bibliography - home - springer978-0-8176-8228-6/1.pdf · in proceedings of the third u. s. national...

18
Bibliography [1] R. J. Adler. The Geometry of Random Fields. John Wiley & Sons, New York, 1981. [2] G. Adomian, editor. Applied Stochastic Processes. Academic Press, New York, 1980. [3] G. Adomian. Stochastic Systems. Academic Press, New York, 1983. [4] B. K. Agarwal and M. Eisner. Statistical Mechanics. John Wiley & Sons, New York, 1988. [5] T. M. Apostol. Mathematical Analysis. Addison-Wesley Publishing Com- pany, Reading, Massachusetts, 1974. [6] S. T. Ariaratnam. Some illustrative examples of stochastic bifurcation. In J. M. T. Thompson and S. R. Bishop, editors, Nonlinearity and Chaos in Engineering Dynamics, pages 267-274. John Wiley & Sons, Ldt., New York, 1994. [7] S. T. Ariaratnam and N. M. Abdelrahman. Almost sure stochastic stability of viscoelastic plates in supersonic flow. AIAA Journal, 39(3):465-472, 2001. [8] S. T. Ariaratnam and H. N. Pi. On the first-passage time for envelope cross- ing for a linear oscillator. International Journal of Control, 18(1):89-96, 1973. [9] S. T. Ariaratnam and W. C. Xie. Almost-sure stochastic stability of cou- pled non-linear oscillators. International Journal of Non-Linear Mechan- ics, 29(2):197-204, 1994. [10] L. Arnold. A formula connecting sample and moment stability of linear stochastic systems. SIAM Journal of Applied Mathematics, 1994. [11] S. R. Arwade. Probabilistic models for aluminum microstructure and in- tergranular fracture analysis. Master's thesis, Cornell University, Civil and Environmental Engineering, Ithaca, NY, 1999. 757

Upload: duongdang

Post on 28-Aug-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Bibliography

[1] R. J. Adler. The Geometry of Random Fields. John Wiley & Sons, New York, 1981.

[2] G. Adomian, editor. Applied Stochastic Processes. Academic Press, New York, 1980.

[3] G. Adomian. Stochastic Systems. Academic Press, New York, 1983.

[4] B. K. Agarwal and M. Eisner. Statistical Mechanics. John Wiley & Sons, New York, 1988.

[5] T. M. Apostol. Mathematical Analysis. Addison-Wesley Publishing Com­pany, Reading, Massachusetts, 1974.

[6] S. T. Ariaratnam. Some illustrative examples of stochastic bifurcation. In J. M. T. Thompson and S. R. Bishop, editors, Nonlinearity and Chaos in Engineering Dynamics, pages 267-274. John Wiley & Sons, Ldt., New York, 1994.

[7] S. T. Ariaratnam and N. M. Abdelrahman. Almost sure stochastic stability of viscoelastic plates in supersonic flow. AIAA Journal, 39(3):465-472, 2001.

[8] S. T. Ariaratnam and H. N. Pi. On the first-passage time for envelope cross­ing for a linear oscillator. International Journal of Control, 18(1):89-96, 1973.

[9] S. T. Ariaratnam and W. C. Xie. Almost-sure stochastic stability of cou­pled non-linear oscillators. International Journal of Non-Linear Mechan­ics, 29(2):197-204, 1994.

[10] L. Arnold. A formula connecting sample and moment stability of linear stochastic systems. SIAM Journal of Applied Mathematics, 1994.

[11] S. R. Arwade. Probabilistic models for aluminum microstructure and in­tergranular fracture analysis. Master's thesis, Cornell University, Civil and Environmental Engineering, Ithaca, NY, 1999.

757

758 Bibliography

[12] S. R. Arwade. Stochastic characterization and simulation of material mi­crostructures with applications to alluminum. PhD thesis, Cornell Univer­sity, Ithaca, NY, January 2002.

[13] S. F. Asokanthan and S. T. Ariaratnam. Almost-sure stability of a gyropen­dulum subjected to white noise random support motion. Journal of Sound and Vibration, 235(5):801-812, 2000.

[14] M. Avlonis, M. Zaiser, and E. C. Aifantis. Some exactly solvable models for the statistical evolution of internal variables during plastic deformation. Probabilistic Engineering Mechanics, 15(2):131-138, 2000.

[15] P. Bak. How Nature Works. Springer-Verlag, New York, 1996.

[16] P. Bak and C. Tang. Earthquakes as a self-organized critical phenomenon. Journal of Geophysical Research, 94(B11):15,635-15,637, 1989.

[17] N. Bellomo and R. Rigantti. Nonlinear Stochastic Systems in Physics and Mechanics. World Scientific, Singapore, 1987.

[18] J. S. Bendat. Nonlinear System Analysis and Identification from Random Data. John Wiley & Sons, New York, 1990.

[19] P. Bernard and L. Wu. Stochastic linearization: The theory. Journal of Applied Probability, 35:718-730, 1998.

[20] J. Bertoin. Levy Processes. Cambridge University Press, New York, 1998.

