bài tập giải tích về liên tục hàm số

Upload: tranthevut

Post on 06-Apr-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    1/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 1

    BI TP V HM S VI BA VN LIN TC, KH VI, KH TCH

    Bi 1. Tm tt c cc hm s ( )u x tha mn ( ) ( )

    1

    2

    0

    u x x u t dt = + .

    Gii

    V ( )

    1

    2

    0

    u t dt l mt hng s nn ( )u x x C = + (C l hng s).

    Do ( )

    112 22

    0 0

    1 1

    2 8 2 4

    t Ct C dt C Ct C C C

    + = + = + = =

    .

    Vy ( ) 14

    u x x= + l hm s cn tm.

    Bi 2. Cho hm s :f tha mn iu kin: ( ) ( )19 19 f x f x+ + v

    ( ) ( )94 94 f x f x+ + vi mi x. Chng minh rng: ( ) ( )1 1 f x f x+ = + vi

    mi x .GiiLy mt s thc x bt k. p dng iu kin ban cho vi 19x v

    94x ta thu c:( ) ( )19 19 f x f x v ( ) ( )94 94 f x f x .

    By gita d dng chng minh bng quy np vi mi n ( ) ( )19 19 f x n f x n+ + , ( ) ( )94 94 f x n f x n+ +

    ( ) ( )19 19 f x n f x n , ( ) ( )94 94 f x n f x n .

    Ta c:( ) ( ) ( ) ( ) ( )1 5.19 94 5.19 94 5.19 94 1 f x f x f x f x f x+ = + + + = +

    ( ) ( ) ( )1 18.94 89.19 18.94 89.19 f x f x f x+ = + +

    ( ) ( )18.94 89.19 1 f x f x + = + .

    Vy ( ) ( )1 +1 f x f x+ = .Bi 3. Cho :f l hm kh vi cp hai vi o hm cp 2 dng.

    Chng minh rng: ( )( ) ( )f x f x f x+ vi mi s thc x.Gii+ Nu ( ) 0f x = th ( )( ) ( )f x f x f x+ = vi mi x : hin nhin.

    + Nu ( ) 0f x < th p dng nh l Lagrange trn on ( );x f x x+ ta

    c: ( ) ( )( ) ( ) ( )( )f x f x f x f c f x + = , ( )( );c x f x x + .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    2/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 2

    ( ) 0 f x f > l hm tng ( ) ( ) 0 f c f x < < . V vy

    ( ) ( )( ) 0f x f x f x + < .

    + Nu ( ) 0f x > th chng minh tng t nh trng hp ( ) 0f x < ta cng

    thu c ( ) ( )( ) 0f x f x f x + < .

    Bi 4 Cho 2x , chng minh ( )1 cos cos 11

    x xx x

    + >

    +.

    Gii

    Xt hm s: [ ): 2;f , ( ) cos f t t t

    = .

    p dng nh l Lagrange trn on [ ]; 1x x + i vi hm ( )f t

    tn ti [ ] ( )( ) ( )

    ( )( ) ( )

    1; 1 : 1

    1

    f x f xu x x f u f x f x

    x x

    + + = = +

    +

    Cn chng minh ( ) [ )cos sin 1 u 2;f uu u u

    = + > + .

    ( ) [ )2

    3cos 0 u 2; f u f

    u u

    = < + nghch bin trn [ )2;+

    ( ) ( )lim 1u

    f u f u

    > = .

    Vy ( )1 cos cos 11x x

    x x + >+

    [ )2;x + .

    Bi 5 Tn ti hay khng hm kh vi lin tc f tha mn iu kin

    ( ) ( ) ( )2 , f f sin x f x x x x< ?

    GiiKhng tn ti.Ta c:

    ( ) ( ) ( ) ( ) ( ) ( )2 2 20 0 0

    0 2 2 sin 2 1 cos x x x

    f x f f t dt f t f t dt tdt x = = =

    Suy ra: ( ) ( ) ( )2 2 0 2 1 cos 4f f + .Bi 6

    Gi s hm ( ) { ( ): ; \ 0 0; f a a + tho mn ( )( )01

    lim 2x

    f xf x

    + =

    .

