barnier bernard et al

16
Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-premitting resolution Barnier Bernard et al.

Upload: maili

Post on 24-Feb-2016

53 views

Category:

Documents


0 download

DESCRIPTION

Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy- premitting resolution. Barnier Bernard et al. Outline. Introduction Model setting Model Result Effect of PS and EEN vorticity scheme Discussion and conclusion. Introduction. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Barnier  Bernard et al

Impact of partial steps and momentum advection schemes in a global ocean circulation model at

eddy-premitting resolution

Barnier Bernard et al.

Page 2: Barnier  Bernard et al

Outline

• Introduction• Model setting• Model Result• Effect of PS and EEN vorticity scheme• Discussion and conclusion

Page 3: Barnier  Bernard et al

Introduction

• Christian Le Provost concern about the generation of eddies in the presence of topology.

• Crucial importance of numeric on the realism of model solution.

• Results were obtain by using a non-linear advection term and a partial step representation of bottom topology.

Page 4: Barnier  Bernard et al

Model setting

• Global ¼° ORCA-R025– C-grid– 80°S – 90°N (north hemisphere with two pole)– 1442*1021 grid point and 46 vertical level– Bottom topology use Etopo2 – Based on NEMO(Nucleus for European Modellong

of the ocean) code• Ocean dynamic: NEMO-OPA

Page 5: Barnier  Bernard et al

Full Step(FS) and partial step(PS)

• Full step – steps have the size of

the model vertical levels.– approximates the true

ocean depth to the closest model level.

• Partial step– Make the depth of the

bottom cell variable and adjustable to real depth of the ocean

– It is possible to better represent small topographic slopes

Page 6: Barnier  Bernard et al

ENS and EEN

• ENS– Used in former version

of OPA– Converse of enstrophy in

flows with no mass flux divergence(Sadoury )

• EEN(energy-enstrophy conserving)– An adaption of the

scheme to primitive scheme (Arakawa and Lamb 1981)

– Conserve total energy for general flow and potential enstrophy for flows with no mass flux divergence

Page 7: Barnier  Bernard et al

Domain settingFig. 1 Domain decompositionon 186 processors of the DRAKKAR global 1/4° ocean circulation model ORCA-R025. Colors indicate the model bathymetry in meters. Every single box represents the domain accounted for by a processor. Boxes with a cross are “land processors” not retained in the calculation. Numbers in abscissa and ordinate indicate model grid points

Page 8: Barnier  Bernard et al

Model Result

Fig. 2 Simulation G22 (partial step topography, new EEN vorticity scheme for momentum advection): snapshot of the sea surface height (ssh, in color) and ice cover (in white) in Austral winter in year 10 of the simulation

Page 9: Barnier  Bernard et al

Meridional overturning streamfunction

Fig. 3 Meridional overturning streamfunction (in Sv) averaged over year 8 to 10 of the G22 simulation (PS + EEN) for the Atlantic (a) and the Indo-Pacific ocean basins (b). Contour interval is 2 Sv.

Page 10: Barnier  Bernard et al

Meridional heat transport

Fig. 4 Meridional heat transport (in PW) averaged over year 8 to 10 of the G22 simulation for the Atlantic, Indo-Pacific, and Global oceans. The advective MHT (red curve) is calculated using a 5-day mean model meridional current velocities and temperatures. The surface flux MHT (blue curve) is calculated as the meridionalintegration of surface fluxes.

Page 11: Barnier  Bernard et al

Fig. 5 Global map of eddy kinetic energy (in cm2 s−2) in simulations G22 (3-year mean) and from satellite altimetry (Topex/Poseidon and ERS; Ducet et al. 2000)

Page 12: Barnier  Bernard et al

Difference among G22(PS+EEN), G03(FS+EEN) and G04(FS+ENS)

Fig. 6 Difference in the mean barotropic streamfunction (in Sv) between a simulations G22 and G04 indicating where both the partial step topography and EEN scheme play a role, and b between G03 and G04, both full step topography, indicating where advection scheme only has an impact. The red boxes identify the regions where model solution is compared to observation and other models. Color palette indicates Sv. Axes are subdivided by grid point numbers.

Page 13: Barnier  Bernard et al

Experiment ModelsModel Name

Code AREA Resolution Topography Momentum Advection

G22-ORCA-R025

NEMO Global 1 /4° Partial Step EEN

G04-ORCA-R025

NEMO Global 1/ 4° Full step ENS

OCCAM MOM Global 1/ 4° Partial Step Flux form

POP1/10 POP Global 1/10° Full step Flux form

ATL6 OPA Atlantic 1/6 ° Full step ENS

Page 14: Barnier  Bernard et al

Gulf Stream (SSH)

Fig. 7 Estimates of mean sea surface height (mssh in cm) in the North Atlantic from a observations (Niiler et al. 2003), b global ORCA-R025 model simulation G22 (PS + EEN), c global OCCAM model simulation, d global ORCA-R025 model simulation G04 (FS + ENS), e global POP1/10, and f Atlantic CLIPPER ATL6.

Page 15: Barnier  Bernard et al

Gulf Stream(EKE)

Fig. 8 Estimates of the mean eddy kinetic energy (eke in cm2 s−2) in the North Atlantic from a observations (Ducet et al. 2000), b global ORCA-R025 model simulation G22 (PS + EEN), c global OCCAM model simulation, d global ORCA-R025 model simulation G04 (FS + ENS), e global POP1/10, and f Atlantic CLIPPER ATL6 model simulation. All model results present a 3-year mean

Page 16: Barnier  Bernard et al

Conclusion

• The use of PS and EEN scheme dramatically affect the model result.

• EEN scheme with PS yields a remarkable improvement in the major circulation patterns.

• With these improvement, eddy-premitting model can obtain better results than some high-resolution model.