[21] A. T. Bharucha-Reid and M. Sambandham. Random Polynomials. Aca­demic Press, Inc., New York, 1986.

[22] V. V. Bolotin. Random Vibration of Elastic Systems. Martinus Nijhoff Publishers, Boston, 1984.

[23] A. P. Boresi and K. P. Chong. Elasticity in Engineering Mechanics. John Wiley & Sons, Inc., New York, 2000.

[24] P. Bougerol and J. Lacroix. Products of Random Matrices with Applications to Schrodinger Operators. Birkhauser, Boston, 1985.

[25] W. E. Boyce. Probabilistic Methods in Applied Mathematics, volume 1. Academic Press, New York, 1968.

[26] R. L. Brabenec. Introduction to Real Analysis. PWS-KENT Publishing Company, Boston, 1990.

[27] P. Bratley, B.L. Fox, and L. E. Schrage. A Guide to Simulation. Springer­Verlag, New York, second edition, 1987.

Bibliography 759

[28] C. A. Brebbia and J. J. Connor. Fundamentals of Finite Element Tech­niques. Butterworth, London, 1973.

[29] E. 0. Brigham. The Fast Fourier Transform. Prentice-Hall, Inc., Engle­wood Cliffs, NJ, 1974.

[30] R. W. Brockett. Finite Dimensional Linear Systems. John Wiley & Sons, Inc., New York, 1970.

[31] P. J. Brockwell and R. A. Davis. Time Series: Theory and Methods. Springer-Verlag, New York, 1987.

[32] V. Bryant. Metric Spaces. Iteration and Applications. Cambridge Univer­sity Press, 1987.

[33] R. S. Bucy and P. D. Joseph. Filtering for Stochastic Processes with Appli­cations to Guidance. Chelsea Publishing Company, New York, 1987.

[34] B. Budiansky. On the elastic moduli of some heterogeneous materials. Journal of the Mechanics and Physics of Solids, 13:223-227, 1965.

[35] R. Burridge and L. Knopoff. Model and theoretical seismicity. Bulletin of the Seismological Society of America, 57(3):341-371, 1967.

[36] G. Q. Cai andY. K. Lin. Generation of non-Gaussian stationary stochastic processes. Physical Review, E, 54(1):299-303, 1995.

[37] A. S. Cakmak, J. F Botha, and W. G Gray. Computational and Applied Mathematics for Engineering Analysis. Springer-Verlag, New York, 1987.

[38] Grigoriu M. Kulkarni S. S. Chati, M. K. and S. Mukherjee. Random walk method for the two- and three-dimensional Laplace, Poisson and Helmholtz equations. International Journal for Numerical Methods in Engineering, 51:1133-1156,2001.

[39] A. H. D. Cheng and C. Y. Yang, editors. Computational Stochastic Me­chanics. Elsevier Applied Science, New York, 1993.

[40] K. L. Chung. A Course in Probability Theory. Academic Press, Inc., New York, 1974.

[41] K. L. Chung. Green, Brown, and Probability. World Scientific, New Jersey, 1995.

[42] K. L. Chung and R. J. Williams. Introduction to Stochastic Integration. Birkhauser, Boston, 1990.

[43] R. Courant and D. Hilbert. Methods of Mathematical Physics, volume 1. Interscience Publishers, Inc., New York, 1953.

760 Bibliography

[44] R. Courant and D. Hilbert. Methods of Mathematical Physics, volume 2. lnterscience Publishers, Inc., New York, 1953.

[ 45] H. Cramer and M. R. Leadbetter. Stationary and Related Stochastic Pro­cesses. John Wiley & Sons, Inc., New York, 1967.

[46] G. T. Csanady. Turbulent Diffusion in the Environment. D. Reidel Publish­ing Company, Boston, 1973.

[47] J. H. Cushman. Development of stochastic partial differential equations for subsurface hydrology. Stochastic Hydrology and Hydraulics, 1 ( 4) :241-262, 1987.

[ 48] R. E. Cutkosky. A Monte Carlo method for solving a class of integral equa­tions. Journal of Research of the National Bureau of Standards, 4 7(2): 113-115, 1951.

[ 49] W. B. Davenport and W. L. Root. An Introduction to the Theory of Random Signals and Noise. McGraw-Hill Book Company, Inc., New York, 1958.

[50] P.R. Dawson and E. B. Martin. Computational mechanics for metal de­formation processes using polycrystal plasticity. Advances in Applied Me­chanics, pages 77-169, 1998.

[51] J. B. Diaz and L. E. Payne. Mean value theorems in the theory of elasticity. In Proceedings of the Third U. S. National Congress of Applied Mechanics, pages 293-303. The American Society of Mechanical Engineers, June 11-14 1958.

[52] P. J. Digby. The effective elastic moduli of porous granular rocks. Journal of Applied Mechanics, 48:803-808, 1981.

[53] 0. Ditlevsen. Uncertainty Modeling with Applications to Multidimensional Civil Engineering Systems. McGraw-Hill Inc., New York, 1981.

