bioheat ii feasibility study for hotel columbano, régua portugal -...

46
!"!# $% Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal Prepared by Salvador Malheiro Universidade de Trás-os-Montes e Alto Douro (UTAD) Engineering Department- Mechanical Engineering Division October 2004

Upload: others

Post on 07-Nov-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������$�����%����

Bioheat II Feasibility Study for

Hotel Columbano, Régua Portugal

Prepared by

Salvador Malheiro

Universidade de Trás-os-Montes e Alto Douro (UTAD) Engineering Department- Mechanical Engineering Division

October 2004

Page 2: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

��

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

Table of Contents 1 Management Summary 3 2 Description of the Basic Task 4

2.1 Who is ordering the feasibility study 4 2.2 Objective of the feasibility study 4 2.3 Issues that are included in the feasibility study

4 2.4 Short description of the possible biomass heated Project 4

3 Description of the Present Situation 6

3.1 Power demand for heating peak load 6 3.1.1 Design conditions 6 3.1.2 Method 6

3.1.2.1Heat losses by exterior building elements 6 3.1.2.2 Heat losses by renovation air 7 3.1.2.2.1 Sensible losses 7 3.1.2.2.2 Latent losses 7 3.1.2.3 Domestic hot water 8

3.1.3 Results 8 3.2 Annual heat demand 9

3.2.1 Method 9 3.2.2 Results 9

3.3 Key Data - Annual Heat Load Calculation 10

4 Fuels 11 4.1 Definition of fuel 11 4.2 Availability of fuel in region 12 4.3 Possible suppliers of fuel 12 4.4 Frequency of delivery 12 4.5 Fuel costs 13

5 Concept for Heat Production with Biomass 14 5.1 System selection 14 5.2 Principal scheme for heat production 14 5.3 Plant room / fuel storage 16

6 Comparison with Conventional Solution 19 7 Investment Costs 20 8 Calculation for Economic Feasibility 21 9 Overall Evaluation 23 10 Recommendations 24 11 Appendices 25

Page 3: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

��

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

1 Management Summary The feasibility study aims to assess the practical, economic and environmental viability of installing a wood fired heating system for the selected site. The format of the feasibility follows the guidelines formulated within the Bioheat II project to ensure that feasibility studies are carried out according the same structure, contain the necessary information and are of a high quality. This will allow results of the feasibility studies, both nationally and between other EU countries, to be compared uniformly and systematically. Building thermal study shows a heat load of 692 kW and a annual heat demand of 1127488 kW. Considering the benefices of a great heat storage and taking in account that in summer a minimum 150 kW heat power is necessary, a 540 kW boiler with excellent performance between 140 kW and 540 kW was selected, using a heat storage with 8,5 m3. Wood chips were identified providing the best economic solution where a new boiler is considered Hotel Columbano site. From an ecological perspective the use of wood fired boilers represent an attractive alternative to fossil fuelled boilers with CO2 emission reduction potential of 425236 kg per year. The wood fired boilers also provide the additional benefits of creating local employment, stimulating local economies and improving security of supply.

Page 4: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

��

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

2 Description of the Basic Task 2.1 Who is Ordering the Feasibility Study The Engineering Department of Universidade de Tras-os-Montes e Alto Douro (UTAD) were contracted by the Centro da Biomassa para a Energia (CBE)- Portugal, to carry out feasibility studies on the use of biomass fired heating systems in buildings under the EU funded Bioheat II project. This report details the findings of feasibility study 01, Hotel Columbano , Peso da Régua – Portugal 2.2 Objective of the Feasibility Study The feasibility study aims to assess the practical, economic and environmental viability of installing a wood fired heating system for the selected site. The format of the feasibility follows the guidelines formulated within the Bioheat II project to ensure that feasibility studies are carried out according the same structure, contain the necessary information and are of a high quality. This will allow results of the feasibility studies, both nationally and between other EU countries, to be compared uniformly and systematically. 2.3 Issues that are included in the feasibility study The feasibility study has been carried out and reported in accordance with the “Feasibility Study Specification” provided in Appendix A. 2.4 Short description of the possible biomass heated project The building under consideration is the Columbano Hotel (ver Fig. 1 e 2), situated in Régua city, at the north of Douro river, in Portugal (more details in Appendix B). This hotel became is functioning since 1998. It consists in seven floors building, where are distributed 77 bedrooms, a restaurant with panoramic view, conference room, a bar, game room, a gymnasium a commercial gallery and others spaces.

Fig 1. Hotel Columbano, Régua, Portugal (South)

Page 5: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

��

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

Fig 2. Hotel Columbano, Régua, Portugal (North)

The existent heating system encloses a LPG unit and an Oil unit. According to the new Portuguese legislation concerning fossil energy consumption in buildings, is previewed an alteration on the energy source to a biomass heating plant. The present feasibility study concerns only the biomass thermal plant (responsible for building heating and domestic hot water) because the Heat Distribution System will be the same.

Page 6: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

��

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

3 Description of the Present Situation 3.1 Power Demand For Heating at Peak Load Concerning power demand for heating at peak load a Simple Steady State Model has been used. This method is in agreement with Portuguese law concerning heating buildings. Power demands for heating peak load were calculated counting of heat loads concerning the building heating and the domestic hot water used. 3.1.1 Design conditions Taking in account meteorological values for Régua region and the comfort references it was considered:

(1) external design temperature: -0,4 ºC (2) design room temperature: 20 ºC (3) design room relative humidity: 50 %

3.1.2 Method

3.1.2.1 Heat losses by exterior building elements

The equation traducing heat transfer by exterior building elements in one-dimensional steady state by conduction and convection is:

�� ��������� −××=� (3.1)

where: �� – Heat losses by exterior building elements (W); K – Global heat transfer coefficient (W/m2ºC); A – Exterior element surface (m2); Tip – Design room temperature (ºC); Tep – External design temperature ( ºC).

For underground zones heat transfer is bi-dimensional and in this case heat losses are calculated by:

( )��������� −××=� (3.2)

where: KL – losses linear coefficient (W/m ºC); L – perimeter of element

Page 7: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

Value of KL was obtained in specialised bibliography in considering geometry, deepness, and thermal isolation type.

3.1.2.2 Heat losses by renovation air

It was established one air change per hour (RPH) for all residential zones of hotel. In garage and reception zone it was considered RPH=2.

3.1.2.2.1 Sensible losses

The cold air that enters in the building has to be warmed. Thermal power necessary to elevate air temperature until comfort condition can be calculated by:

�� �������� ��� −××= �� (3.3)

where: ��� – Sensible heat losses (W) � �� - Air mass flow ratio (Kg/s)

Cp – Air specific heat (J/kg ºC) Using definition of RPH, equation 3.3 is transformed to:

( )������������ −××××= ρ (3.4)

3.1.2.2.2 Latent losses

The air that enters in the building has a humidity value different from the internal comfort conditions. Thermal power involved to evaporate or condensate water mass is calculated by:

( ) ������� �� ×−×= �� (3.5)

where

�� – Latent heat losses (W) wi – Comfort specific humidity (Kgwater / Kg dry air) we – External specific humidity (kgwater/kgdry air) hlv – Water latent heat of vaporisation (J/Kg)

Page 8: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

��

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

3.1.2.3 Domestic hot water Heat load for domestic hot water was calculated using references consumptions found in specialised bibliography and equation:

����� ��� ∆×××= ��� �� ρ (3.6) where:

��� �� – Heat load for DHW (W)

��� �� – Water volume flow ratio (m3/s) Cp – Water specific heat (J/kg ºC) ∆T – Temperature differnce- 45ºC

. 3.1.3 Results

Results obtained by floor concerning heating building are in Table 1.

