basic distillation[1]

21
8/4/2019 Basic Distillation[1] http://slidepdf.com/reader/full/basic-distillation1 1/21 f01_11 Seader & Henley, Separation Process Principles 1

Upload: kishoreprithika

Post on 07-Apr-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 1/21

f01_11Seader & Henley, Separation Process Principles1

Page 2: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 2/21

Separation Processes

•  Absorption – Solutes removed from a gas into a liquid• Solutes removed from liquid into gas is called stripping or desorption

•  Distillation – Thermal vapor-liquid separation processes (Ch 11); vapor 

phase generated from liquid

•  Liquid-liquid extraction – Solute extracted from liquid A into animmiscible liquid B (a solvent)

•  Leaching (extraction) – Solute extracted from a solid into a solvent phase

(liquid, dense gas, or supercritical fluid)

•  Membrane processing – Molecules separated using a dense (non

-porous film) or porous physical barrier • Filtration – Suspended solids separated from a liquid or gas phase using aporous membrane

2

Page 3: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 3/21

Methanol more

volatile than water 

P m > P w  

P m > 1 atm

Vapor-liquid equilibria...(e.g. ideal , methanol-water system)

BP diagram at const P (ideal) 

dew-point  

bubble-point  

 x = y (1 component)

 x-y diagram at const P  

P (= pm + pw  ) diagram at const T  

3

Page 4: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 4/21

f02_18

Ethanol more

volatile

γ eP e > γ hP h 

Ethanol less

volatile

γ eP e < γ hP h 

 x = y 

at 58 oC 

Low T 

High T 

Vapor-liquid equilibria...(e.g. non-ideal , n-hexane-ethanol system)

4

Page 5: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 5/21

The greater the

separation

between the

equilibrium and 45 o

line, the easier the

separation

Getting into separations

 x = y 

 x-y diagram at const P  

α  AB = y A / x A

 y B / x B=  y A / x A

(1− y A )/(1− x A )

α  AB = P  A

 P  B 

 y A =α  AB x A

1+ (α  AB −1) x A

if α  AB =1, y A = x A

5

Page 6: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 6/21

The greater the

separation

between the

equilibrium and 45 o

line, the easier the

separation

Simple flash distillation(single stage; heated to T, phase split)

 x = y 

 x-y diagram at const P  

 F =V + L

 Fx F  =Vy + Lx

∴ Fx F  =Vy + ( F −V ) x

heater separator F, xF

V, y

L, x 6

Page 7: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 7/21

f01_11

Where liquid is

stripped of A by

raising vapor from

reboiler 

Stripping section

Binary distillation of components A & B( A is more volatile, e.g. methanol (A)-water (B) system)

Where “cold” reflux

liquid condenses

some or the vapor 

Enriching section

Vapor enriched

in A

Liquiddepleted of 

A

Near yA = 1 @ TB,A

(light boiler)

Near xB = 1 @ TB,B

(high boiler)

7

Page 8: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 8/21

 

F =  D+W  (molar flow)

FxF =  Dx

 D+Wx

 D

F =

 xF −  x

 x D−  x

W  ,

F =

 x D−  x

 x D−  x

 

V m+1= Lm −W 

V m+1 y

m+1= L

m x

m -WxW 

 ym+1

=

 Lm

V m+1

 xm−

V m+1

 xW 

 

V n+1 = L

n+ D

V n+1yn+1 = L

n x

n+ Dx

 D

 

 yn+1

=

 Ln

V n+1

 xn−

D

V n+1

 x D

W

xW

8

Page 9: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 9/21

Approximation - Constant molal overflow

•  Liquid and vapor flowrates are nearly constant in rectifying

(top) and stripping (bottom + feed plate) sections

 –  Ln=Ln+1=Ln+2… Vn=Vn+1=Vn+2…

 –  L and V, rectifying; L and V, stripping  

•  ΔHv (condensing high boiler) ≈ ΔHv (vaporizing low boiler)

• 

Operating equations or lines are linear 

 yn+1

=

 Ln

V n+1 x

n−

D

V n+1 x D

 

 ym+1

=

 Lm

V m+1

 xm−

V m+1

 xW 

9

Page 10: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 10/21

Variables

•  # Plates, plate design, height of 

column, etc. (later)

•  Cooling in condenser 

 –  Liquid returned to top of column(reflux)

•  Heating in reboiler 

 –  Vapor returned to bottom of column

•  Location and conditions of feed

 –  Cold? Hot? L or V or L-V?

