biomarkers of injury and infection - defence...

38
Biomarkers of Injury and Infection Prepared By: Dr. Christoph W. Sensen, Dr. rer. nat.; Dipl.- Biol. University of Calgary Faculty of Medicine Department of Biochemistry and Molecular Biology Institute of Child and Maternal Health Visual Genomics Centre 3330 Hospital Drive NW Calgary, AB, Canada, T2N 4N1 PWGSC Contract Number: W7702145655/001E DM Contract Scientific Authority: Barry Ford, Defence Scientist The scientific or technical validity of this Contract Report is entirely the responsibility of the Contractor and the contents do not necessarily have the approval or endorsement of Department of National Defence of Canada. Contract Report DRDC-RDDC-2015-C245 March 2015

Upload: hoangtruc

Post on 30-Apr-2018

218 views

Category:

Documents


3 download

TRANSCRIPT

Biomarkers of Injury and Infection

Prepared By:

Dr. Christoph W. Sensen, Dr. rer. nat.; Dipl.- Biol. University of Calgary

Faculty of Medicine

Department of Biochemistry and Molecular Biology

Institute of Child and Maternal Health

Visual Genomics Centre

3330 Hospital Drive NW

Calgary, AB, Canada, T2N 4N1

PWGSC Contract Number: W7702‐145655/001EDM

Contract Scientific Authority: Barry Ford, Defence Scientist

The scientif ic or technical validity of this Contract Report is entirely the responsibility of the Contractor and the contents do

not necessarily have the approval or endorsement of Department of National Defence of Canada.

Contract Report

DRDC-RDDC-2015-C245

March 2015

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2015 © Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale, 2015

2

Executive Summary:

Background : Sepsis is an important cause of morbidity and mortality in post-surgery, and in the case of infection with bio-threat agents. Sepsis can be defined as Systemic Inflammatory Response Syndrome (SIRS), in combination with verified microbiological infection, as determined by positive microbial culture from blood. When symptoms of SIRS are observed (fever (or low body temperature), elevated heart rate, elevated breathing rate, falling white cell count), sequelae of the infection may already be present. Serious effects include hypotension, multiple organ dysfunction, coagulopathy, renal failure, CNS dysfunction, and gastrointestinal bleeding. Such patients are extremely ill. The earlier a clear diagnosis can be made, the sooner life saving treatment can be initiated. Conversely,

In collaboration with Dstl Porton Down, (U.K.), DRDC Suffield has been involved in searching for pre-symptomatic host biomarkers of sepsis, with a view to identifying sepsis cases early, so that pre-emptive treatment can occur. Dstl has embarked on a multi-year multi-center recruitment of health pre-surgical patients, with a view to capturing some of the sepsis cases which will arise in post-surgical recovery. Patients are recruited as healthy elective surgery cases, and blood samples collected daily until the patient is discharged healthy, or diagnosed with sepsis.

Method : From the timed collection of blood, a multi-methodology search is undertaken for biomarkers of sepsis and identification of the earliest pre-sepsis time point at which the biomarkers can be detected. Using anonymized samples from the Dstl project, DRDC undertook a preliminary analysis of serum to identify circulating fragments of DNA (circulating nucleic acids, CNA), which were correlated to sepsis outcomes. In addition, DNA sequence data were analyzed to determine whether or not putative microbial sequences could be found and identified as to species.

Results : Using high-throughput sequencing (see Section 2), serum CNA were identified and analyzed (see Section 3 and 4) for DNA sequences over-represented in sepsis cases relative to the control cases. Various quality control and data assurance methods have been applied. The result of this analysis is a panel of 25 CNA fragments (see Table 5) which are only in sepsis samples, not seen in control samples. As well, 16 of the 25 CAN fragments were detected 3 or more days before sepsis was diagnosed based on clinical criteria, thus satisfying the pre-symptomatic requirement.

Conclusion : Using high-throughput sequencing and advanced bioinformatics analysis , we have been able to identify a panel of 25 candidate DNA fragment (CAN) biomarkers which merit further investigation, either by direct assay using existing methods, or by the development of novel assays for point of care use. Subsequent efforts will focus on expanding the biomarker panel, and verifying the existing (or new) markers with increased sample numbers and robust statistics.

Impact : A rapid point of care assay for sepsis, several days before onset of symptoms, could enable useful treatment early enough to reduce morbidity or prevent death from systemic infection.

3

This page intentionally left blank.

Fina

Project:ProjecttProjectsProjectcPrincipa

‐‐‐‐‐‐‐‐‐‐‐

C

lReporton

DRDC,Sufftitle:Biomastartdate:Dcompletion

alInvestigatUniveFaculDeparInstitVisua3330CalgaPhone

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

hristophSE

De

D

Medic

nPerforma

field,GrantarkersofInDecember20date:March

tor:Dr.ChriersityofCaltyofMedicirtmentofButeofChildalGenomicsHospitalDrry,AB,Canae:(403)220

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

ENSEN

epartment

DefenseR&

POBOX40

cineHat,Al

anceofServ

t#W7702‐1njuryandIn0,2013h31,2015

istophW.SgaryineiochemistrydandMaternCentreriveNWada,T2N4N0‐4301

‐‐‐‐‐‐April1

ofNationa

&DCanada

000Station

berta,T1A

vices,Dece

145655/00nfection

Sensen,Dr.

yandMolecnalHealth

N1

15,2015

alDefense

Suffield

nMain

A8K6,Cana

ember20,2

01EDM

rer.nat.;D

cularBiolog

ada

2013–Mar

Dipl.‐Biol.

gy

rch31,201

4

5

1. ProThegoalinfection

Id D

2. CNAAstheehumans

1w

1h

Table1ltobeint

Seth

Taex

Tsewa

Sese

Sco

ject goals loftheprojnorsepsis.

dentifyCircDetectmicro

A samplesexperimentaserumsamp

06sepsis‐infwhichsampl19 controlumanvarie

liststhe106erpretedas

epsisgrouphegroup.ThTimepoint:tlways 0 buxample,forTimepointreepsisdiagnwithafewdfterthedayequencing gequencingcamplefilenonsistsof<

jectistodeWehavepe

ulatingNucobespresen

s almodel forplesatdiffer

fectedsamplesweretaksamples obesfrom1to

6sepsissamsfollows:

(number):gheserialnutimepointaut the subsSepsisGrouelativetoseosis.Thesedaysbeforeyofdiagnosigroup: groucentreandsame:name<Sepsisgrou

etectbiomarerformedtw

cleicAcid(CntinCNAth

r identifyingrenttimepo

plesobtainekenfromapbtained fro6.