Q Qs QL Total [W] KW

Floor1 24000 34878 13236 72114 72 Floor2 18264 32810 13118 64192 64 Floor3 31959 31617 15205 78781 79 Floor4 43289 47977 23073 114339 114 Floor5 27803 27417 13185 68405 68 Floor6 27271 23732 11413 62416 62 Floor7 40540 23036 11078 74654 75

Table 1. Heat load for heating building by floor

In Appendix C is detailed all these calculations, coefficients, areas and constants. Table 2 shows global heat load for Columbano Hotel.

Q H Q H20

534 KW 158 KW 692 KW Table 2. Global heat load

Page 9: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

������ ��� ���� −+=

����� ��� �����=

�� ����� ��� += η

3.2 Annual Heat Demand It was not possible to obtain historical records for electricity and LPG consumptions for space heating and domestic hot water purposes. However annual heat demand was calculated using degree days method, taking in account region climate and construction data. 3.2.1 Method Annual heat demand was calculated using:

(3.7)

where: � – Annual heat demand, kWh

���� – Annual heat demand for space heating purposes, kWh

���� – Annual heat demand for domestic hot water, kWh

���� – Heat gains, kWh

where, ���� is defined by:

(3.8) GD is the annual degree days for the region (2040). ���� is calculated using annual reference consumptions values.

���� is defined by:

(3.9) where:

η – utilisation of gains coefficient

�� – Internal heat gains (kWh)

�� – Solar heat gains (kWh)

���� – Utile gains (kWh)

3.2.2 Results Appling this method the results obtained are:

Qaque (kWh) QAQS (kWh) Qgsu (kWh) Qa (kWh) 1 281 600 100 911 255 023 1 127 488

Table 3. Annual heat demand

Page 10: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

3.3 Key Data - Annual Heat Load Calculation The key data used in the calculations in Sections 3.1 and 3.2 are provided in Table 4.

Design Room Temperature 20ºC External Design Temperature

(97,5%) for Régua= -0,4ºC

Maximum Hot Water Temperature from Boiler

70-95°C Flow 60 °C Return *

Table 4. Key data for annual heat load calculation.

* see points 5.1 and 5.2

Page 11: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

4 Fuels 4.1 Definition of Fuel In a first stage wood chips and wood pellets have been considered as possible options for the use of biomass heating systems within this feasibility study. The pellet fuel identified as suitable for a wood pellet boiler is specified in Table 5.

Water content % (weight) 7-8 Density of loose dry matter kg/m³ 567 Density of loose fresh matter kg/m³ 610 specific volume of fresh material m³/1000kg 1,64 Upper heating value of dry matter

MJ/kg kWh/m³

20,51 3230

Lower heating value of fresh matter

MJ/kg kWh/kg MJ/m³ kWh/m³

17,58 4,88 10724 2979

Table 5. Pellet Specifications (Source: CBE, Portugal) Taking in account heat load of hotel, wood chips seems to be the most probable solution (pellets are used for a inferior range of thermal power) Wood chip fuels exhibit a high variability in their characteristics dependent on their source, manufacturing method and wood type. For the purposes of the feasibility study, wood chips with the characteristics provided in Table 6 are assumed.

Water content % (weight) 37 Density of loose dry matter kg/m³ 240 Density of loose fresh matter kg/m³ 380 specific volume of fresh material m³/1000kg 2,63

Upper heating value of dry matter

MJ/kg kWh/m³

18,3 1220

Lower heating value of fresh matter

MJ/kg kWh/kg MJ/m³ kWh/m³

13,67 3,8 5195 1443

Table 6. Wood chip characteristics (Source: CBE, Portugal)

Page 12: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

4.2 Availability of Fuel in Region Portuguese markets for this technology are currently under developed but show great potential for expansion in the short term. As a result, the availability of wood chips and wood pellets is currently limited and no established supply structure exists for the space heating markets. Wood pellets can be purchased from a fuel importer but the transport costs are high. In Régua region there are a significant number of companies manufacturing and transforming wood, it exists also some forester exploiters. In this context wood chips are available. 4.3 Possible Suppliers of Fuel In Portugal there is only one pellets supplier. The indicative price is 130 �/tonne. Wood chips are available in region and investigations suggest a cost of 45 �/tonne. 4.4 Frequency of Delivery The most common storage systems are underground concrete storage, where fuel can be dumped and outdoor metal silos (as typically used in construction industry for concrete etc.) It should be considered that a storage, into which fuel is dumped, usually cannot be used to its full capacity. The amount of fuel fitting into a storage depends on the geometry of the storage and the location of the opening. In this case it should be considered that the storage room can be filled up to a maximum of 75%. Assuming availability of fuels, delivery frequency can be arranged as appropriate. A minimum fuel storage capacity of one truck load (c. 30m3) plus 5 days at full load was adopted. Wood Chips Wood Pellets

Truck load (m3) (a) 30 30 540 kW output boiler full load 5 days (kWh) ** 64800 64800 LHV (kWh/m3) 1443 2979 Storage required at full load for 5 days (m3) (b) 45 22 Total storage required ((a+b)/0,75) (m3) 100 70

Table 7. Calculated storage requirements

** see point 5.2

Page 13: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

4.5 Fuel Costs Fuel costs at the time of compiling the feasibility study are provided in Table 8. Fuel � / tonne cents / kWh

Wood Pellets 130* Wood Chips 45* Natural Gas - 2.8** Fuel Oil 270** -

Table 8. Fuel Cost Comparison (Costs exclude VAT)

* Source: CBE, Portugal ** Source: DGE, Portugal

Page 14: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

5 Concept for Heat Production with Biomass 5.1 System Selection Different biofuels have quite different combustion properties. It is very important to have a clear definition of fuel when you want to select the boiler manufacturer or a certain type of boiler. Potential future changes in fuels should be considered in advance. This is the most important precondition for the selection of the proper wood boiler and for secure and problem free operation. In general the following types of boilers are available:

• Wet wood chips (>40% water content): moving grate boiler • Dry wood chips (<35% water content) : underfeed stoker, compact boiler (up to

approximately 300 kW) • Pellets: underfeed stoker, compact boiler (up to approximately 300 kW)