[54] 0. Ditlevsen and G. Lindgren. Empty envelope excursions in stationary Gaussian processes. Journal of Sound and Vibration, 122(3):571-587, 1988.

[55] P. Ditlevsen. Observations of a-stable noise induced millennial cli­mate changes from an ice--core record. Geophysical Research Letters, 26(10):1441-1444, 1999.

[56] J. Durbin. The first-passage density of a continuous gaussian process to a general boundary. Journal of Applied Probability, 22:99-122, 1985.

[57] R. Durrett. Brownian Motion and Martingales in Analysis. Wadsworth Advanced Books & Software, Belmont, California, 1984.

Bibliography 761

[58] R. Durrett. Stochastic Calculus. A Practical Introduction. CRC Press, New York, 1996.

[59] R. J. Elliott. Stochastic Calculus and Applications. Springer-Verlag, New York, 1982.

[60] R. J. Elliott and P. E. Kopp. Mathematics of Financial Markets. Springer­Verlag, New York, 1999.

[61] S. N. Ethier and T. G. Kurtz. Markov Processes. Characterization and Convergence. John Wiley & Sons, New York, 1986.

[62] W Feller. An Introduction to Probability Theory and Its Applications, vol­ume II. John Wiley & Sons, Inc., New York, second edition, 1971.

[63] R. V. Field, Jr. and M. Grigoriu. A new perspetive on polynomial chaos. In P. D. Spanos and G. Deodatis, editors, Proceedings of the Fourth Interna­tional Conference on Computational Stochastic Mechanics, to appear. Pre­sented at the Fourth International Conference on Computational Stochastic Mechanics, Corfu, Greece, June 9-12,2002.

[64] A. Frankel. Mapping seismic hazard in the central united and eastern United States. Seismological Research Letters, 66(4):8-21, 1995.

[65] B. Friedman. Lectures on Applications-Oriented Mathematics. John Wiley & Sons, Inc., New York, 1969.

[66] B. Fristedt and L. Gray. A Modem Approach to Probability Theory. Birkhauser, Boston, 1997.

[67] A. T. Fuller. Analysis of nonlinear stochastic systems by means of the Fokker-Planck equation. International Journal of Control, 9(6):603-655, 1969.

[68] Y. C. Fung. Foundations of Solid Mechanics. Prentice-Hall, Inc., Engle­wood Cliffs, NJ, 1965.

[69] H. Furstenberg and H. Keston. Products of random matrices. Annals od Mathematical Statistics, 31:457-469, 1960.

[70] C. W. Gardiner. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer-Verlag, New York, second edition, 1985.

[71] R. G. Ghanem and P. D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer-Verlag, New York, 1991.

[72] J. D. Goddard. Continuum modelling of granular assemblies. In H. J. Herrmann, J.-P. Hovi, and S. Luding, editors, Physics of Dry Granular Media, pages 1-24. Kluwer Academic Publishers, Boston, 1998.

762 Bibliography

[73] M.D. Greenberg. Foundations of Applied Mathematics. Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1978.

[74] M. Grigoriu. A consistent closure method for nonlinear random vibration. International Journal of Nonlinear Mechanics, 26(6):857-866, 1991.

[75] M. Grigoriu. A solution of the random eigenvalue problem by crossing theory. Journal of Sound and Vibration, 158(1):58-80, 1992.

[76] M. Grigoriu. Transient response of linear systems to stationary gaussian inputs. Probabilistic Engineering Mechanics, 7(3):159-164, 1992.

[77] M. Grigoriu. Simulation of nonstationary Gaussian processes by random trigonometric polynomials. Journal of Engineering Mechanics, ASCE, 119(2):328-343, 1993.

[78] M. Grigoriu. Simulation of stationary processes via a sampling theorem. Journal of Sound and Vibration, 166(2):301-313, 1993.

[79] M. Grigoriu. Applied Non-Gaussian Processes: Examples, Theory, Simu­lation, Linear Random Vibration, and MATLAB Solutions. Prentice Hall, Englewoods Cliffs, NJ, 1995.

[80] M. Grigoriu. Equivalent linearization for Poisson white noise input. Prob­abilistic Engineering Mechanics, 11(1):45-51, 1995.

[81] M. Grigoriu. Lyapunov exponents for nonlinear systems with Poisson white noise. Physics Letters A, 217:258-262, 1996.

[82] M. Grigoriu. Local solutions of Laplace, heat, and other equations by Ito processes. Journal of Engineering Mechanics, ASCE, 123(8):823-829, 1997.

[83] M. Grigoriu. Mean and covariance equations for boundary value problems. Journal of Engineering Mechanics, ASCE, 123(5):485-488, 1997.

[84] M. Grigoriu. Solution of some elasticity problems by the random walk method. ACTA Mechanica, 125:197-209, 1997.

[85] M. Grigoriu. A local solution of the SchrOdinger equation. Journal of Physics A: Mathematical and General, 31:8669-8676, 1998.