mplestaken

groupnameumberrunsfatwhicheasequent timupS38thesepsisdiagnosusuallyrunthedayofis.up numberstoredasasofthedataup>.<Timep

rkersinDNwoprimary

NA)biomarhatareindic

gbiomarkeoints.There

edfrom22ppatientrangom 51 huma

from22pa

e(IDgivenfrom1tothchsamplehme points asecondtimesis: timeponfromPre‐sdiagnosis.O

r the sampseparatefolafileasstorpoint>‐<Tim

NAbasedpretasksinord

rkersofsepcativeofsep

erspresentearetwoma

patients.Thgesfrom3tans. The n

atients,whe

toapatienhenumberohasbeentaare not neepointis2,oint indicatesurgerytotOnlyS19an

ple belongslderonthepredonthepmepointrel

esymptomadertoachie

psispsisinfectio

inCNA,weaingroupso

henumberoo7.umber of t

erethecolum

t)andthesofthesepsisaken.Thefirecessarily cnot1.ed inrelatiotheDayofsndS87have

to, as recprojectdataprojectdatalativetosep

aticindicatovethisgoal

on

ehaveusedofsamples:

oftimepoin

time points

mnheading

serialnumbsgroups.rsttimepoconsecutive.

ontothedsepsisdiagnesamplest

ceived fromadisk.adisk.Thenpsisdiagnos

5

orsofl:

d225

ntsat

s per

gsare

berof

intis. For

ayofnosis,taken

m the

namesis>.

6

Table1:Compositionofsepsis‐infectedsamplesintermsofpatientsandtimepoints

Sepsisgroup(number)

Timepoint

Timepointrelativetosepsisdiagnosis

Sequencinggroup

Samplefilename

S19(1) 00 Pre‐surgery Group3 S19.00‐PS

01 Sepsisday‐2 Group3 S19.01‐S_2

02 Sepsisday‐1 Group3 S19.02‐S_1

03 Dayofsepsisdiagnosis Group3 S19.03‐S

04 Sepsisday+1 Group3 S19.04‐S+1

S24(2) 00 Pre‐surgery Group3 S24.00‐PS

01 Sepsisday‐2 Group3 S24.01‐S_2

02 Sepsisday‐1 Group3 S24.02‐S_1

03 Dayofsepsisdiagnosis Group3 S24.03‐S

S28(3) 00 Pre‐surgery Group3 S28.00‐PS

01 Sepsisday‐3 Group3 S28.01‐S_3

02 Sepsisday‐2 Group3 S28.02‐S_2

03 Sepsisday‐1 Group3 S28.03‐S_1

04 Dayofsepsisdiagnosis Group3 S28.04‐S

S38(4) 00 Pre‐surgery Group11 S38.00‐PS

02 Sepsisday‐3 Group11 S38.02‐S_3

03 Sepsisday‐2 Group11 S38.03‐S_2

04 Sepsisday‐1 Group12 S38.04‐S_1

05 Dayofsepsisdiagnosis Group12 S38.05‐S

S41(5) 00 Pre‐surgery Group10 S41.00‐PS

01 Sepsisday‐3 Group10 S41.01‐S_3

02 Sepsisday‐2 Group10 S41.02‐S_2

03 Sepsisday‐1 Group10 S41.03‐S_1

04 Dayofsepsisdiagnosis Group10 S41.04‐S

S42(6) 00 Pre‐surgery Group4 S42.00‐PS

01 Sepsisday‐2 Group4 S42.01‐S_2

02 Sepsisday‐1 Group4 S42.02‐S_1

03 Dayofsepsisdiagnosis Group4 S42.03‐S

7

Table1:continued

S44(7) 00 Pre‐surgery Group11 S44.00‐PS

03 Sepsisday‐3 Group11 S44.03‐S_3

04 Sepsisday‐2 Group11 S44.04‐S_2

05 Sepsisday‐1 Group11 S44.05‐S_1

06 Dayofsepsisdiagnosis Group11 S44.06‐S

S48(8) 00 Pre‐surgery Group11 S48.00‐PS

01 Sepsisday‐3 Group11 S48.01‐S_3

02 Sepsisday‐2 Group11 S48.02‐S_2

03 Sepsisday‐1 Group11 S48.03‐S_1

04 Dayofsepsisdiagnosis Group11 S48.04‐S

S49(9) 00 Pre‐surgery Group10 S49.00‐PS

01 Sepsisday‐1 Group10 S49.01‐S_1

02 Dayofsepsisdiagnosis Group10 S49.02‐S

S55(10) 00 Pre‐surgery Group5 S55.00‐PS

03 Sepsisday‐3 Group5 S55.03‐S_3

04 Sepsisday‐2 Group5 S55.04‐S_2

05 Sepsisday‐1 Group5 S55.05‐S_1

06 Dayofsepsisdiagnosis Group5 S55.06‐S

S57(11) 00 Pre‐surgery Group10 S57.00‐PS

04 Sepsisday‐3 Group10 S57.04‐S_3

05 Sepsisday‐2 Group11 S57.05‐S_2

06 Sepsisday‐1 Group11 S57.06‐S_1

07 Dayofsepsisdiagnosis Group11 S57.07‐S

S63(12) 00 Pre‐surgery Group4 S63.00‐PS

01 Sepsisday‐5 Group4 S63.01‐S_5

02 Sepsisday‐4 Group4 S63.02‐S_4

03 Sepsisday‐3 Group4 S63.03‐S_3

04 Sepsisday‐2 Group4 S63.04‐S_2

05 Sepsisday‐1 Group4 S63.05‐S_1

06 Dayofsepsisdiagnosis Group4 S63.06‐S

8

Table1:continued

S64(13) 00 Pre‐surgery Group11 S64.00‐PS

01 Sepsisday‐2 Group11 S64.01‐S_2

02 Sepsisday‐1 Group11 S64.02‐S_1

03 Dayofsepsisdiagnosis Group11 S64.03‐S

S66(14) 00 Pre‐surgery Group4 S66.00‐PS

01 Sepsisday‐2 Group4 S66.01‐S_2

02 Sepsisday‐1 Group4 S66.02‐S_1

03 Dayofsepsisdiagnosis Group4 S66.03‐S

S86(15) 00 Pre‐surgery Group5 S86.00‐PS

01 Sepsisday‐4 Group5 S86.01‐S_4

02 Sepsisday‐3 Group5 S86.02‐S_3

03 Sepsisday‐2 Group5 S86.03‐S_2

04 Sepsisday‐1 Group5 S86.04‐S_1

05 Dayofsepsisdiagnosis Group5 S86.05‐S

S87(16) 00 Pre‐surgery Group5 S87.00‐PS

01 Sepsisday‐3 Group5 S87.01‐S_3

02 Sepsisday‐2 Group5 S87.02‐S_2

03 Sepsisday‐1 Group5 S87.03‐S_1

04 Dayofsepsisdiagnosis Group5 S87.04‐S

05 Sepsisday+1 Group5 S87.05‐S+1

06 Sepsisday+2 Group5 S87.06‐S+2

S90(17)