Due to the wide variation of temperatures during the heating season every heating system is subject to significant load variations. In addition to that loads are changing during the day for example during the heating up of the building in the morning. Different solutions are available to cover the heat load changes. In most cases the boiler is dimensioned in a way that he can handle even the highest loads. This can however lead to problems, when the boiler is operated under very low load conditions leading to energy losses and higher emissions. In addition boilers designed for peak load are larger and cost more. For the management of load variations different strategies are possible: Establishment of a heat storage tank, establishment of a second conventional boiler covering peak load (and providing backup) or establishment of 2 biomass boilers. Which solution seems appropriate has to be decided in every single case. State of the art wood boilers can also operate in very low loads with good efficiency and combustion properties. In case of the 692 kW heat load it is assumed that the heat storage tank allows a reduction of heat load to 60% of the initial value assuming a volume of 20 liters per kW of heat storage volume. Analyzing this case (hotel; high heat load), many solutions can be adopted (1 pellet boiler+1 wood chip boiler, for example) but considering the advantages of a big heat storage tank, we decided to select a wood chip boiler with a nominal heat load 25% inferior to building heat peak load using a 8,5 m3 heat storage. 5.2 Principal Scheme for Heat Production A wood fired boiler has been selected from the ������������� range produced in Austria. Considering that in summer is necessary about 158 kW (for domestic hot water and taking in account the explanation in point 5.2, we decided to select a Pyrot KRT-540 wood boiler (minimum heat load= 140 kW; maximum heat load=540kW), see Fig. 3

Page 15: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

The Pyrot rotating firebox is specially suited to automatically burn all dry to damp wood fuels (chips, sawdust shavings, pellets, briquettes, forestry wood shavings).The Pyrot rotating firebox stands out through the highest degree of efficiency in all load ranges and automatic operations (automatic de-ashing, automatic ignition).

Fig 3. KOB PYROT boiler

Continuous gasification is carried out on the moving grate with minimal primary air. The combustible gases rise into the rotary combustion chamber and are mixed with secondary air that had been diffused by the rotation blower and given with a spin impulse. This guarantees a perfect mixture of secondary air with the combustible gases. It brings about a new era in the combustion technology of wood fuels, making it equivalent in quality to gas combustion. Used with our modulating output controllers, burner efficiency of more than 90% is achievable.

The main specifications for this boiler are provided in Table 9 (more details are presented in Appendix D).

Page 16: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

�Table 9. Technical specifications for Köb & Schäfer KG Pyrot KRT-540

�5.3 Plant Room / Fuel Storage The space near garage in ground zero is not used. Thermal plant (wood boiler; heat storage and auxiliary equipment) will be installed in this room (60 m2, 170m3 ). It will be constructed an exterior underground concrete storage (100 m3), where fuel can be dumped. Plant room and fuel storage are presented in Fig. 4. A layout of thermal plant can be viewed in Fig. 5 (more details in Appendix D).

Page 17: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

��

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

�Fig 4. Plant room and fuel storage

�����&����

������

'()�*�

+�,����!�

�-��������

����������

%)��%�

�����*�

Page 18: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

��

Fig 5. Layout of thermal plant Budget figures of 48000 �, 25000 �, 5 100 � and 2500 � have been estimated for wood boiler, construction of concrete fuel storage, heat storage and auxiliary equipment, (some values are estimated). The building currently has heat distribution system installed.

Page 19: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

� �

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

6 Comparison with Conventional Solution Natural gas is not available at Columbano Hotel site and is therefore not an option. For LPG fired systems, the fuel and capital costs of the boiler are more expensive than for oil, in this context, for the purposes of the feasibility study, replacement costs for providing a new oil boiler is considered to provide a cost comparison for a wood fired system. Short Technical Solution Description – Oil Technical solution using oil can be resumed:

(1) wood boiler is replaced by a oil boiler (540 kW) (2) it’s necessary a 8,5 m3 heat storage (3) boiler has a single stage oil burner with an estimated seasonal efficiency of 70%. (4) it’s necessary a 10 000 litre oil tank

The cost of a 540 kW oil boiler and a 10 000 litre oil tank is 30 000� and 5200 � respectively (these values are estimated).

Page 20: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

7 Investment Costs For the purposes of comparison, the capital investment costs for the oil fired and wood fired solutions are presented in Table 10. Wood Pellet Wood Chip Oil Boiler Boiler Cost � 48 000 50 000 30 000 Installation � 25 000 25 000 25 000 Fuel Storage � 15 000 25 000 5 200 Heat storage � 5 100 5 100 5 100 Total � 93 100 105 100 65 300

Table 10. Installation costs for 540 kW wood and oil fired boilers. Fuel storage construction costs, heat storage costs are based on estimates based on the authors knowledge. Boiler and installation costs are based on quotes provided by suppliers. Boiler cost includes costs for the flue and system of fuel admission.

Page 21: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

8 Calculation for Economic Feasibility A detailed calculation was carried out using the Excel workbook available on the Bioheat II website, see Appendix E. The Excel workbook allowed a comparison between wood chips, wood pellets, oil and natural gas installation options, see Table 11and Graphic 1. Natural gas calculation in Excel workbook doesn’t have sense because this fuel is not an option.

�Table 11. Results summary of economic analysis

Graphic 1. Results summary of economic analysis

Altener BIOHEATHeating cost comparison based on VDI 2067 standard

unit Woodchips Pellets Fuel oil Natural gas

Boiler costs [�] 29.300,00 20.934,00 12.850,00 0,00Installation costs [�] 10.360,00 7.201,00 0,00 0,00Building costs [�] 9.546,00 10.539,00 0,00 0,00

Total Investment [�] 105.100,00 93.100,00 65.300,00 0,00

Investment minus subsidy [�] 84.080,00 74.480,00 65.300,00 0,00

Annuity [�/a] 6.855,67 6.208,62 5.693,15 #DIV/0!

Capital costs [�/a] 6.855,67 6.208,62 5.693,15 #DIV/0!

Fuel costs [�/a] 19.785,27 36.319,26 43.396,25 #DIV/0!Electricity cost for boiler operation [�/a] 324,00 324,00 270,00 0,00

Demand related costs [�/a] 20.109,27 36.643,26 43.666,25 #DIV/0!

Repair costs [�/a] 926,00 856,00 653,00 0,00Personel costs [�/a] 5.400,00 5.400,00 0,00 0,00Chimney cleaner [�/a] 300,00 300,00 300,00 0,00Service contract [�/a] 2.160,00 2.160,00 1.080,00 0,00Insurance, other costs [�/a] 1.350,00 1.350,00 540,00 100,00

Operation related costs & other costs [�/a] 10.136,00 10.066,00 2.573,00 100,00

Total annual costs [�/a] 37.101 52.918 51.932 #DIV/0!

Total costs per MWh [�/MWh] 32,9 46,9 46,1 #DIV/0!

