Boiling water reactor (bwr)

Download Boiling water reactor (bwr)

Post on 22-Jul-2015

44 views

Category:

Education

2 download

Embed Size (px)

TRANSCRIPT

BOILING WATER REACTOR (BWR)

BOILING WATER REACTOR(BWR)DEFINISIKARAKTERISTIKPRINSIP KERJAKELEBIHAN & KEKURANGANDefinisi Boiling water Reactor (BWR)Merupakan satu tipe reaktor nuklir yang digunakan dalam Pembangkit Listrik Tenaga Nuklir (PLTN).Moderator adalah medium untuk memperlambat kecepatan partikel neutron cepat.Air pendingin digunakan untuk mengambil panas yang dihasilkan dalam teras reaktor (reactor core) sehingga temperatur air akan naik. Efisiensi thermal sebesar 34 %. Efisiensi thermal ini menunjukkan prosentase panas hasil fisi yang dapat dikonversikan menjadi energi listrik. Setelah melalui turbin, uap tersebut akan mengalami proses pendinginan sehingga berubah menjadi air yang langsung dialirkan ke teras reaktor untuk diuapkan lagi dan seterusnya.

Karakteristik Konstruksi DasarBoiling water Reactor (BWR)Air pendingin dididihkanUapTurbinMemutar GeneratorUap disalurkan ke kondenserAirDikembalikan ke bejana reaktorDisirkulasi dengan pompaDisalurkan ke bagian bawah teras reaktorTekanan dari pompa resirkulasi ini akan menaikkan kecepatan aliran air pendingin dalam teras reaktor. Konstruksi bejana tekan reactorKonstruksi utama bejana tekan reaktor untuk Reaktor Air Didih dengan kapasitas daya 1100 MWe. Dalam bejana tekan ini terdapat sekumpulan bahan bakar, batang kendali dan konstruksi penyangga yang membentuk suatu konstruksi yang disebut teras reaktor. Di atas teras reaktor terdapat konstruksi perangkat pemisah uap-air (steam separator) dan di atas perangkat pemisah terdapat perangkat pengering uap.Di bagian bawah teras terdapat perangkat pengendali daya reaktor berupa pengarah batang kendali, penggerak batang kendali dan batang kendali. Dengan perangkat ini batang kendali dapat bergerak dari bawah ke atas masuk ke teras reaktor melalui pengarahnya. Di sekitar teras terdapat konstruksi lorong-lorong saluran pendingin dan pompa jet.

Konstruksi perangkat bahan bakar. Salah satu contoh perangkat bahan bakar terdiri atas 62 batang bahan bakar dan 2 batang yang berisi air membentuk matriks 8 x 8. Bentuk susunan matriks batang bahan bakar dapat pula berupa matriks 6 x 6 atau 9 x 9. Matriks kemudian dibungkus dengan lempeng logam Zirkalloy. Keseluruhan susunan matriks batang bahan bakar dan pembungkusnya serta spacer (penjaga jarak antar batang bahan bakar) ini disebut perangkat bahan bakar.Batang bahan bakar yang jumlahnya 62 buah tersebut terbuat dari pipa Zirkalloy dan berisi pelet uranium oksida. Pipa pembungkus pelet bahan bakar uranium oksida ini disebut kelongsong. Di kedua ujung kelongsong terdapat ruang yang disebut plenum. Dalam kelongsong juga terdapat pegas penekan pelet bahan bakar. Dalam pelet bahan bakar terjadi reaksi fisi. Bahan hasil fisi ditampung dalam ruang plenum, karena itu tekanan dalam kelongsong tidak melonjak terlalu besar

Pengendalian daya reactorReaktor air didih beroperasi pada tekanan 70 kg/cm2. Air pendingin mendidih dan menghasilkan uap di dalam bejana reaktor. Air dalam kondisi uap dan cair disirkulasikan kembali ke teras reaktor dengan menggunakan pompa sirkulasi. Dengan mengatur aliran resirkulasi, reaktivitas reaktor, yang berarti juga daya reaktor, dapat dinaik-turunkan atau dikendalikan. Ini adalah salah satu cara pengendalian reaktor air didih yang disebut metode pengendalian resirkulasi.Cara lain untuk menaikkan reaktivitas (daya reaktor) adalah dengan menarik batang kendali dari teras reaktor. Jika batang kendali ditarik keluar dari teras, reaktivitas atau reaksi fisi bertambah dan menghasilkan energi panas lebih banyak lagi (daya reaktor naik). Energi panas ini akan mendidihkan air lebih banyak, dan dengan demikian uapyang dihasilkan juga bertambah. Meningkatnya kandungan uap dalam air akan menurunkan kemampuan air dalam memoderasi partikel neutron