00 Pre‐surgery Group10 S90.00‐PS

01 Sepsisday‐1 Group10 S90.01‐S_1

02 Dayofsepsisdiagnosis Group10 S90.02‐S

S93(18) 00 Pre‐surgery Group10 S93.00‐PS

02 Sepsisday‐3 Group10 S93.02‐S_3

03 Sepsisday‐2 Group10 S93.03‐S_2

04 Sepsisday‐1 Group10 S93.04‐S_1

05 Dayofsepsisdiagnosis Group10 S93.05‐S

9

Table1:continued

S94(19) 00 Pre‐surgery Group9 S94.00‐PS

04 Sepsisday‐3 Group9 S94.04‐S_3

05 Sepsisday‐2 Group9 S94.05‐S_2

06 Sepsisday‐1 Group10 S94.06‐S_1

07 Dayofsepsisdiagnosis Group10 S94.07‐S

S98(20) 00 Pre‐surgery Group9 S98.00‐PS

01 Sepsisday‐2 Group9 S98.01‐S_2

02 Sepsisday‐1 Group9 S98.02‐S_1

03 Dayofsepsisdiagnosis Group9 S98.03‐S

S100(21) 00 Pre‐surgery Group9 S100.00‐PS

01 Sepsisday‐3 Group9 S100.01‐S_3

02 Sepsisday‐2 Group9 S100.02‐S_2

03 Sepsisday‐1 Group9 S100.03‐S_1

04 Dayofsepsisdiagnosis Group9 S100.04‐S

S102(22) 00 Pre‐surgery Group9 S102.00‐PS

04 Sepsisday‐3 Group9 S102.04‐S_3

05 Sepsisday‐2 Group9 S102.05‐S_2

06 Sepsisday‐1 Group9 S102.06‐S_1

07 Dayofsepsisdiagnosis Group9 S102.07‐S

Table2liststhe119controlsamplestakenfrom51humans,wherethecolumnheadingsmean:

Controlgroup(number):groupname(IDgiventoahuman)andtheserialnumberofthe group. The serial number runs from 1 to the number of the control groups.There are four samples pooled from two humans each. For example, the Controlgroup C_H1009+H1015, time point 0 sample has been pooled from the ControlgroupsH1009andH1015,bothattimepoint0.

Timepoint:timepointatwhicheachsamplehasbeentaken.Thefirsttimepointisalways00butthesubsequenttimepointsarenotnecessarilyconsecutive.

Sequencing group: group number the sample belongs to, as received from thesequencingcentreandstoredasaseparatefolderontheprojectdatadisk.

Samplefilename:nameofthedatafileasstoredontheprojectdatadisk.Thenameconsistsof<Controlgroup>.<Timepoint>‐0.

10

Table2:Compositionofcontrolsamplesintermsofhumansandtimepoints

Controlgroup(number) Timepoint Sequencinggroup Samplefilename

C_B1200(1) 00 Group1 K7.00‐0

01 Group1 K8.01‐0

C_G1074(2) 00 Group1 K5.00‐0

01 Group1 K6.01‐0

C_H1009(3) 01 Group1 K2.01‐0

C_H1015(4) 01 Group1 K4.01‐0

C_J1054(5) 01 Group1 K10.01‐0

C_L1210(6) 01 Group1 K12.01‐0

C_L1271(7) 01 Group1 K18.01‐0

C_L1350(8) 00 Group1 K15.00‐0

01 Group1 K16.01‐0

C_L1361(9) 01 Group1 K20.01‐0

C_L1411(10) 00 Group1 K21.00‐0

01 Group1 K22.01‐0

C_L1600(11) 00 Group1 K13.00‐0

01 Group1 K14.01‐0

C_U1028(12) 00 Group1 K23.00‐0

01 Group1 K24.01‐0

C_U1086(13) 01 Group1 K26.01‐0

C_U1121(14) 01 Group1 K28.01‐0

C_U1147(15) 01 Group2 K30.01‐0

C_U1158(16) 00 Group2 K31.00‐0

01 Group2 K32.01‐0

C_U1163(17) 00 Group2 K33.00‐0

01 Group2 K34.01‐0

C_U1172(18) 01 Group2 K42.01‐0

C_U1180(19) 01 Group2 K44.01‐0

11

Table2:continuedC_U1191(20) 01 Group2 K46.01‐0

C_U1205(21) 01 Group2 K36.01‐0

C_U1224(22) 01 Group2 K38.01‐0

C_U1238(23) 00 Group2 K39.00‐0

01 Group2 K40.01‐0

C_U1248(24) 00 Group2 K47.00‐0

01 Group2 K48.01‐0

C_U1264(25) 00 Group2 K49.00‐0

01 Group2 K50.01‐0

C_H1009+H1015(26) 00 Group2 K52_K9+K11.00‐0

C_L1271+L1361(27) 00 Group2 K53_K17+K19.00‐0

C_U1121+U1147(28) 00 Group2 K54_K27+K29.00‐0

C_U1205+U1224(29) 00 Group2 K55_K35+K37.00‐0

C19(30) 00 Group3 C19.00‐0

01 Group3 C19.01‐0

02 Group3 C19.02‐0

03 Group3 C19.03‐0

C24(31) 00 Group3 C24.00‐0

01 Group3 C24.01‐0

02 Group4 C24.02‐0

C28(32) 00 Group4 C28.00‐0

01 Group4 C28.01‐0

02 Group4 C28.02‐0

04 Group4 C28.04‐0

C38(33) 00 Group8 C38.00‐0

02 Group9 C38.02‐0

03 Group9 C38.03‐0

04 Group9 C38.04‐0

12

Table2:continuedC41(34) 00 Group8 C41.00‐0

01 Group8 C41.01‐0

02 Group8 C41.02‐0

C42(35) 00 Group6 C42.00‐0

01 Group6 C42.01‐0

02 Group6 C42.02‐0

C44(36) 00 Group8 C44.00‐0

03 Group8 C44.03‐0

05 Group8 C44.05‐0

C48(37) 00 Group8 C48.00‐0

01 Group8 C48.01‐0

02 Group8 C48.02‐0

03 Group8 C48.03‐0

C49(38) 00 Group8 C49.00‐0

01 Group8 C49.01‐0

C55(39) 00 Group6 C55.00‐0

03 Group6 C55.03‐0

04 Group6 C55.04‐0

05 Group6 C55.05‐0

C57(40) 00 Group8 C57.00‐0

04 Group8 C57.04‐0

05 Group8 C57.05‐0

06 Group8 C57.06‐0

C63(41) 00 Group5 C63.00‐0

01 Group5 C63.01‐0

02 Group6 C63.02‐0

03 Group6 C63.03‐0

04 Group6 C63.04‐0

05 Group6 C63.05‐0

13

Table2:continuedC64(42) 00 Group8 C64.00‐0

04 Group8 C64.04‐0

05 Group8 C64.05‐0

C66(43) 00 Group6 C66.00‐0

01 Group6 C66.01‐0

02 Group6 C66.02‐0

C86(44) 01 Group6 C86.01‐0

02 Group6 C86.02‐0

03 Group6 C86.03‐0

04 Group6 C86.04‐0

C87(45) 00 Group6 C87.00‐0

01 Group6 C87.01‐0

02 Group12 C87.02‐0

03 Group12 C87.03‐0

05 Group12 C87.05‐0

C90(46) 00 Group7 C90.00‐0

01 Group7 C90.01‐0

C93(47) 00 Group7 C93.00‐0

02 Group7 C93.02‐0

03 Group7 C93.03‐0

04 Group7 C93.04‐0

C94(48) 00 Group7 C94.00‐0

04 Group7 C94.04‐0

05 Group7 C94.05‐0

06 Group7 C94.06‐0

C98(49) 00 Group7 C98.00‐0

01 Group7 C98.01‐0

02 Group7 C98.02‐0

14

Table2:continuedC100(50) 00 Group7 C100.00‐0

01 Group7 C100.01‐0

02 Group7 C100.02‐0

03 Group7 C100.03‐0

C102(51) 04 Group7 C102.04‐0

05 Group7 C102.05‐0

06 Group7 C102.06‐0

2.1 CNA extraction

WeextractedCNAusingtheHighPureViralNucleicAcidKit(RocheAppliedScience;Cat.No.11858874001).Theextractionprocedureisasfollows:

