult <=12kN/m3

5 0 0 0 05.5 0 0 0 06 0 0 0 06.5 0 0 0 07 0 0 0 07.5 0 0 0 08 0 0 0 08.5 0 0 0 09 0 0 0 09.5 0 0 0 010 0 0 0 010.5 0 0 0 011 0 0 0 011.5 0 0 0 012 0 0 0 012.5 0 0 0 013 0 0 0 013.5 0 0 0 0.0514 0 0 0 0.0914.5 0 0 0 0.1315 0 0 0.03 0.1715.5 0 0 0.07 0.2116 0 0.030 0.10 0.2516.5 0 0.080 0.14 0.2917 0 0.130 0.17 0.3317.5 0 0.190 0.21 0.3718 0.020 0.240 0.24 0.41

Notes:Where the value shown is zero, the minimum number of studs required is one per trough.

Page 9: BS 5950: Part 3.1

9

Multideck 60 &Multideck 80

Appendix B - Minimum Degree of Shear Connection RequiredTable B2 - Multideck 60 or Multideck 80 Transverse to a Propped Support Beam

Span Le Transverse Deck(m) Propped Beam Ys 275 Propped Beam Ys 355Beam Ult <=9kN/m3 Ult <=12kN/m3 Ult <=9kN/m3 Ult <=12kN/m3

5 0 0 0 05.5 0 0 0 06 0 0 0 06.5 0 0 0 07 0 0 0 07.5 0 0 0 08 0 0 0 08.5 0 0 0.03 0.049 0 0 0.05 0.079.5 0 0 0.08 0.1110 0 0 0.11 0.1410.5 0 0 0.13 0.1811 0 0 0.16 0.2211.5 0 0.03 0.19 0.2512 0 0.08 0.22 0.2912.5 0.02 0.13 0.24 0.3213 0.06 0.17 0.27 0.3613.5 0.09 0.22 0.30 0.4014 0.13 0.27 0.32 0.4314.5 0.16 0.31 0.35 0.4715 0.20 0.36 0.38 0.5015.5 0.23 0.40 0.40 0.5416 0.27 0.45 0.43 0.5816.5 0.30 0.50 0.46 0.6117 0.34 0.54 0.49 0.6517.5 0.37 0.59 0.51 0.6818 0.40 0.64 0.54 0.72

Notes:Where the value shown is zero, the minimum number of studs required is one per trough.

ComplianceGuidelines

Page 10: BS 5950: Part 3.1

10

Multideck 60 &Multideck 80

ComplianceGuidelines

Appendix B - Minimum Degree of Shear Connection RequiredTable B3 - Multideck 60 or Multideck 80 Parallel to an Unpropped Support Beam

Span Le Parallel Deck(m) Unpropped Beam Ys 275 Unpropped Beam Ys 355Beam Ult <=9kN/m3 Ult <=12kN/m3 Ult <=9kN/m3 Ult <=12kN/m3

5 0.15 0.14 0.34 0.345.5 0.17 0.17 0.36 0.356 0.19 0.19 0.37 0.376.5 0.21 0.21 0.39 0.397 0.23 0.23 0.40 0.417.5 0.25 0.25 0.42 0.428 0.26 0.28 0.43 0.448.5 0.28 0.30 0.44 0.469 0.30 0.32 0.46 0.479.5 0.32 0.34 0.47 0.4910 0.34 0.36 0.49 0.5110.5 0.36 0.39 0.50 0.5211 0.38 0.41 0.52 0.5411.5 0.40 0.43 0.53 0.5612 0.41 0.45 0.55 0.5812.5 0.43 0.47 0.56 0.5913 0.45 0.50 0.58 0.6113.5 0.47 0.52 0.59 0.6314 0.49 0.54 0.60 0.6414.5 0.51 0.56 0.62 0.6615 0.53 0.58 0.63 0.6815.5 0.54 0.60 0.65 0.6916 0.56 0.63 0.66 0.7116.5 0.58 0.65 0.68 0.7317 0.60 0.67 0.69 0.7517.5 0.62 0.69 0.71 0.7618 0.64 0.71 0.72 0.78

Page 11: BS 5950: Part 3.1

11

Multideck 60 &Multideck 80

Appendix B - Minimum Degree of Shear Connection RequiredTable B4 - Multideck 60 or Multideck 80 Parallel to a Propped Support Beam

Span Le Parallel Deck(m) Propped Beam Ys 275 Propped Beam Ys 355Beam Ult <=9kN/m3 Ult <=12kN/m3 Ult <=9kN/m3 Ult <=12kN/m3

5 0.23 0.21 0.40 0.395.5 0.24 0.24 0.42 0.416 0.26 0.27 0.43 0.436.5 0.28 0.30 0.45 0.467 0.30 0.33 0.46 0.487.5 0.32 0.36 0.48 0.518 0.34 0.39 0.49 0.538.5 0.36 0.42 0.51 0.559 0.38 0.45 0.52 0.589.5 0.40 0.48 0.54 0.6010 0.42 0.52 0.55 0.6310.5 0.44 0.55 0.57 0.6511 0.46 0.58 0.58 0.6711.5 0.48 0.61 0.60 0.7012 0.50 0.64 0.61 0.7212.5 0.52 0.67 0.63 0.7513 0.54 0.70 0.64 0.7713.5 0.55 0.73 0.66 0.7914 0.57 0.76 0.67 0.8214.5 0.59 0.79 0.69 0.8415 0.61 0.83 0.70 0.8715.5 0.63 0.86 0.72 0.8916 0.65 0.89 0.73 0.9116.5 0.67 0.92 0.75 0.9417 0.69 0.95 0.76 0.9617.5 0.71 0.98 0.78 0.9918 0.73 1.01 0.79 1.01

ComplianceGuidelines

Page 12: BS 5950: Part 3.1

02/2015

Kingspan Limited Sherburn, Malton, North Yorkshire, YO17 8PQ t: +44 (0) 1944 712000 f: +44 (0) 1944 710830 www.kingspanstructural.com

Carrickmacross Road, Kingscourt, Co Cavan, Ireland t: +353 (0) 42 96 98500 f: +353 (0) 42 96 98572 www.kingspanstructural.com

For the product offering in other markets please contact your local sales representative or visit www.kingspanpanels.com

Care has been taken to ensure that the contents of this publication are accurate, but Kingspan Limited and its subsidiary companies do not accept responsibility for errors or for information that is found to be misleading. Suggestions for, or description of, the end use or application of products or methods of working are for information only and Kingspan Limited and its subsidiaries accept no liability in respect thereof. The concepts and rules contained in this document are applicable only to Multideck 60 and Multideck 80, and are not applicable to any other deck no matter how similar to Kingspan’s steel floor decking systems they may be.