Total costs per MWh of consumed heat

32,9

46,9 46,1

0,00,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

50,0

Wood chips Pellets Fuel oil Natural gas

[Eur

o / M

Wh]

Page 22: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

Annual operation related costs were calculated using the reference ratios:

Biomass Oil Electricity costs 0,6 �/ kW 0,5 �/kW Personal costs 10 �/ kW 0 Chimney sweep 300 � 300 �

Maintenance, service 4 �/kW 2 �/kW Insurance 2,5 �/kW 1 �/kW

Table 12. Annual operation related costs The analysis suggests the annual running costs of the wood chip boiler are the most economic option over a 20 year period. Fuel oil solution is more economically favourable than pellets option. Capital investment costs and operation related costs are greater for the wood fired options. Wood chips present the minimum value for demanded related costs. Considering that the costs of pellets and wood chips are likely to reduce significantly in the short term as markets develop for the supply of fuel in Portugal and, simultaneously, oil prices can be expected to increase significantly over the same period, the use of wood fuels for heating buildings in our country shows a great potential in the future.

Page 23: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

9 Overall Evaluation Considering the heat load and economic feasibility (point 8) wood chips represent the best option. From an ecological perspective the use of wood fired boilers represent an attractive alternative to fossil fueled options. For the project under consideration the annual CO2 emissions from the different options have been evaluated using annual fuel consumptions calculated in the Bioheat II Excel work book, see Table 13. Wood Chips Oil Annual Fuel Consumption (kWh) 1 326 494 1 610 743 Annual Net CO2 Emissions (kg) 0 425 236

Table 13. Annual Net CO2 Emissions

Clearly, the wood fired boiler options are very beneficial in terms of the environmental emissions. The wood fired boilers also provide the additional benefits of creating local employment, stimulating local economies and improving security of supply.

Page 24: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

10 Recommendations Management staff of Hotel Columbano was already decided to replace existent thermal plant by a wood fired plant in case of economic feasibility taking in account new governmental rules concerning consumption of fossil energy in buildings. This study contributes significantly to support this idea because it demonstrates an economic feasibility and great advantages in terms of CO2 emissions. In this context, project seems not to have financial problems. The next step is carrying out a detailed design for the installation. The building is under utilised but has great potential as a tourist attraction. To realise the potential of the building, it is important that comfortable internal environmental conditions are provided. A wood fired heating system is capable of providing this objective in a cost effective and environmentally conscious manner while providing an attraction in itself.

Page 25: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

11 Appendices �

Page 26: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

Page 27: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

��

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

Page 28: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

Appendix B. Copy of Building Plans Hotel Columbano

Page 29: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

� �

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

Page 30: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

Page 31: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

Page 32: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

Appendix C. Heat Load and Annual Heat Demand Calculations �

A - Perdas de Calor Sensível por renovação de ar, Q_(S), [KW]

Ap 169 m2 Ap 602 m2 Ap 265 m2 Ap 384 m2 Ap 1161 313 m2 Ap 638 296Pd 2,70 m Pd 2,7 m Pd 2,7 m Pd 2,7 m Pd 2,9 4,1 m Pd 4,4 3,2Vi* 455,98 m3 Vna 1626 m3 Vi* 715 m3 Vi* 1037 m3 V 4651 m3 V 3754 m3

RPH 1,00 renov/h RPH 2 renov/h RPH 1 renov/h RPH 2 renov/h RPH 1 renov/h RPH 1 renov/hVi* 455,98 m3/h Vi* 3252 m3/h Vi* 715 m3/h Vi* 2074 m3/h V 4651 m3/h V 3754 m3/hVi* 0,13 m3/s Vi* 0,90 m3/s Vi* 0,199 m3/s Vi* 0,576 m3/s V 1,29 m3/s V 1,04 m3/s

� � 1,24 Kg/m3 � � 1,191 Kg/m3 � � 1,245 Kg/m3 � � 1,191 Kg/m3 � � 1,191 Kg/m3 V 1,96 m3/sCp 1006,64 J/KgºC Cp 1006,87 J/KgºC Cp 1006,64 J/KgºC Cp 1006,87 J/KgºC Cp 1006,87 J/KgºC � � 1,191 Kg/m3

Tip* 15 ºC Tip* 15 ºC Tip* 15 ºC Tip* 15 ºC Tip 20 ºC Cp 1006,87 J/KgºCTep -0,40 ºC Tep -0,4 ºC Tep -0,4 ºC Tep -0,4 ºC Tep -0,4 ºC Tip 20 ºC

Tep -0,4 ºCQ_(S)_i* 2443,97 W Q_(S)_i*** 17428 W Q_(S)_i* 3832 W Q_(S)_i*** 11114 W

7,01 % 49,97 % 5,95 % 17,25 % Ap 375 m2Pd 4,4 m

Ap 818 m2 Ap 973 m2 V 1652 m3Pd 2,70 m Pd 2,7 m RPH 2 renov/hVi 2207,30 m3 Vi 2628 m3 V 3303 m3/h

RPH 1,00 renov/h RPH 1 renov/h V 0,92 m3/sVi 2207,30 m3/h Vi 2628 m3/hVi 0,61 m3/s Q_(S)_1 34878 W Vi 0,730 m3/s Q_(S)_2 32810 W Q_(S)_3 31617 W Q_(S)_4 47977 W

Tip 20,00 ºC 35 KW Tip 20 ºC 32 KW 32 KW 48 KWTep -0,40 ºC Tep -0,4 ºC

Q_(S)_i** 15005,70 W Q_(S)_i** 17863 W43,02 % 27,73 %

Piso 5 Piso 6 Piso 7Ap 1391 m2 Ap 1203,76 m2 Ap 847 m2Pd 2,9 m Pd 2,9 m Pd 4 m

V 4033 m3 V 3491 m3 V 3388 m3RPH 1 renov/h RPH 1 renov/h RPH 1 renov/h

V 4033 m3/h V 3491 m3/h V 3388 m3/hV 1,12 m3/s V 0,97 m3/s V 0,94 m3/s� � 1,191 Kg/m3 Q_(S)_5 27417 W � � 1,191 Kg/m3 Q_(S)_6 23732 W � � 1,191 Kg/m3 Q_(S)_7 23036 W

Cp 1006,87 J/KgºC 27 KW Cp 1006,87 J/KgºC 24 KW Cp 1006,87 J/KgºC 23 KWTip 20 ºC Tip 20 ºC Tip 20 ºC

Tep -0,4 ºC Tep -0,4 ºC Tep -0,4 ºC

Piso 1 Piso 2 Piso 3 Piso 4

A - Perda de calor pelas envolventes

���� ���� ���� Kpo G Apo G QpoG Kpo G Apo G QpoG(15--0.4) 15,4 0,515 0 0 0,515 143,96 1141,7

Kpo Ar Apo Ar Qpo Ar Kpo Ar Apo Ar Qpo Ar0,511 108,67 855,17 0,511 99,2 780,64Kpo G Apo G Qpo G Kpo G Apo G Qpo G Kpo G Apo G Qpo G Kpo G Apo G Qpo G Kpo G Apo G Qpo G Kpo G Apo G Qpo G Kpo G Apo G