Jumlah neutron kecepatan rendah (neutron termal) yang akan menimbulkan reaksi fisi menjadi berkurang, sehingga akibatnya reaksi fisi (reaktivitas) juga berkurang. Jadi menaikkan daya reaktor dengan cara menarik batang kendali akan selalu dikompensasi oleh produksi uap yang menekan daya. Proses kompensasi ini akan berakhir pada suatu kondisi stabil pada daya setimbang tertentuPada reaktor air didih, jika terjadi perubahan beban (permintaan beban listrik dari luar), pengendalian pembangkitan daya dilakukan dengan menaik-turunkan batang kendali dalam teras reaktor atau dengan menyesuaikan kecepatan aliran resirkulasi air pendingin. Pada saat terjadi penyesuaian terhadap permintaan beban, tekanan pendingin dalam bejana reaktor dapat naik atau turun. Untuk mengatasi kenaikan dan penurunan tekanan dalam bejana reaktor, digunakan cara pengendalian dengan mengatur bukaan katup uap dari reaktor ke turbin. Metode ini disebut Reactor-master/Turbin-slave (metode mengikuti beban).Sistem keselamatan rekayasaBila suatu ketika terjadi kecelakaan yang menyebabkan pipa saluran air pendingin terputus atau bocor sehingga pendinginan reaktor tidak cukup, maka fasilitas sistem pendinginan teras darurat (Emergency Core Cooling System, ECCS). Dalam sistem ECCS ini terdapat sistem penyemprot teras (core spray system), sistem susut-tekanan mandiri (self-depressurization system) dan penyemprot teras tekanan rendah.Pada saat terjadi kerusakan batang bahan bakar, air pendingin dari teras yang bertekanan tinggi dan bertemperatur tinggi akan mengandung bahan radioaktif yang berasal dari batang bahan bakar. Untuk menghindari lepasnya bahan radioaktif dalam reaktor terdapat bejana reaktor yang berfungsi sebagai pengungkung material berbahaya jika terjadi kecelakaan, dan terdapat juga katup isolasi yang mengisolasi bejana reaktor dan sistem di luarnya. Peningkatan tekanan pada saat terjadi isolasi bejana reaktor dihindari dengan sistem supresi yang mengalirkan uap yang terbentuk ke kolam supresi. yang berisi air, uap akan besentuhan dengan air dan mengalami kondensasi yang mengakibatkan turunnya tekanan uap.Pada kecelakaan kebocoran pendingin, temperatur bahan bakar dan kelongsongnya akan naik. Kenaikan temperatur ini akan memicu reaksi antara air dan logam yang menghasilkan gas hidrogen. Hidrogen yang bertemperatur tinggi ini dapat mengancam keutuhan struktur bejana reaktor. Untuk mencegah kejadian ini, bejana reaktor dilengkapi dengan ruang kosong khusus untuk menampung gas bentukan. Di samping itu, terdapat fasilitas untuk mereaksikan hidrogen yang timbul, agar dapat bergabung kembali dengan oksigen menjadi air.

Prinsip Kerja Boiling water Reactor (BWR)

Reaktor tipe ini menggunakan air (H2O) sebagai pendingin dan moderator. Moderator adalah medium untuk memperlambat kecepatan partikel neutron cepat. Air pendingin digunakan untuk mengambil panas yang dihasilkan dalam teras reaktor (reactor core) sehingga temperatur air akan naik. Temperatur air dibiarkan meningkat hingga mencapai titik didih. Uap yang dihasilkan pada proses pendidihan air kemudian disalurkan untuk memutar turbin yang terhubung dengan generator listrik.Dalam reaktor tipe ini, uap yang terbentuk akan menyebabkan reaktivitas reaktor menjadi negatif. Reaktivitas negatif dapat menahan kenaikan daya reaktor, sehingga penambahan reaktivitas (penaikan daya reaktor) dapat dikendalikan secara stabil dengan batang kendaliPada reaktor air didih, air pendingin dididihkan di dalam bejana reaktor sehingga menghasilkan uap. Uap ini kemudian secara langsung dialirkan ke turbin yang memutar generator listrik. Setelah uap air menggerakkan turbin, uap disalurkan ke kondenser dan diubah menjadi air kembali. Dengan pompa utama, air kemudian dikembalikan ke bejana reaktor. Sebagian air pendingin yang berada dalam bejana reaktor disirkulasi dengan pompa (disebut pompa resirkulasi). Air yang keluar dari pompa resirkulasi disalurkan ke bagian bawah teras reaktor melalui katup yang bekerja sebagai pompa jet. Tekanan dari pompa resirkulasi ini akan menaikkan kecepatan aliran air pendingin dalam teras reactor KELEBIHAN Beroperasi pada tekanan yang lebih rendah integritas lebih terjagaTemperatur bahan bakar lebih rendahKomponen lebih sedikit, lebih sederhanaDapat beroperasi dengan sirkulasi alamiahPengaturan daya lebih sederhana, memungkinkan load following

KELEMAHANAnalisis mekanika fluida dua fase lebih rumitBejana tekan lebih besar lebih mahalRadiasi aktivasi air sampai ke turbin , kemungkinan produk fisi lolos kelingkungan lebih besar jika terjadi kegagalan batang bahan bakarTurbin memerlukan perisai radiasiBatang kendali tidak memenuhi prinsip 'gagal selamat'Dilihat dari sistem keselamatannya, reaktor air didih kurang aman karena jika terjadi kebocoran bahan radioaktif akan terlarut dalam air pendingin primer dapat menyebabkan terjadinya kontaminasi pada turbinTERIMA KASIH

Recommended

View more >