[86] M. Grigoriu. A Monte Carlo solution of transport equations. Probabilistic Engineering Mechanics, 13(3):169-174, 1998.

[87] M. Grigoriu. A spectral representation based model for Monte Carlo sim­ulation. Probabilistic Engineering Mechanics, 15(4):365-370, October 2000.

Bibliography 763

[88] M. Grigoriu and S. Balopoulou. A simulation method for stationary Gaus­sian random functions based on the sampling theorem. Probabilistic Engi­neering Mechanics, 8(3-4):239-254, 1993.

[89] M. Grigoriu, D. Veneziano, and C. A. Cornell. Probabilistic modelling as decision making. Journal of the Engineering Mechanics Division, ASCE, 105(EM4):585-596, 1979.

[90] V. K. Gupta, I. Rodriguez-Iturbe, and E. F. Wood, editors. Scale Problems in Hydrology. D. Reidel Publishing Company, Boston, 1986.

[91] Raiffa H. and R. Schlaifer. Applied Statistical Decision Theory. The M.I.T. Press, Cambridge, Massachusetts, 1961.

[92] P. Halmer. On the foundations of stochastic dislocation dynamics. Applied Physics A, 62:473-481, 1996.

[93] J. H. Halton. Sequential monte carlo. In Proceedings of the Cambridge Philosophical Society (Mathematical and Physical Sciences), volume 58, pages 57-78. Cambridge at the University Press, 1962.

[94] J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Methuen & Co. Ltd., London, 1964.

[95] J. M. Harmmersley and D. C. Handscomb. Monte Carlo Methods. Methuen & Co. Ltd., London, 1967.

[96] S. Harmsen and A. Frankel. Deaggregation of probabilistic ground mo­tions in the central and eastern United States. Bulletin of the Seismological Society of America, 89(1):1-13, 1999.

[97] A. M. Hasofer and M. Grigoriu. A new perspective on the moment closure method. Journal of Applied Mechanics, 62(2):527-532, 1995.

[98] D. B. Hernandez. Lectures on Probability and Second Order Random Fields. World Scientific, London, 1995.

[99] F. B. Hildebrand. Methods of Applied Mathematics. Prentice Hall, Inc., Englewood Cliffs, N.J., 1965.

[100] B. M. Hill. A simple general approach to inference about the tail of a distribution. The Annals of Statistics, 3(5):1163-1174, 1975.

[101] E. J. Hinch. Perturbation Methods. Cambridge University Press, Cam­bridge, 1994.

[ 1 02] W. Horsthemke and R. Lefever. Phase transitions induced by external noise. Physics Letters, 64A(1):19-21, 1977.

[103] K. Huang. Statistical Mechanics. John Wiley & Sons, New York, 1987.

764 Bibliography

[104] I.D. Huntley and R. M. Johnson. Linear and Nonlinear Differential Equa­tions. John Wiley & Sons, New York, 1983.

[105] R. A. Ibrahim. Parametric Random Vibration. John Wiley & Sons Inc., New York, 1985.

[106] R. Iranpour and P. Chacon. The Mark Kac Lectures. Macmillan Publishing Company, New York, 1988.

[107] K. Ito and M. Matsuzaki. Earthquakes as self-organized critical phenom­ena. Journal of Geophysical Research, 95(B5):6853-6860, 1990.

[108] J. T. Jenkins and 0. D. L Strack. Mean field inelastic behavior of random arrays of identical spheres. Mechanics of Materials, 16:25-33, 1993.

[109] G. Kallianpur. Stochastic Filtering Theory. Springer-Verlag, New York, 1980.

[110] R. P. Kanwal. Linear Integral Equations. Theory and Technique. Academic Press, New York, 1971.

[111] S. Karlin and H. M. Taylor. A Second Course in Stochastic Processes. Academic Press, New York, 1981.

[112] R. Z. Khas'minskii. A limit theorem for the solution of differential equa­tions with random right-hand sides. Theory of Probability and Its Applica­tions, XI(3):390--406, 1966.

[113] I. C. Kim and S. Torquato. Determination of the effective conductivity of heterogeneous media by brownian motion simulation. Journal of Applied Physics, 68(8):3892-3903, 1990.

[114] M. Kleiber and T. D. Hien. The Stochastic Finite Element. John Wiley & Sons, New York, 1992.

[115] P. E. Kloeden and Platen E. Numerical Solutions of Stochastic Differential Equations. Springer-Verlag, New York, 1992.

[116] M. A. Koenders. Evolution of spatially structures elastic materials using a harmonic density function. Physical Review E, 56(5), 1997.

[117] V. Krishnan. Nonlinear Filtering and Smoothing: An Introduction to Mar­tingales, Stochastic Integrals and Estimation. John Wiley & Sons, New York, 1984.

[118] S. Kulkarni, S. Mukherjee, and M. Grigoriu. Applications ofthe boundary walk method to potential theory and linear elasticity. Journal of Applied Mechanics, ASME, 2002. in press.