Preparebuffersfollowingthemanual− Add40ml96%EtOHtoWashBuffer.− Add20ml96%EtOHtoInhibitorRemovalBuffer− LyselyophilizedProteinaseKin5mlElutionBuffer,store50µlaliquotsat‐20°C.− DONOTaddpoly(A)carrierRNAtoBindingBuffer

Make4Kspinbeforestartwithextractiontoremovecelldebris− Centrifuge250µlserumat4000rpmfor20min− Transfersupernatantinfreshtube,leave50µlinoldtube,donotdisturbpellet

(celldebris) Add200µlbindingbufferand50µlProteinaseK(20mg/ml,Roche)to200µlserum.

− Vortexsampleandincubatefor10min@72°C. Add100µlbindingbufferandmixsamplesbyvortexing Pipette550µlsampleonthecolumn.

− Spinsamplefor1min@8000rcf− Discardcollectiontube.

Add500µlinhibitorremovalbuffer− Spinsamplefor1min@8000rcf− Discardcollectiontube

Add450µlwashbuffer− Spinsamplefor1min@8000rcf− Discardcollectiontube

Add450µlwashbuffer− Spinsamplefor1min@8000rcf− Emptythecollectiontube− Centrifugesamplefor10satmaxspeed− Discardcollectiontube

Transfercolumnsin1.5mleppendorfcups Add50µlofelutionbuffer

− Spinsamplefor1min@8000rcf

15

2.2 Amplification of extracted CNA

2.2.1MaterialsThefollowingmaterialshavebeenusedforamplificationofextractedCNA:

Kit/MaterialName Vendor

Order#(GER)

RXNinKit

RXNpersample

GenomePlexSingleCellWholeGenomeAmplificationKit

Sigma

WGA4‐50RXN

50 1

EvaGreen(20x,RTdye) Biotium

31000‐T Ca.500 2

GenElute™PCRClean‐UpKit Sigma

NA1020‐1KT

70 2

AgaroseGel any N/A N/A twolanespersample

Molecularweightladder any N/A N/A twolanespergel

Positivecontrol:1µlControlDNA(WGA4Kit)+4µlnucl.freewater Negativecontrol:5µlnucl.freewater

2.2.2Procedure1. SingleCellLyseandFragmentation

PrepareLysisandFragmentationbuffer:− 2µl ProteinaseKSolution,− 32µl 10xSingleCellLysis&FragmentationBuffer

Pipetteto5µlextractedCNA0.5µlpreparedLysis&FragmentationBuffer Totalreactionvolumenow5.5µlin200µlPCR‐Tube Incubation:setcycler:50°Cfor1hand99°Cfor4min Coolsamplesoniceimmediately Spintocollectanyliquidfromtubecaps

2. LibraryPreparation Addtoeachsample1µl1xSingleCellLibraryPrep.Bufferand0.5µlLibrary

StabilizationSolution,mixsolutionbypipettingupanddown Totalreactionvolumenow7µl Incubateincyclerfor2min@95°C. Coolsamplesonice,spinandadd0.5µlLibraryPrep.Enzyme. Mixbypipettingupanddown

16

Totalreactionvolumenow7.5µl Incubateincyclerasfollows:

− 16°C 20min− 24°C 20min− 37°C 20min− 75°C 5min− 4°C hold

3.Amplification(inReal‐TimeCycler)

Addtoeachsamplethefollowingreagents:

− 3.75 µl 10xAmplificationMastermix − 21.875 µl Nuclease‐freewater − 1.875 µl EVAGreen − 2.5 µl WGADNAPolymerase

Preparemastermixforallsamplesandadd30µltoeachsample. Totalreactionvolumenow37.5µl. CyclinginReal‐TimeCyclerwithfluorescencemonitoringineachcycle

− InitialDenaturation: 95°C 3min

− 25cycles: 94°C 30s 65°C 5min 80°C 1s Fluorescencedetection

Thereactionswerestoppedattheinflationpointoftheamplificationcurvetoavoidovercycling.Somesamplesreachedtheinflationpointearlierthanothers(Figure1).

ControlGel− 5µlofeachreaction(WGA4)wereloadedona1.5%agarose/EtBrgel.− thegelswererunfor35min@120V.

Twoindependentreactionspersamplewereprepared,thencheckedon1.5%agarosegel.

Afterwardsthetworeactionsofthesamesamplewerepooled. At last we purified the reactions using the GenElute™ PCR Clean‐Up Kit (Sigma)

according to the instructions of manufacturer and submitted the samples forsequencing.

Figure12.2.3Re

5µl of eaquality asamplessufficienreaction

1:CNAampl

esults

achWGA4and the amwere omit

ntthatPCRfromexam

lificationcur

PCR reactiomount.Whentted from treactionwa

mplesofthe3

rve

onwas loadn the PCR dthe furtherasrepeated3rd,2nd,and

dedon a1.did not givr analysis. Id.Figures2d1stsetofsa

5%agaroseve any resuIf one of t,3,and4samples,resp

e/EtBr gellts in boththe two reashowthegepectively.

to checkupreactions tactions waselphotosof

17

p thethoses notfPCR

Figure

Figu

e2:Gelphot

ure3:Gelp

toofexampl

hotoofexam

lesfromthe

mplesfromt

3rdsamples

the2rdsamp

set

pleset

18

Figu

3. SeqWereceireceivedcontroldifferent

Table3:

ure4:Gelp

quence dativedallseqd data for asamples. Thtdates,asin

:Setsofsam

Sampleset

1st

2nd

3rd

All

hotoofexam

ta uencedataa total of 2he samplesndicatedin

mplessubmit

Datesacomp

April2

July3

July24

mplesfromt

fromtheUn25 sampless were submTable3.

ttedforsequ

amplespleted

2,2014

,2014

4,2014

the1stsamp

niversityofs, of whichmitted for s

uencing

Totalsamples

40

83

102

225

pleset

f Calgarycorh106 are sesequencing

Sepsissample

0

47

59

106

reDNAservepsis samplg in three s

ses

Consam

4

3

4

1

vicesfacilityles and 119separate set

ntrolmples

40

36

43

19

19

y.We9 arets on

20

ThesequencingdatahavebeendeliveredtotheSensenlabin12groups,whereeachgroupconsistsof20samples,exceptGroup12.Table4showsthebreakdownofthesequencingdataintothegroupsandtheresultsofthealignmenttothehumangenomes(detailsofthealignmentdescribedinDataAnalysisMethodsection).

