biogas safety and regulations

86
Biogas Safety and Regulations Summary report of the workshop Final version, December 15, 2010 Table of Contents Introduction....................................................... 1 1 Safety Issues ............................................ 2 2 Key production parameters and data ........... 3 3 Learning from experience ........................... 4 4 Panel discussion on several issues ............... 5 4.1 Issue 1: Safety of biogas production processes ................................................. 5 4.2 Issue 2: Implementation of the existing regulation ................................................. 5 4.3 Issue 3: Sharing best practices and education of the operators .......................... 6 Conclusion ......................................................... 7 Annex 1 List of participants .............................. 8 Annex 2 Slides presented during the workshop ... 9

Upload: others

Post on 28-Nov-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Biogas Safety and Regulations

Biogas – Safety and Regulations

Summary report of the workshop Final version, December 15, 2010

Table of Contents

Introduction ....................................................... 1

1 Safety Issues ............................................ 2

2 Key production parameters and data ........... 3

3 Learning from experience ........................... 4

4 Panel discussion on several issues ............... 5

4.1 Issue 1: Safety of biogas production processes ................................................. 5

4.2 Issue 2: Implementation of the existing regulation ................................................. 5

4.3 Issue 3: Sharing best practices and education of the operators .......................... 6

Conclusion ......................................................... 7

Annex 1 List of participants .............................. 8

Annex 2 Slides presented during the workshop ... 9

Page 2: Biogas Safety and Regulations

page 1

Introduction

The workshop on Biogas – Safety and Regulation took place in Paris at the FIAP – Jean Monnet on November 24, 2010.

34 participants attended the workshop organized in 4 sessions, the last one being a panel discussion with selected experts. (See the list of participants in annex).

Mr. Evanno presented the context and motivations of the workshop. It is part of a study performed by INERIS for the French Ministry in charge of environment and ecology.

The main objectives of the workshop were:

Share information, in particular on projects, processes but also on safety and regulation in order to identify the state of the art in these fields across Europe.

Find and understand the gaps in terms of safety and regulation.

Propose solutions to fill those gaps and possibly prepare the base of a permanent network on safety aspects.

The main outcomes of the workshop are summarized in the next paragraphs.

Page 3: Biogas Safety and Regulations

page 2

1 Safety Issues

The first part of the event was dedicated to the safety issues. Indeed, some research on

safety has been led by institutes like INERIS and by industrial companies such as GDF-SUEZ

or RHODIA in order to analyze the risks and to improve the safety along the production and the uses of biogas. Some risks appear important and well studied such as explosion and hydrogen sulfide release but it has been reported that the microbiological risk is also important and not well studied.

For example, the safety distances based on the effects corresponding to the hazardous phenomena (heat flux, overpressure and toxicity) have to be considered in order to analyze and quantify the risks. Those distances depend on the pressure, the composition of the biogas and the type of biogas (from: agricultural waste, municipal waste, wastewater treatment plant…). The study made by INERIS shows that the agricultural process can be in

some conditions more dangerous than the other processes. (Reference: Accidental scenario and modeling of effects distances connected with agricultural-scale and industrial-scale biogas plant. INERIS DRA-09-101660-12814A).

Regarding the uses of biogas, GDF-SUEZ has carried out some studies which demonstrated that the CNG (Compressed Natural Gas) could be less dangerous than the diesel, looking at the criticity which combines the severity and the probability of the events. The tank of vehicle which uses biogas contains safety devices. Moreover, there exists a regulation R110 which describes the requirements of the tank aspects and its tests. The risk analysis is essential to develop safely the uses of biogas.

Considering the current situation, from the discussions during the workshop, it seems that safety has to be improved based on the existing regulation that has to be better enforced (see section 4, issue 2).

It also appeared necessary to increase the awareness of the workers and promote prudent

behaviors by involving them in the safety management process: participation in risk analysis (HAZOP, preliminary risk analysis…), analyze near-misses and accidents; raise level of knowledge related to safety… (See section 3).

Biogas production or use generates several various risks such as explosion, toxic releases but also microbiological risks, often neglected.

Risk analysis is a key element of the safety management system of biogas facilities and has to be performed involving the workers.

Page 4: Biogas Safety and Regulations

page 3

2 Key production parameters and data

The risk analysis enables to identify the key parameters which are relevant to ensure safe

production facilities and safe uses. Some of these key parameters are subject to regulation.

In the framework of several projects, data and key production parameters are produced and compiled in some European institutes such as HSL, INERIS or SP. These projects are running in parallel without exchanges at the moment.

Some parameters are relevant regarding the safety or the production: for example, the

pressure and the temperature in the digester. It has also been reported that the presence time in the digester and the load balancing are important for the production efficiency and the safety. The amount of contaminants in the biogas is also relevant but there is no special best upgrade and moreover it depends on the raw materials. Thus the composition of the raw materials has to be controlled and certified. The composition of the raw material and of the biogas is very important because they play a major role in the risks analysis.

Pooling data is important to ensure a quick return on investment and to start up collaborative projects on production, safety and uses connected with biogas.

During the workshop, based on the presentations, it was suggested to share some findings and data when possible and to explore the opportunity and benefits to compile those data in a database at the European scale and on all sectors of biogas taking into account that those

pieces of information are sensitive. This database could support the regulations and the standardization.

It is necessary to create at the European scale a database gathering relevant key production parameters, data and safety methods to ensure the quick and safe

development of the biogas sector.

Page 5: Biogas Safety and Regulations

page 4

3 Learning from experience

Learning from experience based on near-misses and accidents is necessary to avoid repeating mistakes or errors. It is part of the risk analysis process to improve safety of the

operation.

The feedback of SIAAP presented during the workshop was a great opportunity to

understand the benefits of the learning from experience process. SIAAP had an accident some years ago and they have worked on a method to learn from this experience and have started the investigation and analysis. Then, SIAAP has updated all the plants: production devices, maintenance, and approach of risks.

In addition, during the investigation, they realized that the regulation applying to their installations is very fragmented and the enforcement difficult at the design phase (by engineering companies). Thus they decided to create a guideline on regulations and practices

in order to make easier the implementation of the safety requirements.

The example of the Naturalgaskielen in Luxembourg shows that agricultural facilities can be

safe if they implement standards (German standards).

With its strict method of risks analysis derived from the Chemical industry, Rhodia has observed a reduction of the number of accidents. Mostly, accident root causes are linked to

human factors, mistakes or errors in the design, when building or during operations of the facilities. Thus Rhodia has focused on the safety program on its employees. The safety approach used by Rhodia consists in using tools in order to analyze the risks, to qualify and quantify objectively the effects. This approach helps to consider all safety aspects.

Learning from experience and sharing it may force people to consider safety as a major

challenge.

Safe production or uses improve the image of the biogas sector and will improve its efficiency. Creating a network and a platform on biogas safety and sharing best practices will improve safety performance and support the quick development of the biogas

industry.

Page 6: Biogas Safety and Regulations

page 5

4 Panel discussion on several issues

The panel discussion involved several experts, but also take advantage of contributions coming from the audience. The main messages are summarized in the next paragraphs.

4.1 Issue 1: Safety of biogas production processes

Safety aspects are difficult to assess because they depend on several elements, such as the

types of technology, types of facilities, the size of the site, the upgrading technology and the lay-out of the installations, and the staff and organization in place. There is also a combined productivity and safety problem due to the raw materials inconstancy (amount and composition). Thus it is important to perform a specific risk analysis which will depend on the composition of the products and on the specific features of the facility.

Considering accident investigations it appears that often accident sequences are similar in their root causes and consequences. Thus there is a clear added value in sharing experience,

feedback and results of accident investigations, and also the risk analysis in a global approach for all situations.

In a nutshell, in spite of the fact that each plant is specific, it is possible to define a global safety approach and a common risk analysis by sharing information, methods and data.

For safety in the regulation, it is relevant to notice the difference between the production and the uses and between the physical process and the biological one regarding safety.

The complexity of the safety assessment is due to the fact that each plant is

specific because of the technology, the staff and organization in place and the local context. Thus it appears necessary to perform risk analysis for each installation and to share results of accident investigations among the personnel, but also in a larger forum.

4.2 Issue 2: Implementation of the existing regulation

After a short introduction on this issue, it was obvious that the implementation of safety regulations on biogas plants is not harmonized throughout Europe.

In addition, the main message from the discussion on the implementation of the existing regulation is that the main problem regarding the regulation is not the regulation itself but its implementation. Ignorance, fragmentation and in some cases lack of enforcement are observed.

Most of the participants agreed that the regulation on biogas has to be developed in a way that it could support the safe development of the biogas industry. Because of the diversity of the processes and uses, it seems necessary to adopt rather a goal-based approach instead of a descriptive approach. This will give more flexibility and efficiency to achieve a high safety performance.

Page 7: Biogas Safety and Regulations

page 6

At the end of the panel discussion, a remark on the quality of waste was pointed out. Waste

is becoming a “precious raw material”, for example Luxembourg imports waste. Thus it could be necessary to have a certification of “quality” for the waste. Indeed a certification on waste quality will allow a better control of the digestion and improve the biogas quality. It is important to notice that the presence of toxic gases depends on the waste “quality”.

The existing regulation seems appropriate but should be better implemented.

Goal-based regulation appears more effective than descriptive regulation because of the diversity of technologies and configurations, and because the technological improvement is still on-going.