Bibliography 765

[ 119] A. Kumar and P. R. Dawson. The simulation of texture evolution with finite element over orientation space. Application to planar polycrystals. Applied Mechanics and Engineering, 130:247-261, 1996.

[ 120] P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press, Inc., New York, second edition, 1985.

[121] M. R. Leadbetter, G. Lindgren, and H. Rootzen. Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New York, 1983.

[122] Y. K. Lin and G. Q. Cai. Probabilistic Structural Dynamics. Advanced Theory and Applications. McGraw-Hill, New York, 1995.

[123] G. G. Lorentz. Bernstein Polynomials. Chelsea Publishing Company, New York, 1986.

[124] E. Lukacs. Characteristic Functions. Number 5 in Griffin's Statistical Monographs & Courses. Charles Griffin & Company Limited, London, 1960.

[125] K. A. Mal and S. J. Singh. Deformation of Elastic Solids. Prentice Hall, 1991.

[126] R.N. Mantegna and H. E. Stanley. An Introduction to Econophysics. Cor­relation and Complexity in Finance. Cambridge University Press, Cam­bridge, UK, 2000.

[127] L. Meirovitch. Computational Methods in Structural Dynamics. Sijthoff & Noordhoff, Rockville, Maryland, 1980.

[128] Yu. A. Melnikov. Green's Functions in Applied Mathematics. Computa­tional Mechanics Publications, Boston, 1995.

[129] J. L. Melsa and A. P. Sage. An Introduction to Probability and Stochastic Processes. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973.

[130] C. Meunier and A. D. Verga. Noise and bifurcations. Journal of Statistical Physics, 50(112):345-375, 1988.

[131] T. Mikosch. Elementary Stochastic Calculus. World Scientific, New Jersey, 1998.

[132] A. Naess and J. M. Johnsen. Response statistics of nonlinear, compliant offshore structures by the path integral solution method. Probabilistic En­gineering Mechanics, 8(2):91-106, 1993.

[133] M. Nicolescu. Funcfii Reale# Elemente de Topologie (in Romanian). Ed­itura Didactica si Pedagogica, Bucharest, Romania, 1968.

766 Bibliography

[134] B. 0ksendal. Stochastic Differential Equations. Springer-Verlag, New York, 1992.

[135] B. 0ksendal. Stochastic Differential Equations. An Introduction with Ap­plications. Springer-Verlag, New York, 1998.

[136] M. Ostoja-Starzewski. Micromechanics as a basis of random elastic con­tinuum approximations. Probabilistic Engineering Mechanics, 8:107-114, 1993.

[137] M. Ostoja-Starzewski. Micromechanics as a basis of continuum random fields. Applied Mechanics Reviews, 47:221-230, 1994.

[138] W. J. Padgett, G. Schultz, and C. P Tsokos. A random differential equation approach to the probability distribution of bod and do in streams. SIAM Journal of Applied Mathematics, 32(2):467-483, 1977.

[139] A. S. Papageorgiou. On the characteristic frequencies of acceleration spec­tra: Patch comer frequency and f-max. Bulletin of the Seismological Society of America, 78(2):509-529, 1988.

[140] G. C. Papanicolaou. Wave propagation in a one-dimensional random medium. SIAM Journal of Applied Mathematics, 21(1):13-18, 1971.

[141] A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill Book Company, New York, 1965.

[142] V. V. Petrov. Sums of Independent Random Variables. Springer-Verlag, New York, 1975.

[143] A. J. Pettofrezzo. Matrices and Transformations. Dover Publications, Inc., New York, 1966.

[144] R. Popoescu, J. H. Prevost, and G. Deodatis. Effects of spatial variabil­ity on soil liquefaction: Some design recommendations. Geotechnique, XLVII(5):1019-1036, December 1997.

[145] V. C. Prantil, J. T. Jenkins, and P. R. Dawson. An analysis of texture and plastic spin for planar polycrystals. Journal of the Mechanics and Physics of Solids, 42(8):1357-1382, 1993.

[146] J. H. Prevost. A simple plasticity theory for frictional cohesionless soils. Soil Dynamics and Earthquake Engineering, 4:9-17, 1985.

[147] P. Protter. Stochastic Integration and Differential Equations. Springer­Verlag, New York, 1990.

[148] F. Radjai. Multicontact dynamics. In H. J. Herrmann, J.-P. Hovi, and S. Luding, editors, Physics of Dry Granular Media. Kluwer Academic Pub­lishers, Boston, 1998.

Bibliography 767

[149] K. Rektorys. Survey of Applicable Mathematics. The M.I.T. Press, Cam­bridge, Massachusetts, 1969.

[150] S. I. Resnick. Adventures in Stochastic Processes. Birkhauser, Boston, 1992.

[151] S. I. Resnick. A Probability Path. Birkhauser, Boston, 1998.

[152] J. B. Roberts. Averaging Methods in Random Vibration. Number R-245. Technical University of Denmark, Lyngby, Denmark, 1989.

[ 153] J. B. Roberts and P. D. Spanos. Random Vibration and Statistical Lineariza­tion. John Wiley & Sons, New York, 1990.