Table4:Groupsofsamplesreceivedfromsequencingcentre

GroupSamplenumberand

type TotalreadsTotalaligned

reads

Percentageofalignedreads

Group1 20controls 641,292,770 537,120,770 83.76

Group2 20controls 663,985,610 567,111,180 85.41

Group3 14sepsis+6controls 1,287,073,030 1,052,965,712 81.81

Group4 15sepsis+5controls 680,284,574 566,045,748 83.21

Group5 18sepsis+2controls 664,621,878 550,577,438 82.84

Group6 20controls 616,853,292 526,793,888 85.40

Group7 20controls 806,863,126 648,098,936 80.32

Group8 20controls 844,205,872 681,976,552 80.78

Group9 17sepsis+3controls 637,011,226 532,440,668 83.58

Group10 20sepsis 641,622,180 528,781,074 82.41

Group11 20sepsis 608,086,388 509,915,786 83.86

Group12 2sepsis+3controls 192,383,044 159,704,264 83.01

Total106sepsis+119controls(=225total) 8,284,282,990 6,861,532,016 82.83

ThealignmentresultsaregeneratedbytheLifeScopegenomicanalysissoftware(http://www.lifetechnologies.com/ca/en/home/technical‐resources/software‐downloads/lifescope‐genomic‐analysis‐software.html)offeredbyLifeTechnologies.

4. Data analysis method Figure5showstheworkflowoftheanalysispipeline,whichisasfollows:

1.Alignmentfileanalysis Extracttwosetsofgenomicregionsfromthereferencegenome

− Regionsmappedtoinfectedsamples− Regionsmappedtocontrolsamples

21

Deletethoseregionsfromthefirstsetofregionswhosepositionsoverlapwiththesecondsetofregions.Thismethodextracts“control‐free”regions.

Collectthecontrol‐freeregionswithahighnumberofhitsfrominfectedsamplesandlisttheirgenomicfeatures(e.g.genes,codingsequences,RNA)thatareclosest.

Analyzetheregionsforvarioustimepoints2.Bacteria/virusdetection Collectthereadsthatarenotmappedtothereferencegenome(i.e.unmappedreads) Aligntheunmappedreadstothebacteria/virusdatabase Findthebacterial/virustracesfromthealignedreadsStartingwiththesequencedata,weperformedaseriesofprocessingstepstoidentifyDNAbiomarkersandtodetectmicrobes, thus formingananalysispipeline.TheCNAsequenceanalysispipelinehasfourmajorsteps:3.Datapreprocessing Clipadaptorbases Trimlowqualitybases(baseswithlowerthanPhredqualityscore20,correspondingto

99%basecallconfidence)4.Alignmentfilecreation

Figure55:CNAsequeenceanalysiispipeline

22

23

5. Results of detecting biomarkers of infection Acomparativeanalysisofthealignmentfilesrevealsthegenomicregionsthatarepresentininfectedsamplesbutnotincontrolsamples.Thesearecalledcontrol‐freeregionsandformthecoreoftheinfectionbiomarkerdetectionresults.Table5liststop25suchgenomicregions.Theregionshavebeensortedindescendingorderofthecountofhumanswhosesampleshadareadmappingtotheregion.Eachrowofthetablepresentsmanyimportantattributesofasignificantgenomicregion.Thedefinitionsoftheattributes(i.e.columnheadings)areasfollows: RegionNo.:serialnumberoftheregionstartingfrom1. RegionID:Start‐End:genomicpositionincludingtheregionID,startbpandendbp Asperthereferencegenomedownloadedfrom

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes SepsisReadCount:totalcountofthesepsissamplereadsmappedtotheregion

(consideringbothproperlypairedmappedandsinglemappedreads). ReadCountSplit:threevaluesseparatedbyacolontoindicatethebreakdownofthe

mappedreadswithrespecttoreadpairing. Firstvalue:countofproperlypairedandmappedreadpairs.Forexample,ifthisvalue

is3,thenthereare3properlypairedreadpairs(3x2=6reads)mappedwithintheregion,whichmeansthat3DNAfragmentsarepresentinthatregion.

Secondvalue:countofproperlypairedreadpairs,whereonlyoneofthereadsinthepairispresentwithintheregion

Thirdvalue:countofreadsthatnotproperlypairedandmapped.Thesecanbeconsideredassingleendreads.

Forexample,aReadCountSplitrepresentedas6:1:3amountstothetotalreadcountof6x2+1+3=16,whichisequaltotheSepsisReadCountvalueoftheregion.

SepsisHumanCount:countofhumansinfectedbysepsiswhosesampleshadareadmappedtothisregion.Themaximumpossiblecountis22,asthetotalnumberofsepsis‐infectedhumansis22.

EarliestTimePoint:earliesttimepointwhenareadmappedtotheregion.Thetimepointrangesfrom01to07.

LatestTimePoint:latesttimepointwhenareadmappedtotheregion.Thetimepointrangesfrom01to07.

EarliestSepsisLevel:earliestsepsislevelwhenareadmappedtotheregion.SepsislevelrangesfromS‐5toS+2,whereSreferstothedayofsepsisdiagnosis.

LatestSepsisLevel:latestsepsislevelwhenareadmappedtotheregion. Genenames/aliases:knownnames/aliasesofthegenethatisclosesttotheregion.

− Basedontheannotationfilesdownloadedfromhttp://hgdownload.cse.ucsc.edu/goldenPath/hg19/database

Distancetogene:shortestdistance(inbp)fromtheregiontothegenelocation.− Distanceiswithrespecttotheregion.− Anegativedistancerepresentsadistancetoupstreamfeatures.− Whentheregionisonthenegativestrand,"upstream"meansthegenehasahigher

(start,stop)bpnumbers.

24

Table5:Top25genomicregionspresentonlyinsepsis‐infectedsamples

Reg

ion

No

.

