brain & perceptual motor development. myelinization

53
Brain & Perceptual Motor Development

Upload: meredith-norman

Post on 28-Dec-2015

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Brain & Perceptual Motor Development. Myelinization

Brain & Perceptual Motor Development

Page 2: Brain & Perceptual Motor Development. Myelinization
Page 3: Brain & Perceptual Motor Development. Myelinization
Page 4: Brain & Perceptual Motor Development. Myelinization
Page 5: Brain & Perceptual Motor Development. Myelinization

Myelinization

Page 6: Brain & Perceptual Motor Development. Myelinization

General Processes in Brain Development

• Various complex cellular changes occur in the transformation of the neural plate and groove of the embryonic ectoderm to the final form of the brain:– localized proliferation in different regions– migration of cells– aggregation of cells– differentiation of immature neurons– formation of connections between neurons– selective death of some cells– elimination of some initial connections

Page 7: Brain & Perceptual Motor Development. Myelinization

–Fully developed brain: 100 billion neurons –Multiplication ceases before birth–Therefore, average rate of over 25,000 per

minute, with most occurring in the first three months.

–Mitosis occurs in cells prior to migration except in cerebellar cortex

–Following migration dendrites and a single axon are generated

–as neurons mature the number of dendrites and axon connections is reduced.

Page 8: Brain & Perceptual Motor Development. Myelinization

Brain Growth Spurt

• Midpregnancy to 4 years

• Midpregnancy to 18 months– glial cells

• 18 months to 4 years – myelinization

Page 9: Brain & Perceptual Motor Development. Myelinization

Cerebellum Growth Spurt(starts later, finishes earlier)

• Development & maintenance of neuromuscular co-ordination, balance, muscle tone

• Spurt 1 month before term to 18 months– cell contents at adult levels whereas

forebrain and brainstem only at 60% of adult levels.

Page 10: Brain & Perceptual Motor Development. Myelinization
Page 11: Brain & Perceptual Motor Development. Myelinization

Neurological Age

• Specific patterns of motor, reflex and bioelectrical activity characterize specific gestational ages, and do not correlate well to the weight of the infant.

• Other indicators of maturity such as bone age are more closely correlated with growth of somatic variables such as weight or length.

Page 12: Brain & Perceptual Motor Development. Myelinization
Page 13: Brain & Perceptual Motor Development. Myelinization

Maturity Gradients

• Gradients in brain development are present in the two years after birth

• Most advanced part of the cortex is the primary motor area (precentral gyrus)

• Next the primary sensory area (postcentral gyrus)

• Then primary visual area in occipital robe

Page 14: Brain & Perceptual Motor Development. Myelinization

Maturity Gradients

• Lagging behind are the association areas –comparison and integration of impulses

• Within the Motor Area–Cells controlling arm & trunk develop ahead

of leg –Same in Sensory area

• By 3 months all primary areas are relatively mature

Page 15: Brain & Perceptual Motor Development. Myelinization

Brain Growth & Development

• Growth of Skull reflects the growth of the brain– Peak head breadth velocity 13 weeks– Peak head circumference 15-17 weeks– Velocity high until 32-34 weeks

• Growth of the vault of the skull depends on and is controlled by the growth of the brain

Page 16: Brain & Perceptual Motor Development. Myelinization

Brain Growth & Development

• 6 month after birth– Head circ. velocity is 15% of 34 week value

• 1 year after birth – Head circ. velocity is 7% of 34 week value

• At birth – brain weighs 25% of adult value

• At 6 months weighs – 50% of adult value

Page 17: Brain & Perceptual Motor Development. Myelinization

Fetal Stimulation

Page 18: Brain & Perceptual Motor Development. Myelinization

Hooker’s findings on ages (weeks) at which specialized movements appear in the fetus

• upper trunk 8.5

• head and neck 8.5

• shoulder and arms 9.5 - 11

• lower trunk 9.5 - 11

• eye muscles 11.5 - 12.5

• lips, jaw and tongue 11 - 12.5

• ankles and toes 12 - 14.5

• wrists and fingers 12 - 14.5

Page 19: Brain & Perceptual Motor Development. Myelinization

Responses in the Newborn

• Head and arm responses. – Closes hand in response to tactual

stimulation of fingers and palm. – Arm flexion can be elicited with pricking the

hand or a tap on the hand. – The startle response is evident-throws arm

outward if startled.