[154] S.M. Ross. Stochastic Processes. John Wiley & Sons, New York, 1983.

[155] R. Rubinstein. Simulation and the Monte Carlo Method. John Wiley & Sons, New York, NY, 1981.

[156] W. Rudin. Real and Complex Analysis. McGraw-Hill, Inc., New York, 1974.

[157] P. A. Ruymgaart and T. T. Soong. Mathematics of Kalman-Bucy Filtering. Springer-Verlag, New York, 1988.

[158] I. Rychlik. A note on Durbin's formula for the first-passage density. Statis­tics & Probability Letters, 5:425-428, 1987.

[159] I. Rychlik and G. Lindgren. Crossreg, a computer code for first passage and wave density analysis. Technical report, University of Lund and Lund Insti­tute of Technology, Department of Mathematical Statistics, Lund, Sweden, 1990.

[160] K. K. Sabelfeld. Monte Carlo Methods in Boundary Value Problems. Springer-Verlag, New York, 1991.

[161] G. Samorodnitsky. Long Range Dependence, Heavy Tails and Rare Events. Lecture notes. MaPhySto, Center for Mathematical Physics and Stochas­tics. Aarhus, Denmark, 2002.

[162] G. Samorodnitsky and M.S. Taqqu. Stable Non-Gaussian Random Pro­cesses. Stochastic Models with Infinite Variance. Birkhauser, New York, 1994.

[163] S. B. Savage. Modeling and granular material boundary value problems. In H. J. Herrmann, J.-P. Hovi, and S. Luding, editors, Physics of Dry Granular Media. Kluwer Academic Publishers, Boston, 1998.

[164] J. Scheidt and W. Purkert. Random Eigenvalue Problem. North Holland, New York, 1983.

768 Bibliography

[165] Z. Schuss. Theory and Applications of Stochastic Differential Equations. John Wiley & Sons, New York, 1980.

[166] F. C. Schweppe. Uncertain Dynamic Systems. Prentice Hall, Inc, Engle­wood Cliffs, NJ, 1973.

[167] J.P. Sethna, K. Dahmen, S. Kartha, J. A. Krumhansi, B. W. Roberts, and J.D. Shore. Hysteresis and hierarchies: Dynamics of disorder-driven first­order phase transformations. Physical Review Letters, 70(21):3347-3350, 1993.

[168] J. P. Sethna, K. Dahmen, and C. R. Myers. Crackling noise. Nature, 410:242-250,2001.

[169] M. Shinozuka. Structural response variability. Journal of Engineering Me­chanics, ASCE, 113(EM6):825-842, 1987.

[170] M. Shinozuka and Yang J.-N. On the bounds of first excursion probability. Journal of the Engineering Mechanics Division, ASCE, 95(EM2):363-377, 1969.

[171] J. G. Simmonds and J. E. Mann. A First Look at Perturbation Theory. Robert E. Krieger Publishing Company, Malabar, Florida, 1986.

[172] D. L. Snyder. Random Point Processes. John Wiley & Sons, New York, 1975.

[173] K. Sobczyk. Stochastic Wave Propagation. Elsevier, New York, 1985.

[174] C. Soize. The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solution. World Scientific, New Jersey, 1994.

[175] T. T. Soong and M. Grigoriu. Random Vibration of Mechanical and Struc­tural Systems. Prentice Hall, Englewood Cliffs, N.J., 1993.

[176] T.T. Soong. Probabilistic Modeling and Analysis in Science and Engineer­ing. John Wiley & Sons, New York, NY, 1981.

[177] P. D. Spanos. Stocahstic linearization in structural dynamics. Applied Me­chanics Reviews, 34(1):1-8, 1981.

[178] P. D. Spanos and C. A. Brebbia, editors. Computational Stochastic Me­chanics. Elsevier Applied Science, New York, 1991.

[179] B. F. Spencer and L.A. Bergman. On the numerical solutions of the Fokker­Planck equations for nonlinear stochastic systems. Nonlinear Dynamics, 4:357-372, 1993.

[180] D. Stoyan, W. S. Kendall, and J. Mecke. Stochastic Geometry and Its Ap­plications. John Wiley & Sons, New York, 1987.

Bibliography 769

[ 181] H. Tanaka. Application of importance sampling method to time-dependent system reliability analysis using Girsanov transformation. InN. Shiraishi, M. Shinozuka, and Y. K. Wen, editors, Structural Safety and Reliability, ICOSSAR'97, volume 1, Rotterdam, Netherlands, 1998. A. A. Balkema.

[182] S. J. Taylor. Exact asymptotic estimates of brownian path variation. Duke Mathematical Journal, 39, 1972.

[183] G. P. Tolstov. Fourier Series. Dover Publications, Inc., New York, 1962.

[184] S. Torquato. Thermal conductivity of disordered heterogeneous media form the microstructure. Reviews in Chemical Engineering, 4(3 & 4):151-204, 1987.