RegionID: Start-End

Sepsis Read Count

Read Count Split

Sep

sis

Hu

man

C

ou

nt

Ear

liest

Tim

e P

oin

t

Lat

est

Tim

e P

oin

t

Ear

liest

Sep

sis

Lev

el

Lat

est

Sep

sis

Lev

el

Gene names and aliases Distance to gene

1 chr6_mcf_hap5:847877-848138

26 13:0:0 11 01 06 S-3 S BC051463;GABBR1;NM_021903;NP_068703;Q5SUJ9;Q5SUJ9_HUMAN;hCG_22364;uc011hhz.2

0

2 chr6_qbl_hap6:496412-496970

16 6:1:3 9 01 05 S-3 S

A6NCU9;A6NLD0;B0UY53;NM_030905;NP_112167;O76002;OR2J2;OR2J2_HUMAN;Q32N09;Q5ST39;Q5SUJ6;Q6IF24;Q9GZK2;Q9GZL3;uc011ied.2

-50653

3 chr5:1439244-1439385 13 1:2:9 9 02 05 S-3 S

A2RUN4;DAT1;NM_001044;NP_001035;Q01959;Q14996;SC6A3_HUMAN;SLC6A3;uc003jck.3

0

4 chr18:10577464-10577603

12 3:0:6 9 03 05 S-1 S NAPG;NM_003826;NP_003817;Q99747;Q9BUV1;SNAG_HUMAN;SNAPG;uc002kon.3

-24699

5 chr12:50500943-50501076

11 0:0:11 9 02 06 S-2 S+1 GPD1;NM_001257199;NP_001244128;P21695-2;uc001rwa.4 0

6 chr19:46001766-46001957

10 0:0:10 9 01 05 S-3 S NM_001080401;NP_001073870;PPM1N;PPM1N_HUMAN;Q6P662;Q8N819;uc002pce.3

0

7 chr6_dbb_hap3:4335450-4336306

15 7:1:0 8 01 05 S-2 S-1 AK303153;HLA-DPB1;uc011glq.2 0

8 chr17:3827555-3827741

11 0:1:10 8 01 03 S-3 S ATP2A3;NM_174957;NP_777617;Q93084-4;uc002fxd.2 0

9 chr2:233734967-233735189

10 0:1:9 8 01 05 S-5 S C2orf82;CB082_HUMAN;NM_206895;NP_996778;Q6UX34;UNQ830/PRO1757;uc002vtr.1

0

10 chr6_ssto_hap7:2729073-2730458

10 0:0:10 8 01 07 S-5 S uc031svx.1 0

11 chr1:38184123-38184374

19 3:1:12 7 01 04 S-3 S+1

A4FU89;EPHA10;EPHAA_HUMAN;J3KPB5;NM_001099439;NP_001092909;Q5JZY3;Q6NW42;uc009vvi.3

0

12 chr9:42911269-42911450

17 5:3:4 7 01 06 S-4 S uc004acq.4 -18133

25

Table5:continued

13 chr6_mcf_hap5:1159975-1160669

15 7:1:0 7 01 07 S-2 S uc011hjd.2 0

14 chr6_mcf_hap5:3205001-3205262

15 6:3:0 7 01 06 S-3 S NANH;NEU1;NEUR1_HUMAN;NM_000434;NP_000425;Q99519;uc011huo.2

1445

15 chr6_mcf_hap5:662177-662553

14 7:0:0 7 01 07 S-2 S B0S862;NM_013936;NP_039224;O12D2_HUMAN;OR12D2;P58182;Q5SUN9;Q6IET9;uc011hhp.2

5045

16 chr6_mcf_hap5:418315-419128

12 5:2:0 7 02 06 S-2 S uc011hhl.2 0

17 chr6_cox_hap2:4422799-4423390

11 3:1:4 7 01 04 S-3 S

DOA_HUMAN;HLA-DNA;HLA-DOA;HLA-DZA;NM_002119;NP_002110;P06340;Q58HU0;Q58HU1;Q5STC7;Q9TQC6;Q9TQC7;Q9TQC8;Q9TQC9;Q9TQD0;Q9TQD1;Q9TQD2;Q9TQD3;uc011fpd.1

-914

18 chr10:18429179-18429456

9 0:0:9 7 01 05 S-3 S-1

A6PVM5;A6PVM7;A6PVM8;CACB2_HUMAN;CACNB2;CACNLB2;MYSB;NM_201596;NP_963890;O00304;Q08289;Q5QJ99;Q5QJA0;Q5VVG9;Q5VVH0;Q5VWV6;Q6TME1;Q6TME2;Q6TME3;Q8WX81;Q96NZ3;Q96NZ4;Q96NZ5;Q9BWU2;Q9HD32;Q9Y340;Q9Y341;uc001ipr.2

150

19 chr12:56469524-56469642

9 0:0:9 7 01 05 S-2 S-1 ERBB3;HER3;NM_001005915;NP_001005915;P21860-2;uc001sjg.3

4167

20 chr18:36889043-36889496

9 0:0:9 7 01 03 S-3 S LINC00669;NR_024391;uc010xcj.1 0

21 chr6:170778730-170779113

9 2:1:4 7 01 06 S-3 S AB209078;NM_002793;PSMB1;uc003qxq.2 994

22 chr6_mcf_hap5:3513362-3515031

9 1:1:6 7 02 04 S-2 S AK296648;B7Z424;B7Z424_HUMAN;E9PFW1;PPT2;PPT2-EGFL8;uc021zsg.1

0

23 chr17:46101470-46101720

8 0:0:8 7 01 07 S-3 S uc002imy.3 1813

24 chr3:141384733-141384883

8 0:0:8 7 01 05 S-2 S GAP1M;NM_006506;NP_006497;Q15283-2;RASA2;RASGAP;uc003etz.1

-53537

25 chr10:50818520-50818921

7 0:0:7 7 01 05 S-1 S CHAT;D3DX95;D3DX95_HUMAN;NM_020984;NP_066264;hCG_1996663;uc001jhv.1

0

26

Additionally,Table6providesdescriptionsofthegenespresentinthetopregionsshowninTable5.

Table6:Descriptionofgenespresentintopcontrol‐freeregions

Region No.

Gene name (UCSC)

Gene symbol(RefSeq) Gene description

1 uc011hhz.2 GABBR1 Homo sapiens gamma-aminobutyric acid (GABA) B receptor, 1 (GABBR1), transcript variant 2, mRNA.

2 uc011ied.2 OR2J2 Homo sapiens olfactory receptor, family 2, subfamily J, member 2 (OR2J2), mRNA.

3 uc003jck.3 SLC6A3 Homo sapiens solute carrier family 6 (neurotransmitter transporter, dopamine), member 3 (SLC6A3), mRNA.

4 uc002kon.3 NAPG Homo sapiens N-ethylmaleimide-sensitive factor attachment protein, gamma (NAPG), mRNA.

5 uc001rwa.4 GPD1 Homo sapiens glycerol-3-phosphate dehydrogenase 1 (soluble) (GPD1), transcript variant 2, mRNA.

6 uc002pce.3 PPM1N Homo sapiens protein phosphatase, Mg2+/Mn2+ dependent, 1N (putative) (PPM1N), mRNA.

7 uc011glq.2 HLA-DPB1 Homo sapiens major histocompatibility complex, class II, DP beta 1 (HLA-DPB1), mRNA.

8 uc002fxd.2 ATP2A3 Homo sapiens ATPase, Ca++ transporting, ubiquitous (ATP2A3), transcript variant 6, mRNA.

9 uc002vtr.1 C2orf82 Homo sapiens chromosome 2 open reading frame 82 (C2orf82), mRNA.