Page 20: Brain & Perceptual Motor Development. Myelinization

Responses in the Newborn

• Startle response– this response consists of throwing the arms

out, spreading the fingers, extending the legs and throwing the head back. It sometimes occurs with no apparent stimulation but is usually a response to stimuli which could frighten it such as noise, falling or other sudden occurrences.

Page 21: Brain & Perceptual Motor Development. Myelinization

Responses in the Newborn

• Springing position– this occurs when the infant is held upright

and inclined forward. The arms extend forward and the legs brought up.

• Fencing position– this occurs when the baby's head is rotated

to one side, the arm toward which the head is rotated will extend and the opposite arm will flex.

Page 22: Brain & Perceptual Motor Development. Myelinization

REFLEXIVE MOVEMENTS

• After the first weeks after birth a few reflex patterns exist that resemble later voluntary movements

• WALKING REFLEX– by 2 wk 58% of infants have it– No arm component– happens upside down

Page 23: Brain & Perceptual Motor Development. Myelinization

REFLEXIVE MOVEMENTS

• THE CRAWLING REFLEX– pressure alternately applied to soles of feet– 7th month gestation to 3rd or 4th month after

birth– distinct delay before voluntary creeping at

7th to 9th month

Page 24: Brain & Perceptual Motor Development. Myelinization

REFLEXIVE MOVEMENTS

• Swimming movements

• 2nd week to 5th month

Page 25: Brain & Perceptual Motor Development. Myelinization

REFLEXIVE MOVEMENTS

• CLIMBING MOVEMENTS

• an upward arm movement and the palmar-grasp reflex in one palm. Some experimenters have noted that reciprocal movements of the legs occur under these circumstances.

• toward end of first year and into 2nd year

Page 27: Brain & Perceptual Motor Development. Myelinization

INTERACTION OF REFLEXESAND THE PHASING IN OF

VOLUNTARY MOVEMENTS

• Can a prolonging of a reflex inhibit the introduction of a voluntary movement?

• e.g. for a child to assume an upright stance and begin to walk it is necessary that the "grasping" (or prehensile) reflex in the feet be terminated

Page 28: Brain & Perceptual Motor Development. Myelinization
Page 29: Brain & Perceptual Motor Development. Myelinization

VOLUNTARY INDEPENDENT LOCOMOTION

• CREEPING - occurs after prolonged front-lying. – Usually elicited in response to a reach for an

object• CRAWLING develops from creeping

– one limb moved at a time– progresses to smooth contralateral motion

• SLIDING - bypassed by most– slide forward in seated position

Page 30: Brain & Perceptual Motor Development. Myelinization

VOLUNTARY INDEPENDENT LOCOMOTION

• STANDING UP – creep then crawl from front-lying position– usually assume an upright position from the back

lying position– via seated position

• UPRIGHT GAIT– 10 TO 15th month– wide stance, feet turned outwards, knees slightly

flexed

Page 31: Brain & Perceptual Motor Development. Myelinization

VOLUNTARY INDEPENDENT LOCOMOTION

• Individual variability

• Some phases sometimes missed out

Page 32: Brain & Perceptual Motor Development. Myelinization

Perceptual-Motor Development

Page 33: Brain & Perceptual Motor Development. Myelinization

PERCEPTUAL-MOTOR DEVELOPMENT

• relates to changes or improvements in the child’s afferent or sensori-perceptual abilities

• with age there is an increase in capacity to perceive increasingly more complex kinds and quantities of sensory information

Page 34: Brain & Perceptual Motor Development. Myelinization

INFORMATION PROCESSING

• Adult highly efficient

– only relevant cues processed

– rapid, accurate response

• Children slower, and frequently pick-up irrelevant cues

• Children can pick up as much information from their sensors

• Short Term Memory

– Children lose information more rapidly

– Attention, no planful scanning of information

– adults actually take in less information

– rehearsal, encoding strategies

Page 35: Brain & Perceptual Motor Development. Myelinization

SHIFT IN DOMINANCE IN SENSORY SYSTEMS

• Move from a reliance on tactile-kinesthetic information to primary reliance on the visual system

• rope jumping• 4 yrs child can not co-ordinate with rope• 7 yrs can

Page 36: Brain & Perceptual Motor Development. Myelinization

IMPROVED INTERSENSORY COMMUNICATION

• More skilled at using multiple sensory inputs

• close eyes while rope jumping

Page 37: Brain & Perceptual Motor Development. Myelinization

IMPROVED INTRASENSORY DISCRIMINATION

• Greater ability of each of the senses to discriminate stimuli

• Greater ability to discriminate speed, direction, pattern of movement

Page 38: Brain & Perceptual Motor Development. Myelinization

Perceptual-motor Development depends upon the development of the perceptual processes and the motor functions.