4.3 Issue 3: Sharing best practices and education of the

operators

One of the current problems which have been identified is the lack of knowledge related to risks for the persons involved in the biogas sector, in particular for the agricultural biogas.

Thus, it is necessary to improve education and dissemination of knowledge on safety-related aspects. However, it has to be done in a careful way without demonizing biogas.

There is also a technical problem due to detection equipments which operate in a

“contaminated environment” and not in a “clean air”. Indeed, the measurement of hydrogen sulfide in the biogas is different as in the air. Sensors for detections and measures have to be carefully selected.

It is important to disseminate information related to the risks in biogas to operators, or farmers but also design engineers because everyone has to be aware, and sometimes, even at high-level, risks are not well-known.

Indeed, in general, simple-looking facilities such as biogas plants might contain similar safety critical situations, as complex facilities. In all cases, risk analysis has to be performed and risk analysis methods and tools have to be made available to engineers and operators working on biogas.

There was an agreement that a single accident with severe consequences happening in the biogas industry may damage the whole sector, the whole industry image. Thus, the participants agreed to play an active role in sharing information and promoting safety.

It is important to define guidelines on best practices at European level to improve convergence if not harmonization in the various European countries.

In France, regulations (ICPE 2781-1 regulation and ATEX regulation) adopted recently requires that staff working in the field of biogas has to undergo safety courses. This is an interesting example of measure to address the problem of lack of safety knowledge and awareness.

Dissemination of information on risks connected with biogas is necessary. Every employee should be involved in the safety assessment.

Best practices have to be better shared to develop rapidly and safely the biogas energy in Europe.

The participants recommended to create a platform to exchange on safety issues.

Page 8: Biogas Safety and Regulations

page 7

Conclusion

As a conclusion, the key messages from the workshop can be summarized as follows.

Regarding the production and uses of biogas, it is important to discuss, to find and share best practices and to reach a harmonization at least at EU level.

The main insurance for the safety in the biogas sector is the risk analysis. Thus it is important to work on the improvement of the systematic performance of risk analysis.

It is important to create a network and a database on biogas safety in order to develop safely the biogas sector. Because a major accident could have a negative impact for each actor in the biogas industry, these network and database will give the impulse to share knowledge and best practices to prevent any accident.

Thus it is necessary to pursue in this way and create a platform to share safety information and best practices.

The workshop was fruitful and experts have shared information and ways of thinking about safety and regulation. This action should continue. Rhodia proposed to the participants to host the next meeting of a working group focusing on the sharing of knowledge and best practices. INERIS and EU-VRi were happy with this offer and promised to establish a working group to follow-up on the outcomes of this first workshop (the framework and organization have to be further elaborated).

Page 9: Biogas Safety and Regulations

Annex 1 List of participants

Last Name First Name Organisation Country E-Mail address ARMINJON Jean Baptiste FAIRTEC France [email protected] BAUMANN Pierre GDFSUEZ France [email protected] BOUCHET Caroline DEGREMONT France [email protected] BERGHMANS Jan Katholieke Universiteit Leuven Belgium [email protected] COENEN Joep Rhodia Energy Services The Netherlands [email protected] DE RENTY Marie GDF SUEZ - DRI - CRIGEN France [email protected] DELSINNE Samuel EU-VRi Germany [email protected] DEMISSY Michel INERIS France [email protected] EVANNO Sébastien INERIS France [email protected] FOUQUET Rémi MEEDDM France remi.fouquet@developpement-

durable.gouv.fr GODART Nico Naturgaskielen Luxembourg [email protected] GRENINGER Aude GDF SUEZ - DRI - CRIGEN France [email protected] HARALDSSON Conny SP Sweden [email protected] HOFFMANN Lucien CRP-Gabriel Lippmann Luxembourg [email protected] HUGUEN Paul LMCU France [email protected] KAY Jake Health and Safety Laboratory United-Kingdom [email protected] KOVACS Stefan INCDPM ”Alexandru Darabont” Romania [email protected] LEBRUN Thierry DEGREMONT SEQUARIS France [email protected] LIEGEOIS Philippe GDF SUEZ France [email protected] LYUBCHYK Svitlana Instituto Soldadura e Qualidade Portugal [email protected] MAHESH Soedesh RIVM The Netherlands [email protected] MANDEREAU Christophe ARISTOT France [email protected] MARCHAIS Caroline ATEE France [email protected] MARTIN Catherine GrDF France [email protected] MOLETTA Rene MOLETTA METHANISATION France [email protected] PLOUJOUX Thierry GDF SUEZ France [email protected] RIOTTE Michel SIAAP France [email protected] ROGEZ Philippe RHODIA Services The Netherlands [email protected] SALVI Olivier EU-VRi Germany [email protected] THIÉBAUT Charles MEEDDM France charles.thiebaut@developpement-

durable.gouv.fr TUGNOLI Alessandro CONPRICI - University of Bologna Italy [email protected] VAN PASSEL Nikki i-Discover The Netherlands [email protected] WETZIG Volker VersuchsStollen Hagerbach Switzerland [email protected] ZDANEVITCH Isabelle INERIS France [email protected]

Page 10: Biogas Safety and Regulations

Annex 2 Slides presented during the workshop

Table of contents:

Welcome slide…………………………………………………………………………………………………10

ATEE presentation – Caroline MARCHAIS – ATEE/Club Biogaz.……………………10

EBA presentation - Caroline MARCHAIS – ATEE/Club Biogaz……………………….11

Scénarios accidentels et modélisations des distances d’effets associées pour des installations de méthanisation de taille agricole et industrielle – Sébastien EVANNO – INERIS……………………………………………………………………………………………14

Véhicules Biomethane/GNV Réglementation et sécurité – Philippe LIEGEOIS –GDF SUEZ ……………………………………………………………………………………………………….24

Biogas and anaerobic digestion in the UKand HSL prospective work – Jake KAY – HSL………………………………………………………………………………………………………34

Contaminants in upgraded biogas – Conny HARALDSSON – SP…………………46

Retour d’expérience SIAAP – Michel RIOTTE et Christophe MANDEREAU –

SIAAP……………………………………………………………………………………………………………….54

Feedback f rom a b iogas fa c i l i t y manage r – N i co GODART – Naturalgaskielen……………………………………………………………………………………………61

Rhodia’s safety approach to b iogas systems – Joep COENEN - RHODIA…………………………………………………………………………………………….……………..72

Panel discussion on the issues presented in the discussion document…………81

Page 11: Biogas Safety and Regulations

BIOGASSafety and Regulations

November 24, 2010Paris

WELCOME / BIENVENUE

20/10/2010 2

Le Club Biogaz ATEE

� L'interprofession de la filière méthanisation et biogaz en France� Représentant plus de 130 adhérents personnes morales � Comité de direction élu, composé d'acteurs issus des différents métiers

� Un interlocuteur reconnu par les pouvoirs publics � 11 ans d'existence � …et d'actions pour promouvoir le développement des différentes

filières de production et de valorisation du biogaz

� Des groupes de travail � avec les adhérents et en coordination avec les autres organismes concernés par

le biogaz, � Sur des sujets d’actualité : la réglementation, le transport et l'injection du biogaz

dans le réseau, la valorisation du biogaz et les tarifs d'achat de l'électricité, le biogaz agricole, les digestats...

� L'organisation de colloques, voyages d'études, et la participation à tous les grands rendez-vous de la filière

� Un site internet dynamique� actualités importantes: nouveautés réglementaires, appels à projets� documents pratiques et études... � agenda de tous les évènements de la filière en Europe

� Et bien d'autres services pour les adhérents: mails d'informations, questions/réponses, service d'offres d'emploi...

�Rejoignez-nous vite!

Page 10

Page 12: Biogas Safety and Regulations

European Biogas Association

WHAT IS EBA?

� Non-profit organization

� Sustainable biogas production and use in Europe

� 18 countries across Europe

� Well-established network and communication platform

for exchanging information and expertise in biogas

� Member of AEBIOM, EREF, cooperation with EREC

� Office in REH, Brussels

� Biogas – substantial part of the European energy mix!

Page 11

Page 13: Biogas Safety and Regulations

European Biogas Association – 18 countries

Join Us!Full members: 20 National Associations

• Austria (AG Kompost & Biogas)• Czech Republic (Česká bioplynová asociace o. s.)• Estonia (Eesti Biogaasi Assotsiatsioon MTÜ)• France (ATEE Club Biogaz)

(Eden - Energie Développement Environnement) (Méthéor – Association pour la Méthanisation Écologique des déchets)

• Germany (Fachverband Biogas)(German Society for sustainable Biogas and Bioenergy utilisation)

• Great Britain (REA – Biogas Group)(ADBA - The Anaerobic Digestion and Biogas Association)

• Hungary (Magyar Biogáz Egyesület)• Italy (Consorzio Italiano Biogas)• Latvia (Latvijas Bigazes Asociacija)• Lithuania (Bioduju Asociacija)• Luxembourg (Biogasvereenegung)• Poland (Polskie Stowarzyszenie Biogazu)• Romania (Asociatia Romana Pentru Biogaz)• Sweden (Svenska Biogasföreningen)• Switzerland (Biogas Forum Schweiz)• Spain (Asociación Española de Biogás)

Associated Members: 8 companies and research centers• Netherlands (DSM Biogas)• Germany (BTA International GmbH)

(Schaumann Biotic Consult)(Prof.dr.-Ing.F.Scholwin, German Biomass Research Centers)

• Austria (Biogest Energie- und Wassertechnik GmbH)(University of Natural Resources and Applied Life Sciences)

• Switzerland (Greenfield AG)• Ireland (Sustainable Energy Authority of Ireland)

que des déchets)

y utilisation)

ion)

entetetetettetete s)s)rs)rs)))rs)rs)rs)rs)rs)rs)rs)rs)rs)rs)rs)rs)rs)

)

Biogas – Multitalent

Page 12

Page 14: Biogas Safety and Regulations

� Production of organic fertilisers and reduction of mineral

fertilisers by closed nutrient cycles (e.g. phosphorus)

� Sustainable energy production and substitution of fossil

energy carriers

� Reduction of green-house-gas-emissions (by substitution of

fossil energy carriers and mineral fertilisers, avoidance of

methane emissions digesting manure and biowaste)

� Creating Green Jobs !