10 uc031svx.1 MICB Homo sapiens MHC class I polypeptide-related sequence B (MICB), mRNA.

11 uc009vvi.3 EPHA10 Homo sapiens EPH receptor A10 (EPHA10), transcript variant 3, mRNA.

12 uc004acq.4 AQP7P3 Homo sapiens aquaporin 7 pseudogene 3 (AQP7P3), non-coding RNA.

13 uc011hjd.2 HLA-F Homo sapiens major histocompatibility complex, class I, F (HLA-F), transcript variant 3, mRNA.

14 uc011huo.2 NEU1 Homo sapiens sialidase 1 (lysosomal sialidase) (NEU1), mRNA.

15 uc011hhp.2 OR12D2 Homo sapiens olfactory receptor, family 12, subfamily D, member 2 (OR12D2), mRNA.

16 uc011hhl.2 OR2J3 Homo sapiens olfactory receptor, family 2, subfamily J, member 3 (OR2J3), mRNA.

27

Table6:continued

17 uc011fpd.1 HLA-DOA Homo sapiens major histocompatibility complex, class II, DO alpha (HLA-DOA), mRNA.

18 uc001ipr.2 CACNB2 Homo sapiens calcium channel, voltage-dependent, beta 2 subunit (CACNB2), transcript variant 2, mRNA.

19 uc001sjg.3 ERBB3 Homo sapiens v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (avian) (ERBB3), transcript variant s, mRNA.

20 uc010xcj.1 LINC00669 Homo sapiens long intergenic non-protein coding RNA 669 (LINC00669), non-coding RNA.

21 uc003qxq.2 PSMB1 Homo sapiens proteasome (prosome, macropain) subunit, beta type, 1 (PSMB1), mRNA.

22 uc021zsg.1 PPT2-EGFL8 Homo sapiens PPT2-EGFL8 readthrough (NMD candidate) (PPT2-EGFL8), non-coding RNA.

23 uc002imy.3 COPZ2 Homo sapiens coatomer protein complex, subunit zeta 2 (COPZ2), mRNA.

24 uc003etz.1 RASA2 Homo sapiens RAS p21 protein activator 2 (RASA2), mRNA.

25 uc001jhv.1 CHAT Homo sapiens choline O-acetyltransferase (CHAT), transcript variant R, mRNA.

FromTable5,itisclearthatthetop‐rankedregionhasbeendetectedonlyin11(outof22)sepsis‐infectedhumans.Itisimportantthentofindouthowmanydifferentregionsneedtobeusedtogetherasapotentialbiomarkertocoverallinfectedhumansatleastonce.Tosolvethisquestion,weexploredallpossiblecombinationsoftheregionsinTable5,untiltheregionsinthecombinationcouldcoverall22humans.Thisanalysisshowsthatweneedatleastfourdifferentregionsinsuchamarker.Table7summarizestheresults.

InTable7,10possiblecombinationsof4differentregionsarelisted,allofwhichcoverall22patients at least atone timepoint.Theearliest and latest sepsis levels atwhicheachsuch marker covers one or more patients are also shown in Table7. Full details of thecoverageofpatientsbyeachmarkerareshowninTable8,whichindicatesthepatientsandthe timepointsatwhichat leastoneof theregions ineach four‐regionmarkerhasbeendetected.

28

Table7:Setsofgenomicregionsandtheircoverageasbiomarkersofinfection.Theregionnumbersrangefrom1to25,whicharedefinedinTable5andusedinTable6.

Number of regions in marker

Combination of region numbers

Earliest sepsis level

Latest sepsis level

Number of patients covered

2 {1, 2}

{1, 3}

{1, 6}

{2, 9}

S−3

S−3

S−3

S−5

S

S

S

S

17

3 {1, 2, 7}

{1, 2, 21}

S−3

S−3

S

S

21

4 {1, 2, 7, 5}

{1, 2, 7, 8}

{1, 2, 7, 11}

{1, 2, 7, 15} {1, 2, 7, 20}

{1, 2, 21, 5} {1, 2, 21, 8} {1, 2, 21, 11} {1, 2, 21, 15} {1, 2, 21, 20}

S−3

S−3

S−3

S−3

S−3

S−3

S−3

S−3

S−3

S−3

S+1

S

S+1

S

S

S+1

S

S+1

S

S

22 (all)

29

Table8:Patientsandtimepointscoveredbythefour‐regionmarkersinTable7.

No. Regions

Timepoint

PatientIDnumber

Totalpatients

19 24 28 38 41 42 44 48 49 55 57 63 64 66 86 87 90 93 94 98 100

102

1 {1,2,7,5}

S-3 O O O 3

S-2 O O O O O O O O O O 10

S-1 O O O O O O O O O O O 11

S O O O O O O O O O 9

S+1 O 1

2 {1,2,7,8}

S-3 O O O O 4

S-2 O O O O O O O 7

S-1 O O O O O O O O O O O O 12

S O O O O O O O 7

3 {1,2,7,11}

S-3 O O O O 4

S-2 O O O O O O O O O O 10

S-1 O O O O O O O O O O O O 12

S O O O O O 5

S+1 O 1

4 {1,2,7,15}

S-3 O O O 3

S-2 O O O O O O O O 8

S-1 O O O O O O O O O O 10

S O O O O O O O O 8

5 {1,2,7,20}

S-3 O O O O 4

S-2 O O O O O O O O O O O 11

S-1 O O O O O O O O O O 10

S O O O O O O O 7

6 {1,2,21,5}

S-3 O O O O 4

S-2 O O O O O O O O O 9

S-1 O O O O O O O O O O 10

S O O O O O O O O O O 10

S+1 O 1

30

Table8:continued

Tocomparethedetectionpowerofthefour‐regionmarkers,thetotalnumbersofpatientscovered at different time points by them are summarized in Table 9. Note that thesenumbersaresimplycopiedfromthelastcolumnofTable8foreasiercomparison.

7 {1,2,21,8}

S-3 O O O O O 5

S-2 O O O O 4

S-1 O O O O O O O O O O O O O 13

S O O O O O O O O O O 10

8 {1,2,21,11}

S-3 O O O O O 5

S-2 O O O O O O O O 8

S-1 O O O O O O O O O O O O 12

S O O O O O O O O 8

S+1 O 1

9 {1,2,21,15}

S-3 O O O O 4

S-2 O O O O O O O 7

S-1 O O O O O O O O 8

S O O O O O O O O O O O 11

10 {1,2,21,20}

S-3 O O O O O 5

S-2 O O O O O O O O O 9

S-1 O O O O O O O O O O 10

S O O O O O O O O O 9

31

Table9:Numbersofpatientscoveredatdifferenttimepointsbyfour‐regionmarkers.Ateachtimepoint,themaximumnumberofpatientscoveredisshowninboldface.