(20--0.4) 20,4 0,515 21,33 224,09 0,515 36,6 384,52 0,515 120,68 1267,86 0,515 205,39 2157,79 0,515 190,13 1997,51 0,515 132,98 1397,09 0,515 136,17Kpo Ar Apo Ar Qpo Ar Kpo Ar Apo Ar Qpo Ar Kpo Ar Apo Ar Qpo Ar Kpo Ar Apo Ar Qpo Ar Kpo Ar Apo Ar Qpo Ar Kpo Ar Apo Ar Qpo Ar Kpo Ar Apo Ar0,511 115,18 1200,68 0,511 143,21 1492,88 0,511 312,67 3259,40 0,511 431,51 4498,25 0,511 171,36 1786,33 0,511 226,03 2356,23 0,511 376,10Kenv Aenv Qenv Kenv Aenv Qenv

(15--0.4) 15,4 3,70 14,28 813,67 3,88 14,28 853,26Kenv Aenv Qenv Kenv Aenv Qenv Kenv Aenv Qenv Kenv Aenv Qenv Kenv Aenv Qenv Kenv Aenv Qenv Kenv Aenv

(20--0.4) 20,4 3,61 31,91 2349,98 3,64 3,2 237,62 3,63 15,34 1135,96 3,54 34,45 2487,84 3,56 48,32 3509,19 3,57 145,04 10562,97 3,54 101,593,80 13,02 1009,31 3,67 5,67 424,50 3,67 41,82 3130,98 3,58 9,9 723,02 3,59 81,18 5945,30 3,58 48,32 3528,91 3,55 121,91

3,7 27,54 2078,72 3,7 22,32 1684,71 3,59 5,3 388,15 3,62 11,31 835,22 3,6 25,68 1885,94 3,59 5,653,88 12,24 968,82 3,72 3,36 254,98 3,6 5,74 421,55 3,64 10,32 766,32 3,65 6,96 518,24 3,65 23,53,9 1,66 132,07 3,83 11,2 875,08 3,61 21,04 1549,47 3,7 28,56 2155,71 3,66 3,36 250,87 3,68 7,665,62 2,4 275,16 3,84 48,16 3772,66 3,62 51,02 3767,72 3,91 77,28 6164,16 5,56 3,65 414,00 3,73 3,33

3,88 12,24 968,82 3,65 15,52 1155,62 5,57 5,22 593,14 5,57 5,22 593,14 3,74 1,445,54 6,38 721,04 3,66 25,69 1918,12 3,84 1,455,56 40,8 4627,70 3,67 8,01 599,69 3,85 21,3875,63 2 229,70 3,72 3,36 254,98 3,86 4,9445,6 6,64 758,55 3,75 8,16 624,24 3,87 4,41

3,83 11,20 875,08 3,88 1,983,88 4,08 322,94 4,09 0,363,91 48,16 3841,43 5,6 64,05 3,9 322,22

Temp. solo 10 º C 5,55 46,64 5280,58(15-10) Kpoe Ppoe Qpoe 5,56 86,402 9800,06

5 2,45 117,84 1443,54 5,6 3,32 379,28Kpoe Ppoe Qpoe Kpoe Ppoe Qpoe Kpoe Ppoe Qpoe

(20-10) 10 2,45 121,98 2988,51 2,15 140,41 3018,82 1,11 102,09 1133,20Kp int Ap int Qp int Kp int Ap int Qp int

(20-15) 5 1.645 146,99 1208,99 1.645 43,44 357,291,80 2,43 21,87 1,80 3 27

K port A port Qport K port A port Qport K port A port Qport(15--0.4) 15,4 5.759 12,42 1101,51 20,4 5.719 3,8 443,34 5.719 3,8 443,34

Kpav Apav Qpav Kpav Apav Qpav Kpav Apav Qpav Ktelh Atelh(20-15) 5 1.137 128,76 732,00 1.137 650 3695,25 20,4 1.137 77,6 1799,92 20,4 0,582 984

Kter Ater Qter Kter Ater Qter Kter Ater Qter Kter Ater(20--0.4) 20,4 0,530 144 1556,07 0,530 51 551,11 0,530 123 1323,95 0,530 456

(20--0.4) Klaje Alaje Qlaje Klaje Alaje Qlaje Klaje Alaje Qlaje Klaje Alaje Qlaje Klaje Alaje20,4 0,511 25,65 267,39 Klaje Alaje Qlaje Klaje Alaje Qlaje 0,511 43,47 453,15 0,511 45,37 472,96 0,511 16,69 173,98 0,511 17,3

2,45 210,4 10515,79 0,511 18,27 190,45 0,511 39,29 409,57 0,515 25,06 263,28 0,515 20,7710 2,45 129 3160,5 1.850 86,4 1598,4

Piso 5A Piso 6A Piso7APiso 1A Piso 2A Piso 3A Piso 4A

Page 33: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

A - Perdas de Calor Latente por renovação de ar, Q_(L), [KW]

Tep -0,4 We 0,00328 Tep -0,4 We 0,00328 We 0,00328Tip* 15 Wi* 0,00528 Tip* 15 Wi* 0,00528 Wi 0,0073Tip 20 Wi 0,0073 Tip 20 Wi 0,0073

Piso 1 Piso 2Ap 169 m2 Ap 602 m2 Ap 265 m2 Ap 384 m2 Ap 1161 313 m2Pd 2,7 m Pd 2,7 m Pd 2,7 m Pd 2,7 m Pd 2,9 4,1 mVi* 456 m3 Vi* 1626 m3 Vi* 715 m3 Vi* 1037 m3 V 4650,79 m3

RPH 1 renov/h RPH 2 renov/h RPH 1 renov/h RPH 2 renov/h RPH 1 renov/hVi* 456 m3/h Vi* 3252 m3/h Vi* 715 m3/h Vi* 2074 m3/h V 4650,79 m3/hVi* 0,13 m3/s Vi* 0,90 m3/s Vi* 0,20 m3/s Vi* 0,58 m3/s V 1,29 m3/s

� � 1,193 Kg/m3 Wi*-We 0,0020 Kg/Kg ar seco � � 1,193 Kg/m3 Wi*-We 0,0020 Kg/Kg ar seco � � 1,193 Kg/m3Wi*-We 0,0020 Kg/Kg ar seco Wi*-We 0,0020 Kg/Kg ar seco Wi-We 0,0040 Kg/Kg ar seco

hfg 2453440 J/Kg Q_(L)_i*** 5279 W hfg 2453440 J/Kg Q_(L)_i* 3367 W hfg 2453440 KJ/Kg39,89 % 25,66 %

Q_(L)_i* 740 W Q_(L)_i* 1161 W5,59 % 8,85 %

Q_(L)_1 13236 W Q_(L)_2 13118 W Q_(L)_3 15205 WAp 818 m2 13 KW Ap 973 m2 13 KW 15 KWPd 2,7 m Pd 2,7 mVi 2207 m3 Vi 2628 m3

RPH 1 renov/h RPH 1 renov/hVi 2207 m3/h Vi 2628 m3/hVi 0,61 m3/s Vi 0,73 m3/s

Wi-We 0,0040 Kg/Kg ar seco Wi-We 0,00402 Kg/Kg ar seco

Q_(L)_i** 7217 W Q_(L)_i 8591 W54,52 % 65,49 %

Piso 4 Piso 5 Piso 6 Piso 7Ap 638 296 m2 Ap 375 m2 Ap 1390,68 m2 Ap 1203,76 m2 Ap 847 m2Pd 4,4 3,2 m Pd 4,4 m Pd 2,9 m Pd 2,9 m Pd 4 mV 3754 m3 V 1652 m3 V 4032,97 m3 V 3490,90 m3 V 3388 m3