� Increasing independence and security of energy supply

Biogas – Multitalent

Biogas Production, 2007 Eurobserver

36% 49 %

15 %

5.9 Million tons of oil equivalents

Landfill Gas

Sewage Sludge GasAgricultural Biogas

Page 13

Page 15: Biogas Safety and Regulations

Scénarios accidentels et modélisations des distances d’effets associées pour des installations de

méthanisation de taille agricole et industrielle

Journée Européenne sur le biogaz : Sécurité et réglementation

FIAP Jean Monnet / 24 Novembre 2010 / [email protected]

Paris 24/11/2010

Pourquoi cette réflexion ?- Comité opérationnel 10 du Grenelle de l’Environnement qui préconise le

développement d’énergie nouvelle renouvelable (23 % en 2020 dans laconsommation finale d’énergie, + 20 MTEP d’ici 2020 soit550 000 TEP pour le biogaz),

- Plan d’actions déchets 2009 – 2012 du MEDDTL : Nouvelles nomenclatures desinstallations classées exerçant une activité de traitement de déchets (rubriqueICPE 2781 liée à la méthanisation),

- Caractère exponentiel et en pleine mutation technologique du développement de la méthanisation

- Nécessité d’acquérir de l’expertise dans ce domaine, peu exploré- Anticiper les demandes d’appui des pouvoirs publics et les attentes sociétales

- Développement de la filière injection du biométhane (réseau GrdF) et carburantvert en complémentarité avec la filière cogénération (chaleur, électricité),

- Retour d’expérience accidentel inhérent à la filière de méthanisation (explosion liéau biogaz, incendie de stockages de digestats séchés).

La maîtrise des risques accidentels est le cœur de métier de l’INERIS…

Page 14

Page 16: Biogas Safety and Regulations

Paris 24/11/2010

Positionnement de l’INERIS sur la problématique « risques » des procédés de méthanisation :

La sécurité mérite d’être considérée comme un volet à part entière dans le développement durable des filières de traitement des déchets (examen sur toute la chaîne de valorisation).

Développements de technologie « en rupture » (nouvelles biomasses, nouveaux procédés…).

Intégration des biocarburants verts dans des procédés propres et sûres (injection du biogaz vert dans le réseau GrDF, carburant vert véhicule, station d’épuration (STEP) à énergie positive….).

Paris 24/11/2010

Opération A : Détermination des principaux scénarios accidentels et calculsdes distances d'effets associées pour les installations types.

- Rédaction d’un rapport présentant les scénarios accidentels et modélisation desdistances d’effets associées pour des installations de méthanisation de tailleagricole et industrielle

Cette étude a consisté à réaliser les calculs des distances d’effets(thermiques, surpressions, toxiques) des principaux phénomènesdangereux représentatifs des installations type industrielles et agricoles.

Risques accidentels liés aux procédés de méthanisation de la biomasse et des déchets

Actions menées dans le cadre du programme d’appui au MEEDDM en 2009 du programme « Risques liés aux procédés de méthanisation de la biomasse et des déchets »

Page 15

Page 17: Biogas Safety and Regulations

Paris 24/11/2010

Paris 24/11/2010

Page 16

Page 18: Biogas Safety and Regulations

Paris 24/11/2010

Paris 24/11/2010

Page 17

Page 19: Biogas Safety and Regulations

Paris 24/11/2010

Paris 24/11/2010

Page 18

Page 20: Biogas Safety and Regulations

Paris 24/11/2010

Scénarios accidentels retenus pour une configuration de taille industrielle et agricole :

• Rupture guillotine d’une canalisation de biogaz située à l’extérieur,• Explosion dans un local industriel de compression de biogaz liée à une rupture

guillotine d’une canalisation de biogaz,• Explosion dans un local de séchage liée à une rupture guillotine d’une

canalisation de biogaz,• Explosion dans un digesteur industriel ou agricole en fonctionnement normal et à

vide,• Explosion de l’ATEX interne dans un gazomètre agricole ou industriel,• Explosion de l’ATEX formée suite à la ruine du gazomètre.Les principaux risques de ces différents types de biogaz sont liés à leurs principaux

composants : Inflammabilité / explosibilité (méthane, hydrogène, sulfured’hydrogène), Toxicité aigüe par inhalation (sulfure d’hydrogène), Anoxie (CO2,N2).

Enfin, outre le sulfure d’hydrogène, le biogaz contient, à l’état de traces, des gazodorants (composés soufrés dont mercaptans, azotés, aldéhydes, acides grasvolatils) pouvant entraîner des nuisances olfactives.

Paris 24/11/2010

Scénarios accidentels retenus pour une configuration de taille industrielle et agricole :

• Rupture guillotine d’une canalisation de biogaz située à l’extérieur,• Explosion dans un local industriel de compression de biogaz liée à une rupture

guillotine d’une canalisation de biogaz,• Explosion dans un local de séchage liée à une rupture guillotine d’une

canalisation de biogaz,• Explosion dans un digesteur industriel ou agricole en fonctionnement normal et à

vide,• Explosion de l’ATEX interne dans un gazomètre agricole ou industriel,• Explosion de l’ATEX formée suite à la ruine du gazomètre.Les principaux risques de ces différents types de biogaz sont liés à leurs principaux

composants : Inflammabilité / explosibilité (méthane, hydrogène, sulfured’hydrogène), Toxicité aigüe par inhalation (sulfure d’hydrogène), Anoxie (CO2,N2).

Enfin, outre le sulfure d’hydrogène, le biogaz contient, à l’état de traces, des gazodorants (composés soufrés dont mercaptans, azotés, aldéhydes, acides grasvolatils) pouvant entraîner des nuisances olfactives.

Page 19

Page 21: Biogas Safety and Regulations

Paris 24/11/2010

Rupture guillotine d’une canalisation de biogaz située à l’extérieur

Paris 24/11/2010

Rupture guillotine d’une canalisation de biogaz située à l’extérieur

Page 20

Page 22: Biogas Safety and Regulations

Paris 24/11/2010

Rupture guillotine d’une canalisation de biogaz située à l’extérieur

Les biogaz bruts issus de la méthanisation agricole peuvent générer des distancesd’effets toxiques bien supérieures à celles occasionnées par les biogaz bruts issusde la méthanisation d’ordures ménagères ou de boues de station d’épurationpuisque leurs teneurs moyennes résiduelles en H2S est de l’ordre de 3 à 8 foissupérieur.

Il existe en général des traitements simples de gaz bruts (par introduction d’air) quiramènent la composition du biogaz épuré en H2S à quelques dizaines de ppm.

Paris 24/11/2010

Explosion dans un local industriel de compression de biogaz liée à unerupture guillotine d’une canalisation de biogaz

ATEX à la stœchiométrie dans le local de compression suite à une fuite decanalisation de biogaz sous une pression de1,8 bar rel et un diamètre de 300 mm, sans tenir compte de la ventilation du localde 9 000 m3.

L’explosion primaire dans le local suite à l’inflammation de l’ATEX à la stœchiométriedans le local de compression éjecte à l’extérieur 90 % du volume inflammableinitial à travers les parois soufflées du local

Distance d’effets à 200 mbar : 95 mDistance d’effets à 140 mbar : 125 mDistance d’effets à 50 mbar : 300 mDistance d’effets à 20 mbar : 675 m

Des projections de débris (bardage,…) sont possibles sur quelques dizaines de mètres.

Page 21

Page 23: Biogas Safety and Regulations

Paris 24/11/2010

Explosion dans un digesteur industriel ou agricole en fonctionnementnormal et à vide

On considère la formation d’une ATEX à la stœchiométrie dans le local de séchagesuite à une fuite de canalisation de biogaz selon la configuration du site :

Site industriel : digesteur de 30 m de diamètre, dont le volume du ciel enfonctionnement normal est de 1 500 m3 et à vide de 9 000 m3

Site agricole (ou de taille semi industrielle) : digesteur de 15 m de diamètre, dont le volume du ciel en fonctionnement normal est de 500 m3 et à vide de 3 000 m3

L’explosion primaire dans le local suite à l’inflammation de l’ATEX à la stœchiométrie dans le local de compression éjecte à l’extérieur 75 % du volume inflammable initial à travers les parois soufflées du local

Distance d’effets à 200 mbar : - / 10 m : - / 20 mDistance d’effets à 140 mbar : - / 20 m : - / 40 m

Distance d’effets à 50 mbar : 50 m / 60 m : 65 m / 105 mDistance d’effets à 20 mbar : 120 m / 145 m : 150 m / 255 m

Paris 24/11/2010

Explosion de l’ATEX interne dans un gazomètre industriel ou agricole

Formation d’une ATEX à la stœchiométrie d’un mélange d’air et de biogaz dans legazomètre industriel de deux tailles distinctes (V = 4 600 m3 / V = 2 000 m3) oudans le gazomètre agricole (V = 660 m3). Les gazomètres (ou post digesteur) sontconstitués d’une membrane en plastique résistant à 30 mbar.