    Chng minh rng ( )0

    lim 1x

    f x

    = .

    Gii

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    3/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 3

    Vi ( ) 0f x > , p dung bt ng thc Cauchy ta c: ( )( )

    12f x

    f x+ .

    ( )( )01

    lim 2 0, 0x

    f xf x

    + = > >

    sao cho ( )

    ( )

    10 2f x

    f x + <

    vi 0 x < < .

    Ta c: ( )( )

    ( )( )( )

    1 10 2 0 1 1 f x f x

    f x f x

    + < +

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    4/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 4

    bt ng thc ( ) ( ) f x x c tho mn trong ln cn khuyt ca 0 v

    ( )0

    lim 0x

    x

    = th t (*) suy ra c: ( )0

    lim 0x

    f x

    = .

    GiiV d

    Xt :f xc nh bi ( )( )1

    0

    n

    f x

    =

    ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )2 2 2 2x f x f x f x f x f x f x x = + +

    V ( ) ( ) ( ) ( )( )0

    lim lim 2 0x x

    x f x f x x

    = + = nn ( )0

    lim 0x

    f x

    = .

    Bi 9a) Cho v d v hm f tho mn iu kin ( ) ( )( )

    0lim 2 0x

    f x f x

    = nhng

    ( )0

    limx

    f x

    khng tn ti.

    b) Chng minh rng nu trong mt ln cn khuyt ca 0, cc bt ng thc

    ( )1

    , 12

    f x x

    < < v ( ) ( )2 f x f x x c tho mn th ( )0

    lim 0x

    f x

    = .

    Gii

    a) Xt :f

    xc nh bi ( )

    ( )1

    0

    n

    f x

    =

    b) ( )( )2 2

    x x x f x

    f x x

    . Do1

    12

    < < nn ( )0

    lim 0x

    f x

    = .

    Bi 10

    Cho trc s thc , gi s( )

    ( )limx

    f axg a

    x

    = vi mi s dng a. Chng

    minh rng tn ti c sao cho ( )g a ca= .

    Gii

    Ta c:( ) ( ) ( )

    ( ) ( ) ( )lim lim 1 1x t

    g a f ax f t g g a g a

    a a x t

    = = = = . Chn

    ( )1c g= ta c ( )g a ca= .

    Bi 11Gi s [ ]( )0;2f C v ( ) ( )0 2f f= . Chng minh rng tn ti 1 2, xx trong

    [ ]0;2 sao cho 2 1 1x x = v ( ) ( )2 1 f x f x= .

    nu1

    , n = 0,1,2,3,...2n

    x =

    nu ngc li

    nu ngc li

    nu 1 , n = 0,1,2,3,...

    2

    nx =

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    5/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 5

    Xt hm s ( ) ( ) ( )1g x f x f x= + , [ ]0;2x

    V [ ]( )0;2f C nn [ ]( )0;2g C .

    Ta c: ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )0 1 0 1 2 2 1 1g f f f f f f g= = = =

    Suy ra: ( ) ( ) ( )2

    0 1 1 0.g g g=

    V th tn ti [ ] ( ) ( ) ( )0 0 0 00;1 : 0 1 x g x f x f x = + = .

    Vy c th ly 2 0 1 01 , x x x x= + = .Bi 12Cho [ ]( )0;2f C . Chng minh rng tn ti 1 2,x x trong [ ]0;2 sao cho

    2 11x x = v

    ( ) ( ) ( ) ( )( )2 11

    2 02

    f x f x f f = .

    Gii

    Xt hm s: ( ) ( ) ( ) ( ) ( )( )1

    1 2 02

    g x f x f x f f = + , [ ]0;2x

    V [ ]( )0;2f C nn [ ]( )0;2g C .

    Ta c: ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1 1

    0 1 0 2 0 1 0 22 2

    g f f f f f f f = = +

    ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1 1

    1 2 1 2 0 1 0 22 2g f f f f f f f

    = = +

    Suy ra: ( ) ( )0 1g g = ( ) ( ) ( )( )2

    11 0 2 0

    2 f f f

    +

    .