RPH 1 renov/h RPH 2 renov/h RPH 1 renov/h RPH 1 renov/h RPH 1 renov/hV 3754 m3/h V 3303 m3/h V 4032,97 m3/h V 3490,90 m3/h V 3388 m3/hV 1,04 m3/s V 0,92 m3/s V 1,12 m3/s V 0,97 m3/s V 0,94 m3/sV 1,96 m3/s � � 1,193 Kg/m3 � � 1,193 Kg/m3 � � 1,193 Kg/m3� � 1,193 Kg/m3 Wi-We 0,0040 Kg/Kg ar seco Wi-We 0,0040 Kg/Kg ar seco Wi-We 0,0040 Kg/Kg ar seco

Wi-We 0,0040 Kg/Kg ar seco hfg 2453440 KJ/Kg hfg 2453440 KJ/Kg hfg 2453440 J/Kghfg 2453440 KJ/Kg

Q_(L)_4 23073 W Q_(L)_5 13185 W Q_(L)_6 11413 W Q_(L)_7 11078 W23 KW 13 KW 11 KW 11 KW

Hum. esp.[Kg/Kga.s.]

Piso 3

Temperaturas, [ºC] Hum. esp.[Kg/Kga.s.] Temperaturas, [ºC] Hum. esp.[Kg/Kga.s.]

NA - Perda de calor pelas envolventes

� � �� � �� � �� � � Kpo G Apo G Qpo G Kpo G Apo G Qpo G Kpo G Apo G Qpo G Kpo G Apo G Qpo G Kpo G Apo G Qpo G Kpo G Apo G Qpo G Kpo G Apo G(20--0.4) 20,4 0,515 11,34 119,14 0,515 15,26 160,32 0,515 102,7 1078,94 0,515 205,39 2157,79 0,515 190,13 1997,51 0,515 132,98 1397,09 0,515 136,17

Kpo Ar Apo Ar Qpo Ar Kpo Ar Apo Ar Qpo Ar Kpo Ar Apo Ar Qpo Ar Kpo Ar Apo Ar Qpo Ar Kpo Ar Apo Ar Qpo Ar Kpo Ar Apo Ar Qpo Ar Kpo Ar Apo Ar0,511 136,78 1425,85 0,511 161,34 1681,87 0,511 330,65 3446,79 0,511 431,51 4498,25 0,511 171,36 1786,33 0,511 226,03 2356,23 0,511 376,10Kenv Aenv Qenv Kenv Aenv Qenv Kenv Aenv Qenv Kenv Aenv Qenv Kenv Aenv Qenv Kenv Aenv Qenv Kenv Aenv

(20--0.4) 20,4 3,61 31,91 2349,98 3,64 3,24 240,59 3,63 17,34 1284,62 3,54 34,45 2487,84 3,56 48,32 3509,19 3,57 145,04 10562,97 3,54 101,593,80 13,02 1009,3 3,67 5,67 424,50 3,67 41,82 3132,73 3,58 9,9 723,02 3,59 81,18 5945,30 3,58 48,32 3528,91 3,55 121,91

4904,28 3,7 27,54 2078,72 3,70 22,32 1686,60 3,59 5,3 388,15 3,62 11,31 835,22 3,6 25,68 1885,94 3,59 5,653,88 12,24 968,82 3,72 3,36 254,98 3,6 5,74 421,55 3,64 10,32 766,32 3,65 6,96 518,24 3,65 23,53,9 1,66 132,13 3,83 11,2 875,28 3,61 21,04 1549,47 3,7 28,56 2155,71 3,66 3,36 250,87 3,68 7,665,62 2,4 275,16 3,84 48,16 3772,66 3,62 51,02 3767,72 3,91 77,28 6164,16 5,56 3,65 414,00 3,73 3,33

3,88 12,24 968,82 3,65 15,52 1155,62 5,57 5,22 593,14 5,57 5,22 593,14 3,74 1,445,54 6,38 721,04 3,66 25,69 1918,12 3,84 1,455,56 40,80 4628,39 3,67 8,01 599,69 3,85 21,3875,60 6,64 758,55 3,72 3,36 254,98 3,86 4,944

3,75 8,16 624,24 3,87 4,413,83 11,20 875,08 3,88 1,983,88 4,08 322,94 4,09 0,363,91 48,16 3841,43 5,6 64,05 3,9 322,225,55 46,64 5280,585,56 86,402 9800,06

Temp. solo 10 º C 5,6 3,32 379,28Kpoe Ppoe Qpoe Kpoe Ppoe Qpoe Kpoe Ppoe Qpoe

(20-10) 10 2,15 121,98 2622,6 2,15 140,41 3018,82 1,11 102,1 1133,31Temp. média dos espaços não aquecidos 1,66 º C(20-1.66) 18,3 Kp int Ap int Qp int Kp int Ap int Qp int

1.645 89,48 2693,66 1.645 46,68 1405,235316,2 1,800 3 98,82

K port A port Qport K port A port Qport(20--0.4) 20,4 5,72 3,8 443,41 5.719 3,8 443,34

(20-1.66) 18,3 Kpav Apav Qpav Kpav Apav Qpav Kpav Apav Qpav Ktelh Atelh1.137 128,76 2684,98 1.137 667 13878,34 20,4 1.137 77,6 1799,92 20,4 0,582 984

Kter Ater Qter Kter Ater Qter Kter Ater Qter Kter Ater Qter Kter Ater20,4 0,530 144 1556,07 0,530 144 1556,07 0,530 51 551,11 0,530 123 1323,95 0,530 456

(20--0.4) Klaje Alaje Qlaje Klaje Alaje Qlaje Klaje Alaje Qlaje Klaje Alaje Qlaje Klaje Alaje20,4 0,511 25,65 267,39 Klaje Alaje Qlaje Klaje Alaje Qlaje 0,511 43,47 453,15 0,511 45,37 472,96 0,511 16,69 173,98 0,511 17,3

2,45 210,4 ###### 0,511 18,27 190,45 0,511 39,29 409,57 0,515 25,06 263,28 0,515 20,77

Piso 5A Piso 6A Piso7APiso 1NA Piso 2NA Piso 3NA Piso 4A

Page 34: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

NA - Perdas de Calor Sensível por renovação de ar, Q_(S), [KW]

Piso 1 Piso 2Ap 818 m2 Ap 979 m2 Ap 1161 313 m2Pd 2,7 m Pd 2,7 m Pd 2,9 4,1 mV 2207 m3 V 2644 m3 V 4651 m3

RPH 1 renov/h RPH 1 renov/h RPH 1 renov/hV 2207 m3/h V 2644 m3/h V 4651 m3/hV 0,61 m3/s V 0,73 m3/s V 1,29 m3/s� � 1,235 Kg/m3 � � 1,234 Kg/m3 � � 1,191 Kg/m3