En première approche, ce scénario peut-être assimilé à l’explosion à l’air libre d’unmélange stœchiométrique de biogaz et d’air.

Distance d’effets à 200 mbar : - / - / -Distance d’effets à 140 mbar : - / - / -

Distance d’effets à 50 mbar : 70 m / 50 m / 35 mDistance d’effets à 20 mbar : 175 m / 130 m / 90 m

Page 22

Page 24: Biogas Safety and Regulations

Paris 24/11/2010

Explosion de l’ATEX formée suite à la ruine du gazomètre industriel ouagricole

Ruine du gazomètre industriel de deux tailles distinctes (V = 4 600 m3 / V = 2 000 m3)ou du gazomètre agricole (V = 660 m3) libérant le méthane dans l’air formant uneATEX

L’inflammation de l’ATEX dans l’air entraine la formation d’une boule de feu(D = 20 m environ).

En première approche, ce scénario peut-être assimilé à l’explosion à l’air libre d’unmélange stœchiométrique de biogaz et d’air.

Distance d’effets à 200 mbar : - / - / -Distance d’effets à 140 mbar : - / - / -

Distance d’effets à 50 mbar : 155 m / 110 m / 55 mDistance d’effets à 20 mbar : 390 m / 280 m / 200 m

Paris 24/11/2010

Opération A : Développement d’un réseau d’acquisition de données sur laméthanisation [examen critique de la bibliographie récente, suivi de l’évolution dela composition des gaz au cours du traitement pour différents substrats (CH4, CO2,H2S,…)] et développement du pilote de méthanisation de l’INERIS.

Opération B : Etude et évaluation des matériels disponibles sur le marché pour lamesure en continu d’hydrogène sulfuré (H2S) dans le biogaz.

Opération C : Retour d’expérience et base de données bibliographique sur lesconditions de formation accidentelle d’H2S lors de mélanges de co-substrats etréalisation d’essais analytiques nécessaires à mettre en place.

Opération D : Risques liés à la valorisation énergétique du biogaz.Opération E : Valorisation du programme DRA DRC 93 et participation aux réseaux

d'experts inhérents au développement de la filière en termes de connaissance engénie des procédés de méthanisation, et d’appui à l'administration.

Actions en cours menées dans le cadre du programme d’appui au MEEDDM « Risques liés aux procédés de méthanisation de la biomasse et des déchets » Actions 2010 :

Page 23

Page 25: Biogas Safety and Regulations

Paris 24/11/2010

Merci pour votre attentionThank you for your attention

Des questions / Any questions?

Véhicules Biomethane/GNVRéglementation et sécurité

Paris, le 24 Novembre 2010

Philippe LIEGEOISGDF SUEZ – DRI - CRIGEN

Research and Innovation DivisionCRIGEN

Page 24

Page 26: Biogas Safety and Regulations

2

� Véhicules propres - Historique des activités de GDF SUEZ

1996 2002 2004/2005

2007 2008

Transports publics(CNG Bus)

Véhicule de propreté

(CNG garbage trucks)

Marché du particulier(CNG LV, CNG at home)

Transport de marchandises

(CNG HDV)

Hybrides (Prius CNG, Smart )

Biocarburants gazeux(biogas, biomethane)

EVs, PHEVs(fleet tests)

2010

� Deux réglementations coexistent pour les véhicules biométhane/GNV

1- La règlementation européenne ECE N°R110 : l’homologation des organes spéciaux GNV montés sur un véhicule GNV 1ère monte.

S’applique aux véhicules qui, pour être homologués R110, doivent être équipés uniquement d’organes spéciaux GNV homologués R110.

2- La règlementation européenne ECE N°R115 : la mise en œuvre de systèmes dédiés gaz pour la conversion de véhicules essences en GPL ou GNV.

Pour le GNV, la règlementation R115 fait référence au R110.

� Ces réglementations issues d’un accord signé le 20 mars 1958 à Genève, sont reconnues par :- tous les pays européens- le Japon, la Russie, l’Australie, l’Afrique du sud, la Nouvelle Zélande, la Corée du sud, la Malaisie, la Thaïlande et la Tunisie.

3

Page 25

Page 27: Biogas Safety and Regulations

� Véhicule biométhane/GNV

4

� Circuit haute-pression type

Blo

c dé

tend

eur

Vanne multifonctions

Module de commande électronique

Injecteurs

Pistolet carburant

5

Page 26

Page 28: Biogas Safety and Regulations

6

� Type de réservoirs GNV

� CNG1Tout acier

� CNG 2Tout acier bobiné sur la virole

� CNG 3Composite liner aluminium

� CNG 4Composite liner polyéthylène

� Homologués pour 20 ans� Résistent à une pression >470 bar� Pression de service à 200 bar 15°C� Température d’utilisation : -40°C +65°C

� les équipements de sécurité sur les réservoirs

7

Page 27

Page 29: Biogas Safety and Regulations

� Contrôle des réservoirs

� Réepreuve hydraulique

� Contrôle visuel détaillé

� S’effectue avec le contrôle technique pour les véhicules légers

� Maximum tous les quatre ans pour tous les véhicules

8

� Réglementation sur les stations

9

Page 28

Page 30: Biogas Safety and Regulations

� Réglementation sur les stations

� Réglementation ICPE 1413 en France

� PR EN 13638 Stations de remplissage GNV

� ISO/TC252/WG 1 : Natural gas fuelling stations for vehicles

� Une collaboration avec le CEN/TC326 est prévue, mais dans le cadre des accords de Vienne, c’est l’ISO/TC252 qui sera leader sur les deux projets de norme (GNV et GNL).

10

� ATEX

� Guide (AFGNV, INRS…)� Sources principales d’emplacements dangereux :

� Mise à l’évent� Fuites raccords � Opération de maintenance

� Respect des consignes des guides (bonne pratique, matériel…)� Utilisation de matériel adapté lors de purge (transvegaz)

11

Page 29

Page 31: Biogas Safety and Regulations

� ATEX : exemple avec l’évent d’une station

12

� Exemple d’une étude de sécurité dans les tunnels

� incendie de bus en 2005 en France : 2 réservoirs éclatent

� l’administration recommande l’interdiction des bus dans les tunnels

� une étude complète est réalisée sur le sujet

13

Page 30

Page 32: Biogas Safety and Regulations

� Exemple de réservoirs sur un toit de bus R110

14

� Géométrie du tunnel

15

Page 31

Page 33: Biogas Safety and Regulations

� Les conséquences d’un scenario

16

� Exemple de simulation de fuite après rupture de canalisation

Gas concentration

BusHDVLDV

0.150.140.130.120.110.100.090.080.070.06

17

Page 32

Page 34: Biogas Safety and Regulations

� Comparaison des niveaux de risques

Gazole Incendie / Incendie autobus et gazole 3,4E-10 1,8E-09Fuite / Inflammation 0 0Brèche / Torche 7,9E-13 /Brèche / VCE 1,7E-13 /Brèche / Anoxie 3,2E-14 /Incendie / Torches fusibles 9,7E-11 6,2E-10Incendie / Eclatement réservoir 2,1E-16 7,2E-16

Total 9,8E-11 6,2E-10Fuite / Inflammation 0 0Brèche / Torche débit limité 1,4E-18 /Brèche / Torche 2,4E-24 /Brèche / VCE 9,5E-25 /Brèche / Anoxie 3,7E-26 /Incendie / Torches fusibles 9,7E-11 6,2E-10Incendie / Eclatement réservoir 4,2E-13 1,4E-12

Total 9,7E-11 6,2E-10

Trafic dense

Niveaux de risques

R96M

R110

Cas Evénement Redouté Central / Phénomène dangereux Trafic fluide R96 M : ancienne

réglementation avant 07/2004

R110 : nouvelleréglementation depuis07/2004

18

� Conclusion de l’étude

Pendant les 10 premières minutes après le départ du feu, le risque global du bus GNV est 3 fois inférieur au risque global d’un bus diesel

Pendant la premiere heure après le départ du feu, le risque global du bus GNV est 1,4 fois inférieur au risque global d’un bus diesel

les bus biométhane/GNV ne sont pas plus dangereux que les bus diesel dans les

tunnels19

Page 33

Page 35: Biogas Safety and Regulations

ISO 9001:2000 www.hsl.gov.uk an agency of the Health & Safety Executivehhhhhhhhhhhhhhhhhhhhh lll kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhhhhhhhh ll kkkkkkkkkkkkkkkkkk

Biogas and anaerobic digestion in the UK and HSL prospective work

Jake KayNovember 2010

Health and Safety Laboratory

Overview• AD in the UK

– Government incentives– Production– Use– Industry bodies– Government bodies

• Regulatory framework– Relevant regulations– CoSHH– Environmental permitting– Gas to grid

