basic derivatives formulas

Upload: lambourghini

Post on 04-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Basic Derivatives Formulas

    1/4

  • 7/30/2019 Basic Derivatives Formulas

    2/4

  • 7/30/2019 Basic Derivatives Formulas

    3/4

    Linear Approximationf(x)

    f (x0) + f( x0) (x x0)

    Newtons Method xn+1 =xn f(xn )

    f (xn ), start with initial value x0

    LHopital rule for indeterminate limits ( 00

    , or

    ): limxc f(x)g(x)

    = limxc

    f (x)g (x)

    =L .

    For 00,1,

    0

    limxc[ f(x)]g(x) , let y= [ f(x)]g(x ), then lny =g(x) ln f(x); or y = eg(x )ln f(x)

    Application1.Domain, vertical asymptotes, horizontal asymptotes (Test 1)2.Continuity, differentiable at a point (check left /right side)

    3.Application of Derivatives a. Slope of tangent b. Rate of change, or velocityc. Increase /Decrease (y ) , Concavity (y ) d. Max/min (y =0 or undefined)

    Optimization (Sec 3.7) e) Sketch graph (section 3.6, handouts, follow procedure)

    4. Application of Integration a. Area * b. Distance c. Average value(Integration Mean

    Value Theorem)Also you write down your own formulas.

    Sec 5.5 Integration by Substitution

    1. Substitution in Indefinite Integrals Ex. Evaluate 2xex2

    dx

    Choose a new variable

    u = x2;then

    du

    dx= u du = u dx = 2xdx , and dx =

    du

    2x, 2xex

    2

    dx =

    2xex2

    eu

    du

    2x = eudu =

    eu

    + c = ex2

    + c . (most time, replace dx and do cancellation)

    2.

    f[g(x)] g (x)dx = f(u)du ,

    u = g(x),du = g (x)dx ,

    u:inner most function of integrand

    Ex1. (3sinx + 4)5 cosxdx Let u =3 sin x + 4, then du =( 3sinx +4 ) dx = 3cosx dx,

    dx =du

    3cosx,

    (3sinx + 4)5cosxdx = (3sinx + 4)5

    u5

    cosx du3cosx =1

    3u

    5du =

    1

    3u

    6+ c=..

    Ex2.sin x

    xdx, let u =

    x , du = (x1

    2 ) dx =1

    2x

    1

    2dx =1

    2 xdx , so dx = 2 xdu, and

  • 7/30/2019 Basic Derivatives Formulas

    4/4

    sin x

    xdx =

    sin x

    sin u

    x 2 xdu = 2 sinudu =

    = 2cosu+ c = 2cos x + c

    Ex3.(tan

    1x)

    2

    1+ x2 dx , since

    d

    dx(tan

    1x) =

    1

    1+ x2dx . Letu =

    tan1

    x, du =1

    1+ x2dx, and

    (tan1x)

    2

    1+ x2 dx = (tan

    1

    x)2

    u2

    1

    1+ x2 dx

    du

    = u2

    du =1

    3 u3

    + c =

    1

    3(tan1

    x)3

    + c ( not solve dx!)

    3.Substitution in Definite Integrals: x 2x2 +1dx0

    2

    , u = 2x2 +1

    du = 4xdx,dx =du

    4x. find the

    new limits of integration for u . When

    x= 0,

    u = 2(0) +1=1;

    x = 2,u = 2(4) +1= 9

    So

    x 2x2+1dx = x u

    1

    9

    0

    2

    du

    4x=

    1

    4u

    1

    2du1

    9

    =1

    42

    3u

    3

    2 |19=

    1

    6(9

    3

    2 1)=

    1

    6(3

    31) =

    26

    6=

    13

    3

    4.sin3

    cos3+ 2d,

    0

    / 3

    u = cos3+ 2, du = sin(3)d d=du

    sin3, and

    = 0,u = cos(0)+ 2 =1+ 2 = 3;= /3,u = cos()+ 2 = 1+ 2 =1

    sin3

    cos3+ 2d= sin(3

    )

    u

    du

    3sin3= 1

    31udu

    3

    1

    = [ 13 lnu] |31=

    3

    1

    0 / 3

    ( 13 ln1+ 1

    3ln 3) = 1

    3ln 35.(#42)

    x

    1+ x4dx , if use u =1+ x 4,du = 4x 3dx , dx =

    du

    4x3

    , then

    x

    1+ x4dx =

    x

    u

    du

    4x3=

    1

    4

    1

    x2

    1

    ud u (unsuccessful!) (

    1

    x2

    1

    u d

    u , or1

    x2dx

    1

    u d

    u)

    If let u = x2,du = 2xdx , and note that x4 = (x2)2 = u2,

    x

    1+ x4dx =

    x

    1+ u2du

    2x =

    1

    2

    1

    1+ u2du =

    1

    2tan

    1(u) =

    1

    2tan

    1(x

    2)+ c

    Also fore

    t

    1+ e2t0

    1

    ,u = e t,du = e tdt,e2t = (e t)2 = u2[0,1][1,e ]

    du

    1+ u21

    e

    =

    tan1u |

    1

    e