[185] S. Torquato. Random Heterogeneous Materials. Microstructure and Macroscopic Properties. Springer, New York, 2002.

[186] S. Torquato and I. C. Kim. Efficient simulation technique to compute effective properties of heterogeneous media. Applied Physics Letters, 55(18):1847-1849, 1989.

[187] F. G. Tricomi. Integral Equations. Dover Publications, Inc., New York, 1957.

[188] H. S. Thrkmen, R. Loge, P. R Dawson, and M. P. Miller. The micro­mechanical behavior of a polycrystalline metal during cycling loading, in preparation. 2002.

[189] E. Vanmarcke. On the distribution of the first-passage time for normal stationary random processes. Journal of Applied Mechanics, 42:215-220, 1975.

[190] E. Vanmarcke, M. Shinozuka, S. Nakagiri, G.l. Schueller, andM. Grigoriu. Random fields and stochastic finite elements. Structural Safety, 3:143-166, 1986.

[191] W. V. Wedig. Lyapunov Exponents of Stochastic Systems and Related Bi­furcation Problems. Elsevier Applied Science, 315-327, New York, 1988.

[192] S. Whitaker. Multiphase transport phenomena: matching theory and ex­periments. In G. Papanicolaou, editor, Advances in multiphase flow and related problems, pages 273-295. SIAM, 1986.

[193] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1988.

[194] J. R. Willis. Variational and related methods for the overall properties of composites. Advances in Applied Mechanics, 21:1-78, 1981.

770 Bibliography

[195] R. Willis and W. W.-G. Yeh. Groundwater Systems Planning and Manage­ment. Prentice Hall, Englewood Cliffs, NJ, 1987.

[196] S. F. Wojtkiewicz and L. A. Bergman. Numerical solution of high­dimensional Fokker-Planck equations. In A. Kareem, A. Haldar, B. F. Spencer, and Johnson E. A., editors, Proceedings of the 8'th ASCE Joint Specialty Conference on Probabilistic Mechanics and Structural Reliabil­ity, CD-ROM, July 24-26 2000.

[197] E. Wong and B. Hajek. Stochastic Processes in Engineering Systems. Springer-Verlag, New York, 1985.

[198] W-C Xie and S. T. Ariaratnam. Vibration mode localization in large randomly disordered continuous beams. Fields Institute Communication, 9:219-238, 1996.

[199] P. Yiou, K. Fuhrer, L. D. Meeker, J. Jouzel, S. Johnsen, and P. A. Mayewski. Paleoclimatic variability inferred from the spectral analysis of Greenland and Antarctic ice-core data. Journal of Geophysical Research, 102(C12):26441-26454, 1997.

[200] J. M. Zagajac. Engineering Analysis over Subdomains. PhD thesis, Cor­nell University, Sibley School of Mechanical and Aerospace Engineering, Ithaca, New York, May 1997.

[201] A. Zellner. An Introduction to Bayesian Inference in Econometrics. John Wiley & Sons, Inc., New York, 1971.

Index

Lq(n, :F, P) space, 34 a-field, 6, 116

Borel, 7 generated by random process, 107 generated by random variable,

22

Backward Kolmogorov equation, 490, 494

Bochner's theorem, 132 Borel-Cantelli Lemma, 21 Brownian motion, 107, 256

in the first orthant of JR2 , 387 properties, 186 reflected at two thresholds, 383 reflected at zero, 372

local time, 372 Tanaka formula, 373

Cadlag, caglad, 113 Cauchy distribution, 46 Chapman-Kolmogorov equation, 121 Compound Poisson process, 111, 182 Conditional expectation, 82

change of fields, 89 conditional probability with re­

spect to a a-field, 91 defining relation, 84 properties, 89

Conditional probability, 16 Convergence of random variables, 70

Lp, 70 a.s., 70 distribution, 70 mean square, 70 probability, 70

771

Decomposition method, 563 Differential equations for

characteristic function, 455, 478, 510

density, 481 backward Kolmogorov, 490 Fokker-Planck equation, 481

moments, 433, 437, 452, 463, 475,494,508

Diffusion coefficient, 254 Diffusion process, 254, 258, 262, 267,

432,475 Doob decomposition, 95 Doob-Meyer decomposition, 175 Drift coefficient, 254 Dynkin formula, 350

Earthquake engineering and seismol-ogy, 741

cellular automata model, 743 fragility surface, 528 soil liquefaction, 663

Eigenvalue problem, 370, 413, 421, 566,599

Equivalent linearization method, 564 Expectation operator, 28, 33, 143 Extremes of stochastic processes, 165

first passage time, 168, 527 mean crossing rate, 165

Fatou's lemma, 21 Feynman-Kac functional, 364, 365 Filtration, 78, 107 Finance, 534