• AD research• Incidents• HSL work

Page 34

Page 36: Biogas Safety and Regulations

Government incentives• Renewables Obligation (electricity)• Feed-in Tariffs (electricity)• Renewable Transport Fuels Obligation• Renewable Heat Incentive

Government incentives• Renewables Obligation and Feed-in Tariffs

*Granted to renewable energy generators and bought by suppliers at market rate.50 kW to 5 MW can choose ROC or FIT

Renewable Obligation Certificates*

> 5 MW2 ROCs / MWh for AD

Feed-in tariffs<500 kW 11.5 p / kWh

>500 kW 9.0 p / kWh

Page 35

Page 37: Biogas Safety and Regulations

Government incentives• Renewable Heat Incentive

Description Scale Tariff (p/kWh)

How measured

Lifetime (yrs)

Biogas on-site combustion

up to 45 kW 5.5 deeming 10

Biogas on-site combustion

45-200 kW 5.5

deeming10

Biomethane injection All scales 4 metering 15

Source: DECC Renewable Heat Incentive Consultation on the proposed RHI financial support scheme http://www.decc.gov.uk/assets/decc/Consultations/RHI/1_20100204094844_e_@@_ConsultationonRenewableHeatIncentive.pdf

Government incentives

• Renewable Transport Fuels Obligation

– total package of support (buy-out + duty incentive) will be 35p in 2009/10

and 30p in 2010/2011

Page 36

Page 38: Biogas Safety and Regulations

Production

• Potential 10 – 20 TWh for heat and power 1

• About 90 projects either in development or installed

• Approximately 2/3 of sewage sludge is digested

1 Source:The UK Renewable Energy Strategy, July 2009.

http://www.decc.gov.uk/assets/decc/What%20we%20do/UK%20energy%20supply/Energy%20mix/Renewable%20energy/Renewable%20Energy%20Strategy/1_20090717120647_e_@@_TheUKRenewableEnergyStrategy2009.pdf

Use• Combustion

– Heat– Electricity– CHP

• Two plants feeding into gas grid:– Thames Water – Didcot– Adnams Bio Energy Plant – Southwold

• Vehicle use– Currently little or no biogas used for vehicles in UK – demonstration

projects only

.

Page 37

Page 39: Biogas Safety and Regulations

Industry bodies• Renewable Energy Association (biogas group)• Anaerobic digestion and biogas association

Government bodies

• DECC (Department for Energy and Climate Change)• DEFRA (Department for Environment, Food and Rural

Affairs)• EA (Environment Agency)• HSE (Health and Safety Executive)• OFGEM (Office of the Gas and Electricity Markets)• Renewable fuels agency

Page 38

Page 40: Biogas Safety and Regulations

Regulations• Health and Safety at Work Act 1974• GS(M)R

– Gas Safety (Management) Regulations• DSEAR (ATEX)

– Dangerous Substances and Explosive Atmospheres Regulations• CoSHH

– Control of Substances Hazardous to Health• PSSR

– Pressure systems regulations• CoMAH

– Control of Major Accident Hazards• EP

– Environmental Permitting (England and Wales) Regulations Animal by-products regulations

• ABPR– Animal by-products regulations

CoSHH• Control of Substances Hazardous to Health

– Includes • asphyxiants (oxygen depletion) • biological agents• dusts

Page 39

Page 41: Biogas Safety and Regulations

CoSHHSubstance EH40 8 hour TWA EH40 15 min

mg /m3 mg/m3Methane - -C2+ hydrocarbons - -Hydrogen - -Carbon monoxide 35 232Carbon dioxide 0.28 0.84Nitrogen - -Oxygen - -Hydrogen sulphide 7 14Ammonia 18 25Toluene 191 384Benzene - -

MetalCadmium 0.025 -Cadmium oxide fume (as Cd) 0.025 0.05Cadmium sulphide 0.03 -ZincCopper fume - 1Copper dusts and mists - 2Lead - -Nickel - -Chromium 0.5 -Mercury - -Arsenic 0.1 -

Environmental Permitting• AD subject to EP (Environmental Permitting (England and

Wales) Regulations 2010 )Regulation Waste treated Scale

Exemption T24 plant matter, farmyard manure & slurry only

•1250 m3 at any one time•0.4 MW thermal input

Exemption T25

•plant matter, farmyard manure & slurry &

•some food & packaging wastes

•50 m3 at any one time•0.4MW thermal input

Standard rules and permits

•manures and slurries on farms.

•wider range of food and biodegradable waste.

•storage of waste digestate at locations away from the AD

site.

•75,000 tonnes per year•3 MW net rated thermal

input•distance limits from

watercourses & housing or workplaces

Bespoke permit Where standard rules do no apply

Page 40

Page 42: Biogas Safety and Regulations

Environmental Permitting• AD shall not be within:

– 500m of a conservation site;– An Air Quality Management Area;– 200m away from any dwelling or workplace for manures &– slurries & 250m for other wastes;– 10m of a watercourse;– 50m of any spring, well or borehole;– 250m of any borehole used to supply water for domestic or food

production;– A groundwater source protection zone 1

Environmental Permitting• Biomethane must be demonstrated as a marketable product (fully recovered,

not waste)

• Digestate: Material that has reached PAS 110 and Quality Protocol standards is no longer regarded as a waste

• Animal feedstocks subject to Animal By-products (ABP) regulations – low-risk (category 3) ABPs can be treated in approved AD premises– high risk (Category 2) ABPs cannot be used as feedstock in biogas plants except

where rendered - 133°C/3 bar/20 minute EU pressure-rendering standard

Page 41

Page 43: Biogas Safety and Regulations

Gas to grid• Distribution networks:

– National Transmission System (National Grid)– Gas Distribution Networks (DNs)

• Biomethane must meet Gas Safety (Management) Regulations 1996 (GS(M)R) and Network Entry Agreement (NEA)

Gas to grid

• Gas Safety (Management) Regulations 1996Content or characteristic Value

Hydrogen Sulphide (H2S) Less than or equal to 5 mg/m3;

Total Sulphur (including H2S) Less than or equal to 50 mg/m3;

Hydrogen (H2) Less than or equal to 0.1% (molar);

Oxygen (O2) Less than or equal to 0.2% (molar);

Impurities and water and hydrocarbon dewpoints The gas shall not contain solids or liquids that may interfere with the integrity or operation of the network or appliances

Wobbe Number (WN) (Calorific Value divided by the square root of the relative density)

Between 47.20 and 51.41 MJ/m3

Odour Gas below 7 bar will have a stenching agent added to give a distinctive odour

Biomethane into the Gas Network: A Guide for Producers December 2009 (Department for Energy and Climate Change) Taken from the Gas Safety regs.

Page 42

Page 44: Biogas Safety and Regulations

AD research• University of Birmingham• University of Cranfield• University of Glamorgan• Imperial College• North Wyke Research (BBSR)• University of Loughborough• University of Newcastle• University of Southampton

Incidents• Hood ripped by a missile in high winds on a digestion pit• Dense sticky foam build up due to filamentous bacteria

– Digester hood ripped– ~2000 m3 of biogas released– Foam and other process fluids released

Page 43

Page 45: Biogas Safety and Regulations

HSL• Process Safety• Occupational exposure• Biological hazards• Materials / Engineering

HSL projects (1)• Current IRP project – AD Feasibility Study• Objectives

– To develop a fully-instrumented facility which will allow HSL/HSE to identify the risks and hazards associated with AD and biogas production;

– To determine the effects of a variety of feedstocks on biogas composition and assess the relative hazards.

– To address AD technology issues – including:• Waste sampling metrics and protocols;• Plant optimisation for variable inputs – variations in waste type and volume;• Improved AD plant efficiency.

Page 44

Page 46: Biogas Safety and Regulations

HSL Projects (2)• Emerging Energy Technology (incl. biogas

production) - occupational health risks review– To identify and categorise potential occupational health

risks associated with a wide range of novel energy technologies;

– To review what is known about these health risks and their control, both from related (non-energy) sectors in the UK, or from other countries where the technologies are already embedded;

– To identify gaps in HSE's knowledge and to make recommendations for how these might be filled;

Conclusions• AD in its infancy in the UK, but likely to expand rapidly

• Small to medium scale producers likely to be at risk

• HSL work may include use of experimental digester

Page 45

Page 47: Biogas Safety and Regulations

Contaminants in upgraded biogas

Conny Haraldsson, Karine Arrhenius, SP

Workshop ”Biogas, safety and regulation”, Paris, 24th november 2010

Organization

No. of employees About 1 000Turnover About SEK 1 000 million

Page 46

Page 48: Biogas Safety and Regulations

Core areas – our entry points

Biogas in Sweden, brief overview

2008: 1.4 TWh biogas are produced from 227 digester plants

Goal2012: 3 TWh

PRODUCTION UTILISATION

605

369

240

15130

GWh Wastewater treatment

Landfill

Co-digestion

Farm biogas plants (agriculture)

Industry plants

720

59

335

195

30GWh Heating

Production of electricityUpgraded to fuel for vehiclesBurned in torch

unknown

Page 47

Page 49: Biogas Safety and Regulations

Biogas process

Agriculture Waste streams

Manure Landfill

Energy crops Sewagesludge

Landscapemanagement

Municipal Solid waste

Grass Food waste

Other by-products

Other waste

Many feedstocksComplex process

Biogas upgrading technologies

From Biogas upgrading technologies –developments and innovationsAnneli Petersson, Arthur WELLINGER, IEA Bioenergy

Other methods: membrane, cryogenic upgrading

Page 48

Page 50: Biogas Safety and Regulations

Contaminants in Biogases

MethaneCarbon dioxide, COAmmonia, waterHydrogen sulphideOxygen, nitrogen, hydrogen

AlcoholsTerpenesKetonesHalogenated hydrocarbonsHydrocarbonsOther N-compoundsOther S-compoundsAldehydesSiloxanesMercuryAcidsBiological agents

Raw biogas

or

Regulated in Sweden:Methane (>97%)Carbon dioxideOxygen, nitrogenWaterN-compounds ex. NH3Sulphur (in total)

Proposed in upcomingregulation:SiloxanesOilHalogenated hydrocarbons

Other?