    V th tn ti [ ] ( ) ( ) ( ) ( ) ( )( )0 0 0 01

    0;1 : 0 1 2 02

    x g x f x f x f f = + = .

    Vy c th ly 2 0 1 01 , x x x x= + = .Bi 13Vi n , gi [ ]( )0; f C n sao cho ( ) ( )0 f f n= . Chng minh rng tn

    ti 1 2;x x trong khong [ ]0;n tho mn 2 1 1x x = v ( ) ( )2 1 f x f x= .

    GiiXt ( ) ( ) ( ) [ ]1 , x 0; 1g x f x f x n= +

    ( ) ( ) ( )0 1 ... 1g g g n+ + +

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 2 1 ... 1 0 0f f f f f n f n f n f = + + + = =

    + Nu ( ) 0g k = , { }0,1, 2,..., 1k n th ta c ngay iu phi chng minh.

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    6/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 6

    + Nu {0,1, 2,..., 1k n : ( ) 0g k . Khng mt tnh tng qut gi s

    ( ) 0g k > th lc lun tm c { }, h 0,1,2,..., 1h k n sao cho

    ( ) 0g h < . Khi tn ti [ ]0 0; 1x n sao cho

    ( ) ( ) ( )0 0 00 1g x f x f x= + = .

    Vy c th ly2 0 1 01 , x x x x= + = .

    Bi 14Chng minh rng nu 1 2sin sin 2 ... sin sinna x a x a nx x+ + + vi x th

    1 22 ... 1na a na+ + + .

    Giit ( ) 1 2sin sin 2 ... sinn f x a x a x a nx= + + + ta c:

    ( )( ) ( )

    1 2 0

    02 ... 0 lim

    nx

    f x f a a na f

    x

    + + + = =

    ( ) ( ) ( )0 0 0

    sinlim lim . lim 1

    sin sin x x x f x f x f xx

    x x x x = = == .

    Bi 15Gi s ( )0 0f = v f kh vi ti im 0. Hy tnh

    ( )01

    lim ...2 3x x x x

    f x f f f x k

    + + + +

    vi k l mt s nguyn dng

    cho trc.GiiTa c:

    ( )0

    1lim ...

    2 3x x x x

    f x f f f x k

    + + + +

    ( ) ( )( ) ( ) ( )

    0

    0 0 00 1 1 12 3lim . . ... .

    0 2 30 0 02 3x

    x x x f f f f f f

    f x f k

    x x xx kk

    = + + + +

    = ( )( ) ( ) ( )

    ( )0 0 0 1 1 1

    0 ... 1 ... 02 3 2 3

    f f f f f

    k k

    + + + + = + + + +

    .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    7/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 7

    Bi 16Cho f l hm kh vi ti a v xt hai dy ( )nx v ( )ny cng hi t v a sao cho

    n n x a y< < vi mi n . Chng minh rng: ( ) ( ) ( )lim n n

    nn n

    f x f yf a

    x y

    =

    .

    Gii

    Ta c:( ) ( )

    ( )( ) ( ) ( ) ( )

    0 n n n n n n

    n n n n

    f x f y f x f y x f a y f af a

    x y x y

    + =

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( )( ) ( ) ( ) ( )( )

    ( ) ( ) ( )( ) ( ) ( ) ( )( )

    ( ) ( ) ( )( ) ( ) ( ) ( )( )

    ( ) ( )( )

    ( ) ( )( ) ( )0

    n n n n

    n n

    n n n n

    n n n n

    n n n n

    n n n n

    n n n n

    n n

    n n

    n n

    f x f y f a f a af a af a x f a y f a

    x y

    f x f a f a x a f y f a f a y a x y x y

    f x f a f a x a f y f a f a y a

    x y x y

    f x f a f a x a f y f a f a y a

    x a y a

    f x f a f y f a f a f a n

    x a y a

    + + +=

    =

    +

    +

    = +

    Vy( ) ( )

    ( )lim n nn

    n n

    f x f yf a

    x y

    =

    .