No. Regions

Numberofpatientscovered

attimepoint

Totaldetections

(patientscountedredundantly)S−3 S−2 S−1 S S+1

1 {1,2,7,5} 3 10 11 9 1 34

2 {1,2,7,8} 4 7 12 7 30

3 {1,2,7,11} 4 10 12 5 1 32

4 {1,2,7,15} 3 8 10 8 29

5 {1,2,7,20} 4 11 10 7 32

6 {1,2,21,5} 4 9 10 10 1 34

7 {1,2,21,8} 5 4 13 10 32

8 {1,2,21,11} 5 8 12 8 1 34

9 {1,2,21,15} 4 7 8 11 30

10 {1,2,21,20} 5 9 10 9 33

Numberofpatients

withsampleattimepoint14 20 22 22 2

Minimumnumberof

patientscovered3 4 8 5 1

Maximumnumberof

patientscovered5 11 13 11 1

From Table 9, we see that the number of patients in which a sepsis‐specific region isdetectedvariesaccordingtothefour‐regionmarkerandthetimepoints:

3daysbeforesepsisdiagnosis(S−3):from3to5(of14patientswithS−3sample) 2daysbeforesepsisdiagnosis(S−2):from4to11(of20patientswithS−2sample) 1daybeforesepsisdiagnosis(S−1):from8to13(of22patientswithS−1sample) Dayofsepsisdiagnosis(S):from5to11(of22patientswithS−1sample) 1dayaftersepsisdiagnosis(S+1):1(of2patientswithS+1sample)

It isnot straightforward to choose thebestmarkerbasedon this information. Somekeyobservationsare:

32

Marker#7hadthebestdetectionpoweratbothS−3andS−1,wasthesecondbestatS(10versusmaximum11),butwastheworstatS−2.

Marker#5hadthebestdetectionpoweratS−2,butwasrelativelypooratS−1(10versusmaximum13)andS(7versusmaximum11).

Marker #9 had the best detection power at S, but was relatively poor at S−2 (7versusmaximum11)andS‐1(8versusmaximum13).

33

6. Results of microbe detection ThebiomarkerdetectionpartoftheCNAsequenceanalysispipelineusesthosereadsmappedtothereferencehumangenome.Thosereadsthatdidnotmaptoahumangenomicregionwereanalyzedforthepresenceofmicrobesincludingbacteriaandviruses.Forthisanalysis,weusedthesoftwarecalledKraken(WoodandSalzberg,2014),whichisataxonomicsequenceclassificationsystemandavailablefordownloadathttps://ccb.jhu.edu/software/kraken.GiventheKrakentaxonomydatabaseandafileofsequences,Krakenclassifieseachsequence.Krakenclassifieseachsequenceintoataxon,outputtingonelineoftaxonmappinginformationpersequence.Fromthisrawoutput,onecangeneratewhatiscalledaKrakenreport,whichsummarizestheabundanceofdifferenttaxa.Thisreportfilehassixfieldsofinformationpertaxon,defined,fromlefttoright,asfollows: Percentageofreadscoveredbythecladerootedatthistaxon

Numberofreadscoveredbythecladerootedatthistaxon

Numberofreadsassigneddirectlytothistaxon

Arankcode,indicating(U)nclassified,(D)omain,(K)ingdom,(P)hylum,(C)lass,(O)rder,(F)amily,(G)enus,or(S)pecies.Allotherranksaresimply'‐'.

NCBItaxonomyID

Indentedscientificname

Thescientificnamesareindentedusingspaces,accordingtothetreestructurespecifiedbythetaxonomy.

6.1 Analysis of Merged samples

Thegoalof thisanalysis is to findmicrobesthatarepresent insepsissamplesbutnot incontrolsamples.Firstwemergedallsepsissamplesintooneinfectedsampleandanalyzedit using Kraken. Second, we merged all control samples into one control sample andanalyzed it using Kraken. The difference between two Kraken results indicates themicrobespresentonlyinsepsissamples.

A large amount of details from this merged sample analysis can be accessed from thewebsite(http://drdc.coe.ucalgary.ca/SepsisMicrobe_MergedSample_Analysis.html).OntheWeb page, visualization of the results using Krona (Ondov et al, 2011) pie chart‐basedvisualizationsystemisavailableaswellasallthefull‐textKrakenreports.Figure6showsasnapshotofKronavisualizationforinfectedsamples.

Figure6

Thekeyshown(i

6.2 Ana

Thetaxoavailablesampleseachsamgenus/sp

Projectw

(http://d

6:Kronavisu

findingsarintheKrake

alysis per sa

onomyanalyeattheprojandcontromple,aKronpecieslevel

website:

drdc.coe.uca

ualizationof

ethosetaxaenreportfo

ample

ysiswasalsjectwebsitelsamples,anavisualizatlreportare

algary.ca/S

fKrakenrep

athataremormat)inTa

odonepere.IntheWeandtheninttionofmicravailable.F

epsisMicrob

portformer

mostabundaable10.

sample.Thebpage,allstothesequerobeabundaFigure7sho

be_PerSamp

rgedinfecte

antonlyini

efulldetailssamplesareencinggroupanceandmoowsascreen

ple_Analysi

dsamples

infectedsam

softhisanaeseparatedps(Group1ostabundannshotofthe

is.html)

mples,which

alysisareintosepsis1to12).ForntWebpage.

34

hare

r

35

Table10:Mostabundanttaxafoundonlyininfectedsamples

Fungi 

       

3094  Genus  38946  Paracoccidioides 

3094  Species  121759  Paracoccidioides brasiliensis 

2363  G  5455  Colletotrichum 

2363  S  710243  Colletotrichum fioriniae 

1045  G  5140  Neurospora 

1045  S  40127  Neurospora tetrasperma 

963  G  1036719  Verticillium 

963  S  27337  Verticillium dahliae 

682  G  47022  Orbilia 

682  ‐  261301  mitosporic Orbilia auricolor 

682  S  13349  Arthrobotrys oligospora 

505  ‐  54032  mitosporic Orbiliaceae 

543  G  131324  Pseudocercospora 

543  S  83344  Pseudocercospora fijiensis 

505  G  314122  Dactylellina 

505  S  430498  Dactylellina haptotyla 

223  G  5583  Exophiala 

223  S  5970  Exophiala dermatitidis 

120  G  221102  Moniliophthora 

120  S  221103  Moniliophthora roreri 

113  G  4895  Schizosaccharomyces 

113  S  4897  Schizosaccharomyces japonicus 

Bacteria 

402  G  150022  Finegoldia 

402  S  1260  Finegoldia magna 

275  G  29465  Veillonella 

275  S  29466  Veillonella parvula 

200  G  75984  Mannheimia 

Virus 

234  G  10842  Microvirus 

Figure7

7:Webpageeformicrobe

edetectionr

resultsperssample

36

37

7. References Ondov,B.D.,Bergman,N.H.,Phillippy,A.M.(2011)InteractivemetagenomicvisualizationinaWebbrowser.BMCBioinformatics12(1):385.

Wood, D.E., Salzberg, S.L. (2014) Kraken: ultrafast metagenomic sequence classificationusingexactalignments.GenomeBiology15:R46.