Biomethane for vehicles

What can be the effects of contaminants in raw biogas and in biomethane?

Hazards on human health of end-users and for employees of e.g. the gas industryDirect toxicity (leak in a semi-confined environment), indirect toxicity, water pollution, air pollution

Ammonia, mercury…

Hazards on energy recovery equipment (heat exchangers, gas engines), gas networks integritySerious damages, corrosion, generation of coating, clogging

Siloxanes, halogenated hydrocarbons, oil, ammonia…

Hazards to the safe operation of gas appliances

Oxygen

Odor problems: lower acceptance level

Sulphur compounds, amines…

Page 49

Page 51: Biogas Safety and Regulations

Analytical methods

Many analytical methods are required to analyse possible contaminants in biogases. Many are basedon gas chromatography.

Gas chromatography/Mass spectrometry (GC/MS): siloxanes, terpenes, hydrocarbons, ketones, acids, aldehydes, S-compounds …

Gas chromatography/Electron Capture Detector (GC/ECD): chlorinated hydrocarbons

Gas chromatography/Nitrogen Phosphorus Detector (GC/NPD): ammonia and N-compounds

Gas chromatography/Sulfur Chemiluminescence Detector (GC/SCD): hydrogen sulphide and S-compounds

Laser infra-red spectrometer: ammonia, water, hydrogen sulphide

Karl-Fischer: Water

Examples of contaminants in biomethane

5 . 0 0 1 0 .0 0 1 5 .0 0 2 0 .0 0 2 5 .0 0 3 0 .0 0 3 5 .0 0 4 0 .0 0 4 5 .0 0 5 0 .0 0 5 5 .0 0

2 0 0 0 0 0

4 0 0 0 0 0

6 0 0 0 0 0

8 0 0 0 0 0

1 0 0 0 0 0 0

1 2 0 0 0 0 0

1 4 0 0 0 0 0

1 6 0 0 0 0 0

1 8 0 0 0 0 0

2 0 0 0 0 0 0

2 2 0 0 0 0 0

2 4 0 0 0 0 0

2 6 0 0 0 0 0

2 8 0 0 0 0 0

3 0 0 0 0 0 0

3 2 0 0 0 0 0

3 4 0 0 0 0 0

T im e -->

A b u n d a n c e

S ig n a l: 1 0 1 0 0 7 -0 0 8 s k e lle f t e a 4 m in . D \ F I D 1 A . C H

Biomethane from co-digestion: residual sludge from wastewater + Slaughterhouse wastes + blood

Upgrading technique: Water scrubber

Hydrocarbons with 4-5 C

Hydrocarbons with 10-14C

Siloxane D5

Diethyldisulfide

EthylmercaptanUse as odorifiant

Heptane

Low concentrations of contaminants

Page 50

Page 52: Biogas Safety and Regulations

5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

8e+08

9e+08

1e+09

1.1e+09

1.2e+09

T ime-->

Abundanc e

Signal: 101007-005AFV100ml.D \ FID 1A.CH

Previous sample: order of magnitude

High concentrations of contaminants, total sulphur > 23 mg/m3Clients complain about odor

Examples of contaminants in biomethane

Butanepentane

Biomethane from residual sludge from wastewater + landfill

Upgrading technique: unknown

Examples of contaminants in biomethane

Biomethane from household waste, liquid organic waste and biological industry waste + residual sludge from wastewater

Upgrading technique: activ carbon filter + chemical scrubber

toluene

D-limonene+ para-cymene

Page 51

Page 53: Biogas Safety and Regulations

mg/m3Before activ carbon

filter

Before chemical

Scrubber

After chemical

Scrubber BiomethaneHexamethylcyclotrisiloxane, D3 < 0,05 0,3 0,5 < 0,05Octamethylcyclotetrasiloxane, D4 0,2 0,8 1,6 < 0,05Dekametylcyklopentasiloxan, D5 2,2 6,3 11 < 0,05p-Cymen 449 445 1035 0.7D-Limonen 128 361 478 0.3a- Pinen 11 14 30 0.1Toluen 9 14 24 1.72-butanon 15 12 1 0.0Dimetyltrisulfid 21 19 36 0.0Dimetyldisulfid 0 2 9 2.9Dimetylsulfid 2 0 1 0.4

Behaviour of siloxanes through steps of chemical scrubber

Biomethane from household waste, liquid organic waste and biological industry waste + residual sludge from wastewater

Upgrading technique: activ carbon filter + chemical scrubberDrying/dewatering

Research projects

Development of analys method for siloxanes in biogas, SGC project 10:17 (oct 2010 – mars 2011)6 plants in Sweden :3 sewage treatment plants3 co-digestion plants (household wastes, industry wastes …)3 of them upgrade gas to biomethane for cars or busses (chemical scrubber, water scrubber)

Biogas characterization , SGC project, not yet financed : (?-?)10 plants in Sweden with feedstockes inclusive waste water treatment plants, food wastes and co-digestion, industry wastes, manure, landfillUpgrading techniques including PSA, chemical scrubber, water scrubber and maybe cryogenicupgrading

EMRP project ENG01 Gas, Characterization of energy gases (june 2010-june 2013)New analytical methods for main components in biogases and contaminants as siloxanes, ammonia…

Page 52

Page 54: Biogas Safety and Regulations

Conclusions

More data are needed:

-Which contaminants are in raw gases depended on feedstocks?- What happen to these contaminants during upgrading?

Which compounds to regulate?Limit values?

Guideline to find answer in case of operation disturbances/failureDatabase of analyses and reasons for operation disturbances/failures

Thank you for your attention

Any questions

For more information contact:

[email protected]

conny.haraldssonsp.se

Page 53

Page 55: Biogas Safety and Regulations

BIOGAZ :SAFETY AND REGULATION

Retour d’expérience SIAAPLa sécurité industrielle des installations de Biogaz

Elaboration d’un guide d’application des exigences

réglementaires et pratiques

Michel RIOTTE / Christophe MANDEREAUWORKSHOP du 24 novembre 2010Paris – FIAP Jean Monnet

Paris

Seine

Marne

Oise

420 GWh

Seine aval65 millions Nm3

Seine centre

2012Seine Morée

1.6 million Nm3

Marne aval

Seine amont13 millions Nm3

85 GWh

Production de biogaz et énergie générée en 2009

Bièvre

Total: 78 millions Nm3

505 GWh

10 GWh60 GWh

2012Seine Grésillons

10 millions Nm3

Page 54

Page 56: Biogas Safety and Regulations

L’accident du 18 février 2008 à SAM

– Rappel des faits :

� Le 18/02/08 à 11h40 : déboîtement d’une canalisation sur le refoulement descompresseurs ;

� Propagation du nuage de biogaz jusqu’au local chaufferie ;

� Explosion et feu torche ;

� A 12h30 le feu est éteint ;

� Des dégâts matériels considérables.

La reconception de l’unité de compression de SAM

� Une rupture méthodologique ;

� Une rupture technologique, avec de nouvellesexigences de constructions ;

� Une rupture technologique pour la maintenance.

Page 55

Page 57: Biogas Safety and Regulations

Une rupture méthodologique

Elaboration de la matrice de criticité

Objectif recherché : définition du domaine d’acceptabilité des risques enfonction des impacts personnel, environnemental et économique

HAZOP = HAZard and OPerability

Objectif recherché : vérifier et questionner la conception de la nouvelle unitéde compression afin d’identifier les risques potentiels et les problèmesd’opérabilité.