Cp 1006,686 J/KgºC Cp 1006,886 J/KgºC Cp 1006,87 J/KgºCTip 20 ºC Tip 20 ºC Tip 20 ºC

Tep*_1 0,26 ºC Tep*_2 0,01 ºC Tep -0,4 ºC

Q_(S)_1 15046 W Q_(S)_2 18244 W Q_(S)_3 31617 W15 KW 18 KW 32 KW

NA - Perdas de Calor Latente por renovação de ar, Q_(L), [KW]

We*_1 0,0035 We*_2 0,00339 We 0,00328Wi 0,0073 Wi 0,0073 Wi 0,0073

Piso 1 Piso 2 Ap 818 m2 Ap 979 m2 Ap 1161 313 m2Pd 2,7 m Pd 2,7 m Pd 2,9 4,1 mV 2207 m3 V 2644 m3 V 4651 m3

RPH 1 renov/h RPH 1 renov/h RPH 1 renov/hV 2207 m3/h V 2644 m3/h V 4651 m3/hV 0,61 m3/s V 0,73 m3/s V 1,29 m3/s� � 1,193 Kg/m3 � � 1,193 Kg/m3 � � 1,193 Kg/m3

Wi-We*_1 0,0038 Kg/Kg ar seco Wi-We*_2 0,0039 Kg/Kg ar seco Wi-We 0,0040 Kg/Kg ar secohfg 2453440 J/Kg hfg 2453440 J/Kg hfg 2453440 KJ/Kg

Q_(L)_1 6899 W Q_(L)_2 8399 W Q_(L)_3 15205 W7 KW 8 KW 15 KW

Piso 3

Piso 3

Hum. esp.[Kg/Kga.s.] Hum. Esp.[Kg/Kga.s.] Hum. Esp.[Kg/Kga.s.]

Estimativa da potência térmica para água quentes sanitárias, Qas, [W]

Consumo de água quente, em função do tipo de aparelhos,em litros/hora, a 60ºc

APARELHOS HÒTEIS L/h QH2O L/h QH2O L/h QH2O L/h QH2O L/h QH2O L/h QH2O L/h QH2OLavatório Privado 2,6 0 0 0 0 42 2642 28,6 1816 81 5119 86 5449 8 495Lavatório Público 10,4 135 8587 114 7266 94 5945 187 11889 0 0 0 0 94 5945

Pia de cozinha 26 52 3303 0 0 0 0 0 0 0 0 0 0 52 3303Tanque 36,4 0 0 0 0 73 4624 0 0 0 0 0 0 0 0

Pia de copa 13 13 826 13 826 13 826 13 826 0 0 0 0 0 0Chuveiros 97,5 585 37154 0 0 1365 86693 683 43347 2828 179578 3023 191963 390 24769

Consumo máx. provável (%) 25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25

TOTAIS por piso 196 12467 32 2023 397 25182 228 14469 727 46174 777 49353 136 8628

V = 2492 L/hQH2O = 158297 W

158 KW

PISO 5 PISO 6 PISO 7PISO 1 PISO 2 PISO 3 PISO 4

Pot aque GD M534 kW 2040 6,3 2492 L/h

UA26176,47 1281600 Gsul gl

93 0,7Qaqu 1281600 kWhQaqs 100911 kWh

1382511 kWhS

Qi Qs A 500 800128836,9 139608,3 X 1 0,3

0,209461

Qgu 255022,9 kWh

1127488 kWh

Page 35: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

Appendix D. Boiler Specifications and Installation Details �

Page 36: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

Page 37: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

��

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

��

Page 38: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

��

Page 39: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

� �

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

��

Page 40: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

��

Page 41: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

Appendix E. Economic Feasibility

Altener BIOHEATHeat cost calculation - User guide

General informationThis calculation sheet has been developed in the scope of the Altener BIOHEAT project. The sheet calculates heat costs for biomass fuelled heating plants in comparison with plants fuelled with fossils. The heat cost calculations are based on the VDI 2067 standard (Verein Deutscher Ingenieure).

Input data are all the variable and market dependent values. The list below is a description of input data and some recommendations for the input values. Main output data are the heating price in �/MWh for the different fuel alternatives. The result sheet contains a number of key figures about each supply alternative.Furthermore the sheet provides three graphic comparisons of the alternatives.

Further information and guidelines for the input data can be found in the BIOHEAT consultants brochure.

Guide to input dataThe calculation model needs input in two sheets: "input costs" and "fuel calculation".Fill in only yellow fields! The green fields show results.

Input costs sheet

Interest rate (i) and time of use (n) in years are the basic to calculate the annuity factor (AF).

Annual repair costs are filled in as approximate percentages of the investment costs.

Final energy demand is calculated using the heat load for the existing boiler and the estimated hours of full power operation.

Fuel costs per unit are used to calculate the estimated fuel costs per year, details concerning fuelcosts are handled in the fuel cost calculation sheet.

Investment costs are to be filled in seperately for boiler, installations and construction.

Fill in the percentage to which the total investment is applicable for subsidy.

Fill in the percentage to which extend subsidies are granted for the applicable part of the investment.

Capital costs are calculated using the annuity factor for the investments minus subsidyestimating that subsidies are granted aliquote for boiler, installations and construction costs.

Fuel costs are calculated using the fuel calculation sheet, considering the annual boiler efficiency.

Electricity costs are figures covering the power supply of the boiler and the feeding systems,pumping costs for heat distribution are not included.

Repair costs are calculated, using the approximate percentage of annual repair costs and the totalinvestment costs.

Personel costs consider the periodic check-ups of the boiler and the fuel manipulation.

Costs for the chimney cleaner have to be estimated for standard equipment and service.

Costs for service contracts have to be estimated for standard service check-ups of the equipment.

Other costs cover for instance insurance costs, etc.

Fuel calculation sheet

Fuel costs per year are calculated using the fuel costs per unit from the input costs sheet

Fill in the annual boiler efficiency suitable for your equipment

Fill in the common water content of your biofuels (calculated as weight-percentage of fresh matter).Guiding values: Wood pellets: 6%, dry forest chips: 20-35%, dry sawmill chips: 15-35%.

Fill in the density of loose dry matter for the wood chips and pellets used.

������������� ������������ ���������������������� ���������������������������������� �� ����!" "�#��������� �����$�%���������&&&��%�������

' ������������( ������) ����* �� �����+ �) ��������, �- �. ����, ��( ��) ���/�� �0 ��( 1 //�%�2�!3 ����4 5 "�6 1 ���������$�+ ���+ ��+ ��+ ��&&&��+ ���+ ��+ ��+

����

�����

−++=

���

Page 42: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

Altener BIOHEATHeating cost comparison based on VDI 2067 standardFill in yellow fields! Green fields show results. Fuel costs include all taxes.