    Bi 17Cho f kh vi trn ( )0;+ v 0a > . Chng minh rng:

    a) Nu ( ) ( )( )limx

    af x f x M +

    + = th ( )limx

    Mf x

    a+= .

    b) Nu ( ) ( )

    ( )lim 2

    x

    af x x f x M +

    + = th ( )limx

    Mf x

    a+= .

    Giip dng quy tc Lpitan, ta c:

    a) ( )( ) ( )( )

    ( )

    ( ) ( )( )lim lim lim lim

    ax axax

    ax ax x x x xax

    e f x e af x f xe f xf x

    e aee+ + + +

    += = =

    ( ) ( )( ) ( ) ( )( )1 1

    lim lim .x x

    Maf x f x af x f x

    a a a+ + = + = + =

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    8/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 8

    b) Ta c:

    ( )( ) ( )( )

    ( )lim lim lim

    a xa x

    a x x x xa x

    e f xe f xf x

    ee

    + + +

    = =

    ( ) ( )2lim

    2

    a x

    xa x

    ae f x f xx

    ae

    x

    +

    +

    =

    ( ) ( )( ) ( ) ( )( )1 1

    lim 2 lim 2 .x x

    Maf x x f x af x x f x

    a a a+ + = + = + =

    Cu 18Cho f kh vi cp 3 trn ( )0;+ . Liu t s tn ti ca gii hn

    ( ) ( ) ( ) ( )( )limx f x f x f x f x+ + + +

    c suy ra s tn ti ca ( )limx f x+ khng?GiiKhng. Ly v d: ( ) ( )cos , x 0; f x x= + .Ta c:

    ( ) ( ) ( ) ( )( ) ( )lim lim cos sin cos sin 0x x

    f x f x f x f x x x x x+ +

    + + + = + =

    Nhng khng tn ti ( )lim lim cosx x

    f x x+ +

    = .

    Cu 19

    a) Gi s f xc nh v lin tc trn [ )0;+ , c o hm lin tc trn( )0;+ v tho mn ( )0 1f = , ( ) x 0x f x e . Chng minh rng tn ti

    ( )0 0;x + sao cho ( )0

    0

    x f x e

    = .

    b) Gi s f kh vi lin tc trn ( )1;+ v tho mn ( )1 1f = ,

    ( )1

    x 1f xx

    . Chng minh rng tn ti ( )0 1;x + sao cho

    ( )0 20

    1f x

    x = .

    Giia) t ( ) ( ) xg x f x e=

    f lin tc trn [ )0;+ g lin tc trn [ )0;+ g lin tc trn ti 0

    ( ) ( ) ( )0

    lim 0 0 1 0x

    g x g f +

    = = = .

    ( ) ( )0 lim 0xx

    f x e f x

    +

    =

    ( ) ( )( ) ( )lim lim lim lim 0x x x x x x

    g x f x e f x e

    + + + +

    = = = .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    9/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 9

    Do : ( ) ( ) ( ) ( )0 00

    lim lim 0; : 0xx

    g x g x x g x+ +

    = + = hay ( ) 00x

    f x e

    = .

    b) t ( ) ( )1

    g x f x x= f kh vi lin tc trn ( ) ( ) ( )

    11; lim 1 0

    x f x f

    +

    + = =

    ( ) ( )1 1

    1lim lim 0x x

    g x f xx

    + +

    = =

    .

    ( ) ( ) ( ) ( )1 1

    0 lim 0 lim lim 0 x x x

    f x f x g x f xx x+ + +

    = = =

    ( ) ( ) ( ) ( )0 01

    lim lim 1; : 0xx

    g x g x x g x+ +

    = + = hay ( )0 20

    1f x

    x

    = .

    Cu 20 Cho [ ]( ) ( ) ( )0 0

    0;1 : sin cos 1 M f C f x xdx f x xdx

    = = =

    .

    Tm ( )20

    minf M

    f x dx

    .