Etude HAZOP systématique en début et en cours de projet

Une rupture méthodologique

Etude des sécurités instrumentées

Objectif recherché : déterminer quelles sont les barrières nécessaires etsuffisantes pour réduire le risque et l’amener dans la zone d’acceptabilité durisque

Page 56

Page 58: Biogas Safety and Regulations

Spec.PIDPlan

Analysefonctionnelle

etc

cont

rôle

Une rupture méthodologique

Pour résumer :

Une rupture technologique avec de nouvelles exigences de construction

Détections feu et gaz

Tuyauteries aériennes et soudées Pots de purges MP en série Automate Programmable de Sécurité

Base de conception Pétrochimie

Page 57

Page 59: Biogas Safety and Regulations

Directive Equipements Sous Pression

Une rupture technologiquepour la maintenance

Contrôles annuels

Du personnel forméDes procédures et des moyens adaptés

Piquagessur l’ensemble du réseau

pour les opérations d’inertageet les tests d’étanchéité

CalibrationsPlus de 140 équipements et instruments pour la seule compression Réglage

Entretiens

� Réseaux, compression, matériel automatisme et instrument, torchère existante

En cours :�Tour de répartition� Mise en aérien des réseaux BG et GN� La réduction du risque sphère

Capitalisation de ce retour d’expérience pour toute l’installation Biogaz

2. Réalisation d’un guide interne

� et toutes les autres installations SIAAP

•Périmètre de prestation•Périmètre de prestation

3. Application des exigences réglementaires et pratiques sur projets et opérations nouvelles concernant les installations biogaz sur Valenton, Grésillons puis Achères par le SIAAP, les groupements

1. Analyse des accidents et diagnostic de l’existant

�Nouvelle torchère, nouveaux gazomètres

Page 58

Page 60: Biogas Safety and Regulations

Fonctions des systèmes biogaz

Fonction BP = Basse Pression MP = Moyenne Pression HP = Haute PressionProduction Digestion

Stockage Gazomètre Sphère (MPB)

Conditionnement de la pression Surpression MPA

Compression / détente (MPB, MPC)Surpression (MPA)

Compressiondétente HP *

PréTraitement Purge condensats Purge condensats

Traitement Déshydratation* / Filtration* / Désulfuration / Décarbonatation*

Distribution Tuyauterie

Elimination Torchère Torchère MP*

Contrôle-commande Automatisme APS / API

Détection Capteurs Gaz

Valorisation Production d'énergie / Séchage Production d'énergie Stockage véhicule (HP) *

Systèmes étudiés dans le cadre du guideSystèmes étudiés dans le cadre d’opérations ou de projets de construction (SAM, SAV, SEG II)Systèmes étudiés dans le cadre de faisabilité préliminaire et avant-projet

(*) Equipement non installé, ou non en service à ce jour au SIAAP

Guide d’application des exigences réglementaires et pratiques

� Groupe de travail SIAAP : - Ingénieurs sécurité, Conducteurs d’opération, HSE - Exploitants, BE Aristot/Prolog- Consultations : INERIS/INRS/DRIRE…� Bases de travail :

- Accidentologie sur 30 ans (incidents, presque accidents, accidents)- Dispositions réglementaires actualisées :

Codes : - Environnement, Travail, Santé, CODETI…Arrêtés - Circulaires : ICPE 98, Arrêtés types…Multi-Directives : DESP, Machine, ATEX, …

- Règles de l’art : bonnes pratiques, MTD- Normes : sécurité fonctionnelle EIA, F&G, Equipements thermiques

� Constitutions :1°) Méthodologie d’intégration de la sécurité (conception et réalisation)2°) Exigences de conception applicables aux composants des

systèmes biogaz

Page 59

Page 61: Biogas Safety and Regulations

Démarche globale

REX technique et opérationnel• Démarche centrale • Approche multi-sites• Responsabilité par site/opération• Approche conjointe :

– Code du travail/Environnement

Résultat• Sécurité industrielle accrue

– Progressivement– Durablement

FIN

Page 60

Page 62: Biogas Safety and Regulations

Workshop Biogas – Safety and regulations 24. Nov. 2010 FIAP Jean Monnet, Paris

First biogas plant in Luxemburg with linked row gas upgrading and following injection of the purified gas into the grid

GODART NicoDirector of the plant

1. General remarks2. About Naturgas Kielen3. Processing4. Input5. Treatment biowaste6. Output7. Gas upgrading8. Advantages9. Legislation10.Safety

Index

Workshop Biogas – Safety and regulations 24. Nov. 2010 FIAP Jean Monnet, Paris

Page 61

Page 63: Biogas Safety and Regulations

1.General remarks� Luxemburg has 27 biogasplants � All with cogeneration of heat and

power� 2 in construction� 1 in startup� All 3 planed with gasupgrading and

injection into the grid

Workshop Biogas – Safety and regulations 24. Nov. 2010 FIAP Jean Monnet, Paris

� Agriculture cooperative� Founded on 26. October 2004� 30 members (all farmers)� Farms within a 8 km-radius� 1st Objective: biogasplant with

gasupgrading and injection� 2nd Objective: respecting the

substainability concept for all resources

Workshop Biogas – Safety and regulations 24. Nov. 2010 FIAP Jean Monnet, Paris

2.Naturgas Kielen (1/3)

Page 62

Page 64: Biogas Safety and Regulations

� Model for concept: Sweden� 2005: start of a feasibility study� 2005-2007: study trips to Sweden +

Denmark have long knowledge� 2007-2008: project design� Partners for the implementation:

� Dexia, Spuerkees (banks)� La Luxembourgeoise (insurence)� Municipality of Kehlen� Ministries of agriculture, environement, economie

Workshop Biogas – Safety and regulations 24. Nov. 2010 FIAP Jean Monnet, Paris

2.Naturgas Kielen (2/3)

� Oktober 2008: start of construction� July 2010: startup process� November 2010: startup upgrading

� Naturgas Kielen s.c. is the only� Owner and� Operator

of this biogas plant

Workshop Biogas – Safety and regulations 24. Nov. 2010 FIAP Jean Monnet, Paris

2.Naturgas Kielen (3/3)

Page 63

Page 65: Biogas Safety and Regulations

3.Processing� Fermentation via wet technology� 50.000 t/y of organic material� 2 digesters of 3.500 m3 each� 1 post digester of 3.000 m3

� Mesophilic temperature� 3 storage tanks of 6.000 m3 each� 9 additional being planned (21.000m3)

Workshop Biogas – Safety and regulations 24. Nov. 2010 FIAP Jean Monnet, Paris

Page 64

Page 66: Biogas Safety and Regulations

� Agricultural by-products from keeping of animals (animal effluences)

� liquid manure� solid manure

� Agricultural products� different silages

(grass, maize, cereal silage, sunflowers, sorghum, ...)

4.Input (1/2)

Workshop Biogas – Safety and regulations 24. Nov. 2010 FIAP Jean Monnet, Paris

4.Input (2/2)

� Organic residues besides of the agriculture (bio waste and commercial waste)

� organic waste collected by municipalities, ...� grass from the municipalities, gardeners, ...� fruits, vegetables� organic waste from the food industry� products with exceeded expiration date� packed and unpacked products� ...

Workshop Biogas – Safety and regulations 24. Nov. 2010 FIAP Jean Monnet, Paris

Page 65

Page 67: Biogas Safety and Regulations

5.Treatment biowaste� Full automatic conditioning� Separation of the inorganic inpurity in

2 different fractions� EC-Regulation 1774/2002

Health rules concerning animal by-products not intended for human consumption

� Autorisation for only organic waste of the categorie 3 hygienisation by heating at min. 70°C during min. 1 hour below documentation

Workshop Biogas – Safety and regulations 24. Nov. 2010 FIAP Jean Monnet, Paris

� 2 different fractions of inorganic inpurity comming from the separation

� light fraction (wood, paper, plastic, ...)� heavy fraction (glas, metall, sand, ...)� recycled or disposed of

� partially separation of the digestate� liquid part application as process water� solid part application as fertilizer

� rest of digestate is dedicated to be used as stable organic fertilizer on the land surfaces from the members

� Biogas (55-65 % CH4)

6.Output

Workshop Biogas – Safety and regulations 24. Nov. 2010 FIAP Jean Monnet, Paris

Page 66

Page 68: Biogas Safety and Regulations

� Water scrubber� 2,8 Mio. Nm3

Biomethan/year� green heating

energy for 1.200 households

� or 40 Mio. km with a car = 1.000 x around the world!

� Economy of 5.500 t Co2

Workshop Biogas – Safety and regulations 24. Nov. 2010 FIAP Jean Monnet, Paris

7.Gas upgrading

� Not bound to a heat costumer� Loss-free transport over long

distances (Russia Central Europe)� Transforming of the energy in the gas

into 3 different energy forms� Thermal energy� Electric energy� Kinetic energy

maximum energy efficiency

8.Advantages (1/2)

Workshop Biogas – Safety and regulations 24. Nov. 2010 FIAP Jean Monnet, Paris

Page 67

Page 69: Biogas Safety and Regulations

� Electric mobility� this “green gas” can bee burned in a

cogeneration and produce on this way “green electricity” for the vehicles, ...

� Hydrogen� even here can this “green gas” serve as

base for the production of this future carrier of energy

8.Advantages (2/2)

Workshop Biogas – Safety and regulations 24. Nov. 2010 FIAP Jean Monnet, Paris

Looks good, or?