Interest rate 6,0 [% p.a. nominal value]

Basic data time of use annuity factor annual repair costs[years] [%] [%]

Boiler 20 8,7 1,0Installations 20 8,7 1,0Construction 50 6,3 0,5

Final energy demand Heat load Full power operation Final energy demand[kW] [h/a] [kWh/a]

540 2.088 1.127.520

Fuel Wood chips Pellets Fuel oil Natural gas

[� / kg] [� / kg] [� / liter] [� / m³]

Costs per unit 0,045 0,130 0,270 0,000

[kg / a] [kg / a] [l / a] [m³ / a]

Estimated annual demand 439.673 279.379 160.727 #DIV/0!

Position Unit Wood chips Pellets Fuel oil Natural gas

Investment costsBoiler [�] 50.000,00 48.000,00 30.000,00 0,00Installation [�] 30.100,00 30.100,00 35.300,00 0,00Construction [�] 25.000,00 15.000,00 0,00 0,00Total investment [�] 105.100,00 93.100,00 65.300,00 0,00Applicable for subsidy [%] 100,0 100,0 0,0 0,0Subsidy [%] 20,0 20,0 0,0 0,0

Investment minus subsidy [�] 84.080,00 74.480,00 65.300,00 0,00

Capital costsBoiler [�/a] 3.487,38 3.347,89 2.615,54 #DIV/0!Installation [�/a] 2.099,40 2.099,40 3.077,61 #DIV/0!Construction [�/a] 1.268,89 761,33 0,00 #DIV/0!

Total capital costs [�/a] 6.855,67 6.208,62 5.693,15 #DIV/0!total capital costsDemand related costsFuel costs [�/a] 19.785,27 36.319,26 43.396,25 #DIV/0!Electricity costs [�/a] 324,00 324,00 270,00 0,00

Total demand related costs [�/a] 20.109,27 36.643,26 43.666,25 #DIV/0!

Operation related costsRepair costs boiler [�/a] 500,00 480,00 300,00 0,00Repair costs Installation [�/a] 301,00 301,00 353,00 0,00Repair costs building [�/a] 125,00 75,00 0,00 0,00Personel costs [�/a] 5.400,00 5.400,00 0,00 0,00Chimney cleaner [�/a] 300,00 300,00 300,00 0,00Service contract [�/a] 2.160,00 2.160,00 1.080,00 0,00

Total operation related costs [�/a] 8.786,00 8.716,00 2.033,00 0,00

Other CostsInsurance & others [�/a] 1.350,00 1.350,00 540,00 100,00

Other costs [�/a] 1.350,00 1.350,00 540,00 100,00

Total costs per year [�/a] 37.100,94 52.917,88 51.932,41 #DIV/0!

Total costs per MWh [�/MWh] 32,9 46,9 46,1 #DIV/0!

Page 43: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

Altener BIOHEATCalculation of fuel costs7 ��/��� � ����/�����//���0 � �������/�%���

Heat load

Hours of full power

operation Final energy

demand[kW] [h/a] [kWh/a]540 2.088 1.127.520

Wood chips Pellets Fuel oil Natural gas[� / kg] [� / kg] [� / liter] [� / m³]

Costs per unit 0,045 0,130 0,270 0,000�/m³ 17,14 79,69

Fuel costs per year �/a 19.785,27 36.319,26 43.396,25 #DIV/0!

Fuel costs per MWh �/MWh 14,9 27,4 26,9 0,0

Fuel costs per GJ �/GJ 4,1 7,6 7,5 0,0

Fuel demand per year [m³] 1.154 456 161 #DIV/0!

[kg] 439.673 279.379 135.814 #DIV/0!

Annual boiler efficiency % 85 85 70 0Final energy demand kWh/a 1.127.520 1.127.520 1.127.520 1.127.520Primary energy demand kWh/a 1.326.494 1.326.494 1.610.743 #DIV/0!

Water content % ( weight) 37,0 7,5 0,0 0,0Hydrogen content % (weight, dry matter) 6,0 6,0 13,4 23,6

Density of loose dry matter kg/m³ 240 567 845 0,78Density of loose fresh matter kg/m³ 381 613 845 0,78specific volume of fresh material m³/1000kg 2,63 1,63 1,18 1.282,05

Upper heating value of dry matter MJ/kg 20,0 20,0 45,7 49,2kWh/m³ 1.333 3.150 10.715 10,7

Lower heating value of fresh matter MJ/kg 10,9 17,1 42,7 44,0kWh/kg 3,0 4,7 11,9 12,2MJ/m³ 4.138 10.477 36.078 34,3kWh/m³ 1.149 2.910 10.022 9,5

Page 44: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

Altener BIOHEATHeating cost comparison based on VDI 2067 standard

unit Woodchips Pellets Fuel oil Natural gas

Boiler costs [�] 29.300,00 20.934,00 12.850,00 0,00Installation costs [�] 10.360,00 7.201,00 0,00 0,00Building costs [�] 9.546,00 10.539,00 0,00 0,00

Total Investment [�] 105.100,00 93.100,00 65.300,00 0,00

Investment minus subsidy [�] 84.080,00 74.480,00 65.300,00 0,00

Annuity [�/a] 6.855,67 6.208,62 5.693,15 #DIV/0!

Capital costs [�/a] 6.855,67 6.208,62 5.693,15 #DIV/0!

Fuel costs [�/a] 19.785,27 36.319,26 43.396,25 #DIV/0!Electricity cost for boiler operation [�/a] 324,00 324,00 270,00 0,00

Demand related costs [�/a] 20.109,27 36.643,26 43.666,25 #DIV/0!

Repair costs [�/a] 926,00 856,00 653,00 0,00Personel costs [�/a] 5.400,00 5.400,00 0,00 0,00Chimney cleaner [�/a] 300,00 300,00 300,00 0,00Service contract [�/a] 2.160,00 2.160,00 1.080,00 0,00Insurance, other costs [�/a] 1.350,00 1.350,00 540,00 100,00

Operation related costs & other costs [�/a] 10.136,00 10.066,00 2.573,00 100,00

Total annual costs [�/a] 37.101 52.918 51.932 #DIV/0!

Total costs per MWh [�/MWh] 32,9 46,9 46,1 #DIV/0!

Page 45: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

Total heating costs per year

0,00

10.000,00

20.000,00

30.000,00

40.000,00

50.000,00

60.000,00

Woodchips Pellets Fuel oil Natural gas

[Eur

o / a

]

Operation relatedcosts & other costs Demand related costs

Capital costs

Total costs per MWh of consumed heat

32,9

46,9 46,1

0,00,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

50,0

Wood chips Pellets Fuel oil Natural gas

[Eur

o / M

Wh]

Page 46: Bioheat II Feasibility Study for Hotel Columbano, Régua Portugal - …malheiro/img/hotelcolumbano.pdf · 2004. 11. 16. · 4.2 Availability of fuel in region 12 4.3 Possible suppliers

���

��������� � �������� ��������������������� ��

�������� ��������� � � � � � ���� ������������

��������� ���������!�"���!�#����� � � � ������� $�����%����

Fuel costs per unit of energy(energy content based on the lower heating value of fresh matter)

14,9

26,9

0,0

27,4

0,0

5,0

10,0

15,0

20,0

25,0

30,0

Wood chips Pellets Fuel oil Natural gas

[Eur

o / M

Wh]