Black-Scholes formula, 536 stock price model, 535

772

Finite difference method, 411, 488, 531,533,600,700

Finite dimensional distribution, 117 Finite element method, 600, 652, 668,

701 First passage time, 168, 527 Fokk:er-Planckequation, 269,481,494,

531 Fubini theorem, 39,99

Girsanov's theorem, 337, 338

Independence a-fields, 36 events, 36 random variables, 38

Independentincrements, 122, 182, 186, 189

Inequalities Cauchy-Schwarz, 69 Chebyshev, 68 Doob, 98 Holder, 69 Jensen, 68 Minkowski, 69

Infinitely divisible characteristic func-tion, 52

a-stable, 57 canonical representation, 55 construction, 54 Levy-Khinchine representation,

56 properties, 53

Integrals of random variables Fatou lemma, 32 Lebesgue theorem, 33 properties,30

Ito formula, 237 multi-dimensional case, 247 one-dimensional case, 238

Iteration method, 565, 574, 604

Karhunen-Loeve representation, 161 Kolmogorov criterion, 110

Levy measure, 56 Levy process, 189

Index

Levy decomposition, 193, 197 Levy-Khinchine formula, 197

Levy-Khinchine representation, 56 Liouville equation, 687, 714, 730 Lipschitz condition, 258 Local solution

algebraic and integral equations homogeneous,413,421 inhomogeneous,407,418

differential equation boundary walk method, 403 Feynman-Kac functional, 364 random walk method, 345, 550 Schrodingerequation,367,370 spherical process method, 394

Lyapunov exponent modelocalization,666 noise induced transitions, 720 stochastic stability, 655

Markov property, 81 Martingale, 94

Doob decomposition, 95 Doob inequality, 98 Doob-Meyerdecomposition, 175 Jensen inequality, 176 stopped, 96, 175 submartingale, 92, 94, 169 supermartingale, 92, 94, 169 variation and covariation, 179

Martingales, 92, 169 Materials science, 518

effective properties, 605 evolution, 633 Reuss average, 623 Voigt average, 621

Measurable functions, 21 Measurable space, 6 Mixture of translation process, 126 Modeling

non-Gaussian input, 515 partially known input, 745

Index

unknown input and system, 7 48 Monte Carlo simulation

applications, 507,527,528,531, 533, 552, 554, 567, 581, 584,614,677,736

improved measure change, 334 time change, 330

non-Gaussian process and field memory less transformations,

316 transformation with memory,

320 non-stationary Gaussian process

and field Fourier series, 312,315 linear differential equations,

310 point processes, 325 random variable, 288 stationary Gaussian process and

field, 293 sampling theorem, 304, 309 spectral representation, 293,

299

Neumann series method, 561, 591, 630,693

Omstein-Uhlenbeckprocess, 257,263, 314,340

Path integral solution, 494 Perturbation method, 499, 558, 572,

587,603,629,692 Poisson process, 182, 326 Probability measure, 8 Probability space, 5 Product probability space, 13

Quadratic variation and covariation, 179,228

integration by parts, 229 Kunita-Watanabe inequality, 235 polarization identity, 229

Radon-Nikodym derivative, 41 Random field, 104, 158 Random variable, 22

?-integrable, 29 arbitrary, 29 characteristic function, 47 density function, 45 distribution function, 43 finite-valued simple, 28 positive, 29

Random variables, 42 Random vector, 22

characteristic function, 62 Gaussian vector, 65 independence,61

773

joint density function, 59 joint distribution function, 59 moments, 64 second moment properties, 65

Random vectors, 58 Random walk, 7 5 Reliability, 522 Reuss average, 623 Riemann-Stieltjes integral, 206

Sample space, 5 SchrOdingerequation, 346,367,370 Second moment calculus for processes

in L2, 139 expectation and mean square in­

tegrals, 152 Karhunen-Loeve representation,

161 mean square continuity, 111, 141 mean square differentiation, 14 2 mean square integration, 145 spectral representation, 153 variation functions, 146

Second moment properties, 65, 138, 159

Semimartingale, 324 Sequence of events, 20 State augmentation, 460, 512, 682

774

Stationary increments, 111, 122, 182, 186, 189

Stationary process, 119 in the strict sense, 119 in the weak sense, 128 spectral density, 132

Stochastic differential equation, 253 numerical solution, 275

Euler, 277 Milstein, 280

semimartingale input, 271 Brownian motion input, 256

diffusion process, 262 equations for characteristic func-

tions, 267 equations for densities, 267 equations for moments, 267 semimartingale, 263 Wong-Zakai theorem, 267

Stochastic integral, 208 associativity, 225 Ito integral, 208, 250 preservation, 225 semimartingale, 217 simple predictable integrand, 221 Stratonovich integral, 210, 249,

250 Stochastic process, 104

adapted, 107 dtdlag, caglact, 113 classes of, 119 correlation, 127, 130 covariance, 127 finite dimensional densities, 117 finite dimensional distribution,

117 measurable, 106 progressively measurable, 108 sample properties, 110 second moment properties, 127

Stopping time, 78, 114 Stratonovich integral, 249

Index

Taylor series method, 554, 570, 584, 691

Translation process, 125

Voigt average, 621

White noise process, 144, 184, 186, 254,322,323

Wong-Zakai theorem, 267