Yes, but …

Page 68

Page 70: Biogas Safety and Regulations

at the moment:� No national prescriptions for the

technical requirements about connecting and injection of purified gas into a grid

� No national remuneration for the “green gas” introduced into the grid

� A correspondent law is in development

Workshop Biogas – Safety and regulations 24. Nov. 2010 FIAP Jean Monnet, Paris

9.Legislation� EC-Directive 2003/55/EC

Common rules for the internal market in natural gas

� Policing by national regulating authority

� EC-Directive 2003/30/ECPromotion of the use of biofuels or other renewable fuels for transport

� Following the instructions of the german set of regulations by DVGW

� Owner of the grid� “Green gas” Producer� Regulating authority

Workshop Biogas – Safety and regulations 24. Nov. 2010 FIAP Jean Monnet, Paris

Page 69

Page 71: Biogas Safety and Regulations

10.Safety (1/3) Process

� Digesters� Pressure/Vacuum Diaphragm valve (40/-5 mbar)

� Post digester� Pressure/Vacuum Hydraulic sealing (14/-2 mbar)

� Normal operating pressure ~5 mbar� 3 safety sequences after pressure

boosting� Flare starts up from 10 mbar� Security valve post digester opens at 14 mbar� Security valve digesters opens at 40 mbar

Workshop Biogas – Safety and regulations 24. Nov. 2010 FIAP Jean Monnet, Paris

10.Safety (2/3) Upgrading

� Flashtank and inlet gas pipes� 2 safety valves (1,1 bar)

� Scrubber and biomethan system� 4 safety valves (7,7 bar)

� Propan storage tank� 1 safety valve

Workshop Biogas – Safety and regulations 24. Nov. 2010 FIAP Jean Monnet, Paris

Page 70

Page 72: Biogas Safety and Regulations

10.Safety (3/3) other

� Compressor room of raw gas� 1 leeckage detector for methan gas

� Compressor room of upraded gas� 1 leeckage detector for methan gas

� Electrical room of the uprading� 1 leeckage detector for methan gas

� Reception container of biowaste� 1 leeckage detector for hydrogen sulfide (H2S)

Workshop Biogas – Safety and regulations 24. Nov. 2010 FIAP Jean Monnet, Paris

Thanks foryour attention

Naturgas Kielen s.c.B.P. 26 / Route N12 / L-8205 Kehlen / Luxemburg

T (352) 26 30 38 / F (352) 26 30 38 39www.naturgaskielen.lu / [email protected]

Page 71

Page 73: Biogas Safety and Regulations

���� ������ ��� � ���� ����� ���������������������������� �������������� ������������ ����� �������������!���"#� "$&$� � ���

����� '� � ����� ���� ������!��� ���������

����� �*��+-��������;��������

�<<= �<<< ���� ���� ���� ���> ���� ���? ���@ ���J ���= ���<

>

?

@

J

=

<

�� �

*��+-�������� ����������������� ������

K��������� �Q�U������������������� K��������� ������� K��������� �Q�U������������������� K��������� �������

Page 72

Page 74: Biogas Safety and Regulations

W����� ������� � ������Y�������������'����� ����

������

�������������-���

>

W������Z�W����-�� ;� ������

[������ ��

W������\������

;-���

������

������

Page 73

Page 75: Biogas Safety and Regulations

������Y�#�� �-��

�����;� ����� ������-���

�����������Z��������

W������� ���];���������Z�W��������^� ���������������

;-���

��������Z�������-���

@

��������Z�������-���

Page 74

Page 76: Biogas Safety and Regulations

���� Y�_��� ��������� ����` ����` ����

�����!�� "$$�K����� �����

� ����"$$�k����� �������

w���!�� "$$������� �������� �����

w���!�� "$$����������� �������������� �����

�����!�� "$$�k����� !� ���

\����!�� "$$�� ������ "��� ���� ������"��� �����

���� Y�_��� ��������� ����` ����` ����

Page 75

Page 77: Biogas Safety and Regulations

�������Y������;� �����

Page 76

Page 78: Biogas Safety and Regulations

�"���������������������

��

���-��������;� �����Y��"��������������������

Page 77

Page 79: Biogas Safety and Regulations

�"���������������������

�>

���-��������;� �����Y�������������������{������������

������-���Y��������� ������-����� ����!��� ���������|

#$k

k$k

��

Page 78

Page 80: Biogas Safety and Regulations

�?

� � ������������!��� ���� ��� ���� �� ���]������ �^��� ���|�\�������� �������� ����� �� ���� ��������-��|

%�����������Q�������

%��� &�"����"� ���"��%��� &���� ���"� ���"��

%���"��� �'k��"��� �'

(�������������k�Q�����������

������ ���� ��_��� ���� ��

������� ����"� ����������U&������"����"� �� ���}

_��� ��� � ���

��������!��� ��� � ���~ ����� ���"����)

~ *� �� !�������������� ����# ]�����!������������!��*�"^

~ ;������ ���� ����#���w"

~ _������� � ��� ���������! ����� �Z���������� �����

����� ��!��� ��� � ���~ �����-��� ��������� �����������]������������� ����^

~ \��������]�� ������� �����^

~ _-������]� ���� ���� ����� ���^

~ * �����������������

~ �����Z������

~ ���

�@

Page 79

Page 81: Biogas Safety and Regulations

*� ������ ����� �������������������!��� ����������

�J

+������ ������ �����������"� ��� �!������!�Q����Q��������� ���������

�������� �!�� �� ���!�"���

�����-�����

~ ������� �����������!�Q���"�!�"���,��~ ������� ����"� ����������U&������"����"� �� ����~ -&������"������"�����(-$�������!��������U�������"���������!��&� ��� ~ .���������� ������"�/

0 1��� ��������!����� ��2���� �30 4 ���������� ����5���"���6���"�� �0 (-$������� ������!�����"��6�� ���0 7""�����(-$��'�����

�=

Page 80

Page 82: Biogas Safety and Regulations

��������� �����

~ #���'������ ��� ������� ��� ������� "�������� ��2�����7K$�5�1��?3~ k������������� ��������!���"�!�"������� ��� �����~ -��� ����6����� ������� ���!��U���� &��������~ 4���������� ��������������!��&�"������!��������&���/

0 (�Q�����!� &����������80 (�Q������� �Q����(�-���������80 (�Q������� �Q���������� ���"� �"��������80 (�Q�����!� &���������������������������&���8�2������ ����3

�<

Panel discussion on the issuespresented in the discussion

document

Workshop: BIOGASSafety - Regulations

November 24, 2010Paris

Page 81

Page 83: Biogas Safety and Regulations

Issue 1: Safety of biogas productionprocesses

• Are all processes equivalents regarding safety?

• What are the safety critical parameters?

Issue 2: Implementation of the existingregulations

• Can we define some safety minimum requirements in regulation?

• Are there action needed to support the implementation of safety regulations?

Page 82

Page 84: Biogas Safety and Regulations

EU RegulationsATEX:There are two ATEX directives (one for the manufacturer and one for the user of the equipment):• The ATEX 95 equipment directive 94/9/EC, Equipment and protective systems intended for use in

potentially explosive atmospheres; • The ATEX 137 workplace directive 99/92/EC, Minimum requirements for improving the safety and

health protection of workers potentially at risk from explosive atmospheres.

The BREF:This report is a reference Document on Best Available Techniques in the Slaughterhouses and Animal By-products Industries and particularly on Biogas production. •It explains the IPPC (Integrated Pollution Prevention and Control) issues regarding: Air, Water, Energy, Odour, Noise and Site restoration.

SEVESO (COUNCIL DIRECTIVE 96/82/EC):

Does not apply for waste land-fill sites and gas pipelines

• Production of a safety report with prevention policy, identified risks, providing information…• Establishment of Internal and external emergency plans.

SEVESO: Lower tier Upper tier

Explosive substances (R2)

50 Tons 200 Tons

Explosive substances (R3)

10 Tons 50 Tons

Issue 2: Implementation of the existing regulations

Recent developments in regulation in France:

Arrêté du 10/11/09 rubrique n° 2781-1: Installations de méthanisation de déchets non dangereux ou matière végétale brute, à l'exclusion des

installations de méthanisation d'eaux usées ou de boues d'épuration urbaines lorsqu'elles sontméthanisées sur leur site de production.

1. Méthanisation de matière végétale brute, effluents d'élevage, matières stercoraires, lactosérum et déchets végétaux d'industries agroalimentaires :

a) La quantité de matières traitées étant supérieure ou égale à 50 t/j Autorisation

b) La quantité de matières traitées étant supérieure ou égale à 30 t/j et inférieure à 50 t/j Enregistrement

c) La quantité de matières traitées étant inférieure à 30 t/j Déclaration et contrôle périodique

2. Méthanisation d'autres déchets non dangereux Autorisation

Issue 2: Implementation of the existing regulations

Page 83

Page 85: Biogas Safety and Regulations

In EuropeDirective 2003/55/EC :“Member States should ensure that, taking into account the necessary quality requirements, biogas and gas from biomass or othertypes of gas are granted non-discriminatory access to the gas system, provided such access is permanently compatible with therelevant technical rules and safety standards. These rules and standards should ensure that these gases can technically and safely beinjected into and transported through the natural gas system and should also address the chemical characteristics of these gases.”

In Germany (The Renewable Energy Source Act):• Section 2: Amendment to the Renewable Energy Source Act • Section 9: Regulations on the injection of biogas into natural gas grids• Section 14: Renewable Energy Heat Act • Section 17: Promotion of biofuels

In Switzerland: - The Directives G 13: “Directives on the injection of biogas into the natural gas network”- Loi sur l'énergie (LEne) :

• Art. 1 - Goals: Promote the use of renawable energies and increase the annual production.• Art. 7 - Connection conditions for electricity from renewable energy• Art. 12b - Tax exemption for fuels from renewable raw materials

In Sweden, the SS 155438 standard regulates the quality criteria for biogas utilised as biofuel.

In general, in European member States regulations:• Promotion of the renewable energies use• Pricing (biofuels)• Quality requirements for injection of biogas in gas-grid• Not enough safety consideration

Issue 2: Implementation of the existing regulations

Issue 3: Sharing best practices andeducation of the operators

• What is the education in the various countries for biogas operators?

• Is education for operators appropriate?

Page 84

Page 86: Biogas Safety and Regulations

Perspectives:

– Towards a European network / group to share information on accidents and near misses

– Need for a common database to key parameters?

– Needs for European best practice guidelines and inputs for standardization working group?

Page 85