Page 39: Brain & Perceptual Motor Development. Myelinization

SENSORY DOMINANCE

• handedness, footedness, eyedness

• By 4.yrs handedness may be established

• period of ambivalence 5-9 yrs

• In footedness, no period of ambivalence

• In eyedness, not so much dominance

Page 40: Brain & Perceptual Motor Development. Myelinization
Page 41: Brain & Perceptual Motor Development. Myelinization

Developmental Sequences

• Orderly predictable sequence of motor control• Cephalocaudal

– Gradual progression of increased control over the musculature, moving from head to the feet

• Proximodistal – Gradual progression of increased control over the

musculature, from centre of the body to its most distant parts

• Large to small muscle sequence– Dominance of large muscle in movement replaced by

smaller muscle control in refined movement

Page 42: Brain & Perceptual Motor Development. Myelinization

Developmental Variability• There are age variations in the rate of

movement skill acquisition• Heredity and environmental circumstances

ensure varying rates of development• Readiness

– Conditions within both the individual and the environment that make a particular task appropriate for the child to master

• Sensitive Periods– Time periods where skills can be more easily acquired

Page 43: Brain & Perceptual Motor Development. Myelinization

Differentiation & Integration

• Differentiation– Gradual progression from the gross globular (overall)

movement patterns of infants to the more refined and functional movements of children as they mature

• Integration– Coordinated interaction of the opposing muscle and sensory

systems

• Grasping– Changes from ill-defined corralling movements to more

mature and visually guided reaching and grasping behaviour

Page 44: Brain & Perceptual Motor Development. Myelinization

Early Running

• Large muscle movement• Hurried walk (maintains contact) • 18 months

Page 45: Brain & Perceptual Motor Development. Myelinization

Running

• More advanced arm and leg movements

Hurried walk (maintains contact)First true run (nonsupport phase)Efficient and refined runSpeed of run increases, mature run*

18 months2-3 years4-5 years5 years

Page 46: Brain & Perceptual Motor Development. Myelinization

GROSS VISUAL-MOTOR SKILLS

• Throwing, catching, kicking, striking and ball bouncing

• Eyes are required for tracking

Page 47: Brain & Perceptual Motor Development. Myelinization

Stages of Development of Catching a Ball

• 1) Whole body• 2) Arms• 3) Hands

Chases ball; does not respond to aerial ballResponds to aerial ball with delayed arm movementsNeeds to be told how to position armsFear reaction (turns head away)Basket catch using the bodyCatches using the hands only with a small ballMature catching pattern*

2 years

2-3 years

2-3 years

3-4 years3 years5 years

6 years

Page 48: Brain & Perceptual Motor Development. Myelinization

Ball Bouncing

• Should one handed or two handed be taught first?

Page 49: Brain & Perceptual Motor Development. Myelinization

KickingPushes against ball; does not actually kick it

Kicks with leg straight and little body movement (kicks at the ball)

Flexes lower leg on backward lift

Greater backward and forward swing with definite arm opposition

Mature pattern (kicks through the ball)* 

18 mos.

2-3 years

 

3-4 years

4-5 years

 

5-6 years

Page 50: Brain & Perceptual Motor Development. Myelinization

ThrowingBody faces target, feet remain stationary, ball is thrown with forearm extension only

Same as above but with body rotation added

Steps forward with leg on same side as the throwing arm.

Boys exhibit more mature pattern than girls

Mature throwing pattern*

2-3 years 

3.6-5 years

4-5 years

5 years and over

6 years

Page 51: Brain & Perceptual Motor Development. Myelinization

Throwing

Page 52: Brain & Perceptual Motor Development. Myelinization

SEX DIFFERENCES

• Parents often treat boys and girls differently from birth

• One yr old boys spend more time in gross motor activity while girls spend more in fine motor activity

• Boys are more vigorous in their play and are more exploratory than girls

Page 53: Brain & Perceptual Motor Development. Myelinization

SEX DIFFERENCES

• from 2 to 5 yrs girls excel in tasks requiring jumping, hopping, rhythmic locomotion and balance

• boys generally better in tasks requiring strength and speed

• from 5 to 6 yrs on, – boys generally perform better in running,

jumping, and throwing activities – girls excel in hopping– balancing shows no clear pattern