10

Page 11: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 11/21

 

 R =

 Ln

 D=

V n+1 −  D

 D(overhead product, L at B.P.)

 

 yn+1

=

 R

 R +1 x

n −1

 R +1 x

 D

Top plate (1) Total

condenser 

Partial

condenser 

11

Page 12: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 12/21

•  Reboiler with saturated steam

•  Condenser with cooling water 

Heating and cooling requirements

 

ms=

V m+1

λ 

λ s

 

λ  = latent heat steam

λ s

= latent heat vapor mixture

Vm +1 = vapor flowrate from reboiler (stripping section)

mw=

V n+1

λ 

(T 2 −T 1)c  p,w

 

c p,w = heat capacity cooling water

(T 2 −T 1) = Temp change in cooling water

V n+1 = vapor flowrate into condensor

12

Page 13: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 13/21

q > 1(sub-cooled L)

q = 1(@ BP)

0 < q < 1(L-V)

q = 0

(@ D.P.)

q < 0

(superheated V)

Feed conditions

 

q =

moles L in stripping section from feed

moles feed

q =

 H V  (D.P.)− H F 

 H V  (D.P.)− H  L (B.P.)

q =

( H V  − H  L )+ c p, L (T  B −T F )

 H V 

− H  L

 

 Lm= Ln

+ qF  (stripping)

V n =V m + (1− q)F  (rectifying)

 y =q

1−q x −

1

1− q x

F 13

Page 14: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 14/21

McCabe-Thiele Method - # of ideal platesMcCabe & Thiele, Industrial Engineering & Chemistry Research, 17 (1925) 605.

V=L, R→∞ (total reflux)

y=x (P=Pi at each tray)

14

Page 15: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 15/21

 

 yn+1=

 R

 R +1

 xn

−1

 R +1

 x D

xD ≡ design conditionR ≡ design variable

Rectifying section

15

Page 16: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 16/21

Stripping section

 

 ym+1 =

 Lm

V m+1

 xm −

V m+1

 xW 

16

Page 17: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 17/21

Feed conditions (feed line)

@ D.P.

@ B.P.

 yn+1 =

 R

 R +1 xn −

1

 R +1 x D

 ym+1=

 Lm

V m+1

 xm −W 

V m+1

 xW 

 

 y =

q

1− q x −

1

1− q xF 

17

Page 18: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 18/21

Putting it all together…

 

 yn+1 = Ln

V n+1 xn −

D

V n+1 x D

 

 ym+1= Lm

V m+1

 xm −W 

V m+1

 xW 

 

 y = q1− q

 x − 11− q

 xF 

18

Page 19: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 19/21

Stepping off stages (start at xD)

What we want in

overhead product

What we want in

bottoms product

(start here)

operating equilibrium

x = xF

4 stages + reboiler 

19

x = xW

Page 20: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 20/21

Minimum # of plates

 

α av

= (α  Aα 

 B)

1/ 2

 

Fenske equation:

 N m=

lnx D

(1−  x D )

(1−  xW 

)

 xW 

 

  

 

  

lnα av

*includes rebioler

OR 

xB xD

V=L (op lines = 45o)

R→∞ (total reflux)

20

Page 21: Basic Distillation[1]

8/4/2019 Basic Distillation[1]

http://slidepdf.com/reader/full/basic-distillation1 21/21

Minimum reflux (occurs @ pinch point, P)

 

 yn+1 =

 R

 R +1 x

n −1

 R +1 x D

 

 Rm

 Rm +1

=

 x D −  y'

 x D −  x

'

 y', x ' @ pinch point

21