    Gii

    Cho ( ) ( )02

    sin cos f x x x

    = + .

    + R rng 0f M .

    + i vi hm bt k f M , ( ) ( )2

    00

    0 f x f x dx

    .

    Suy ra: ( ) ( ) ( ) ( ) ( )2 2 20 0 00 0 0 0

    8 4 42 f x dx f x f x dx f x dx f x dx

    = = = .

    Vy cc tiu t c khi0f f= .

    Cu 21Tm hm s ( )f x c o hm lin tc trn sao cho

    ( ) ( ) ( )( )2 2 2

    0 2011

    x

    f x f t f t dt = + +

    (1).GiiV hm s ( )f x c o hm lin tc trn nn ( )2f x c o hm lin tctrn .Ly o hm 2 v ca (1), ta c:

    ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )22 22 0f x f x f x f x f x f x f x f x = + = =

    ( ) x f x Ce = (2).

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    10/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 10

    T (1) suy ra: ( ) ( )2 0 2011 0 2011f f= = .

    Cho 0x = , t( ) ( )2 0 2011f C = = .

    Vy ( ) 2011 x f x e= .

    Cu 22Tm tt c cc hm s lin tc :f tho mn

    ( ) ( ) ( ) ( ) ( ) ( )1 2 2011 1 2 2011... ...f x f x f x f y f y f y+ + + = + + +

    vi mi b s tho mn:1 2 2011 1 2 2011

    ... ... 0 x x x y y y+ + + = + + + = .Giit ( ) ( ) ( )0 , g . f b x f x b= = Do : ( ) ( )0 0 0g f b= =

    v ( ) ( ) ( ) ( ) ( ) ( )1 2 2011 1 2 2011... ...g x g x g x g y g y g y+ + + = + + +

    vi mi b s tho mn : 1 2 2011 1 2 2011... ... 0 x x x y y y+ + + = + + + = .Trc ht cho

    1 2 2011 1 2 2009 2010 2011... 0 , x ... 0 , x , x y y y x x x x= = = = = = = = = =

    ta c: ( ) ( ) xg x g x = .

    Tip theo cho

    1 2 2011 1 2 2008 2009 2010 2011... 0 , x ... 0 , x , x , y y y x x x y x x y= = = = = = = = = = = ta c:

    ( ) ( ) ( ) ( ) ( ) ( )0 x,y x, yg x g y g x y g x y g x g y+ + = + = +

    y l phng trnh hm Cauchy, do : ( )g x ax= , ( )1a g= .

    Vy ( ) , a, b = const f x ax b= + .

    Cu 23Cho f lin tc trn on [ ];a b , kh vi trong khong ( );a b v

    ( ) ( ) 0 f a f b= = . Chng minh rng tn ti ( );c a b sao cho:

    ( ) ( )2011 f c f c = .

    GiiXt hm s: ( )

    ( )

    ( )2010

    x

    a

    f t dt

    g x e f x

    =

    V f lin tc trn on [ ];a b , kh vi trong khong ( );a b nn g lin tc trn

    on [ ];a b , kh vi trong khong ( );a b . Hn na ( ) ( ) 0g a g b= = suy ra tn

    ti ( ) ( ); : 0c a b g c = .

    M ( )( )

    ( ) ( )( )2010

    2011

    x

    a

    f t dt

    g x e f x f x

    = . Suy ra: ( ) ( )2011 f c f c = .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    11/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 11

    Cu 24Cho f lin tc trn [ ]0;2012 . Chng minh rng tn ti cc s

    [ ]1 2 1 2, 0;2012 , x 1006 x x x = tho mn: ( ) ( )( ) ( )

    2 12012 0

    2f f

    f x f x

    =

    Gii

    Xt hm s: ( )( ) ( ) ( ) ( )1006 2012 0

    1006 2012

    x f x f f F x

    + = , [ ]0;1006x .

    F lin tc trn [ ]0;1006 . Ta c:

    ( )( ) ( ) ( )

    ( ) ( ) ( ) ( )

    2 1006 2012 00

    2012

    2 1006 2012 010062012

    f f f F

    f f f F

    =

    =

    ( ) ( ) [ ] ( )0 00 1006 0 0;1006 : 0F F x F x = .

    [ ] ( ) ( )( ) ( )

    0 0 0

    2012 00;1006 : 1006

    2

    f f x f x f x

    + = .

    t 2 0 1 01006 , x x x x= + = ta c iu phi chng minh.Cu 25Cho s thc a [ ]0;1 . Xc nh tt c cc hm lin tc khng m trn [ ]0;1

    sao cho cc iu kin sau y c tha mn:a) ( )

    1

    0

    1 f x dx = b) ( )1

    0

    xf x dx a= c) ( )1

    2 2

    0

    x f x dx a= .

    Giip dng bt ng thc Bunhiacovski ta c:

    ( ) ( ) ( ) ( ) ( )2 21 1 1 1

    2

    0 0 0 0

    . . xf x dx x f x f x dx x f x dx f x dx =

    .

    M theo gi thit: ( ) ( ) ( )21 1 1

    2

    0 0 0

    .xf x dx x f x dx f x dx =

    .

    Do f lin tc trn [ ]0;1 nn ( ) ( ) [ ]0, x 0;1 x f x f x =

    Suy ra: ( ) [ ]0 x 0;1f x = . iu ny mu thun vi gi thit: ( )1

    0

    1 f x dx = .

    Vy khng tn ti hm f tho mn bi ton.Bi 26C tn ti hay khng hm s kh vi :f tho mn

    ( ) ( ) ( )20 1 , f x ? f x f x=

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    12/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 12

    GiiGi s hm f tho mn yu cu bi ton. V ( ) ( )2 0 x f x f x nn

    fng bin trn [ ) ( ) ( ) [ )0; 0 1 0 x 0; f x f + = > + .

    T gi thit bi ton ta c:( )

    ( )( ) [ )2

    0 0

    1, x 0;1

    1

    x xf tdt dt f x

    f t x

    .

    Do khng tn ti ( )1

    limx

    f x

    . iu ny mu thun vi gi thit f lin tc.

    Vy khng tn ti hm f tho mn bi ton.Cu 27C hay khng mt hm s :f tha mn: ( ) sin sin 2 f x y x y+ + + <

    vi x, y .GiiGii s tn ti hm f tho mn yu cu bi ton.

    + Cho , y =2 2

    x

    = , ta c: ( ) 2 2f + < .

    + Cho3

    , y =2 2

    x

    = , ta c: ( ) 2 2f < .

    Ta li c: ( )( ) ( )( ) ( ) ( )4 2 2 2 2 4 f f f f = + + + + + < . iu

    ny v l. Vy khng c hm s f no tho yu cu bi ton.

    Cu 28Tm tt c cc hm f(x) xc nh v lin tc trn sao cho( ) ( ) 0 x f x f x = .

    Gii

    t ( ) ( )( )2

    g x f x=

    ( ) ( ) ( )2 0 xg x f x f x = =

    ( ) ( ) ( )g x C const f x const f x ax b = = = = + x .

    Cu 29

    Cho :f sao cho ( ) ( ) a bf a f b a b < . Chng minh rngnu ( )( )( )0 0 f f f = th ( )0 0f = .GiiTa vit li iu kin i vi hm f(x) nh sau: ( ) ( )f a f b a b (*)

    Du = xy ra khi a = b.t ( ) ( )0 , y = f x f x= . Khi ( ) 0.f y =

    p dng bt ng thc ( )* lin tip ta c:

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    13/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 13

    ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0x x f x f y x f y f x y f f y x= = = =

    Suy ra: 0x y= = . Vy ( )0 0f = .

    Cu 30

    Hm ( )2

    3 12

    x x f x e x= c kh vi ti im 0x = hay khng?

    GiiTheo cng thc Taylor, ta c:

    ( ) ( )2 3 2 3

    3 31 12 6 2 6

    x x x x x xe x o x e x o x= + + + + = +

    ( ) ( ) ( )

    333

    3

    1

    6 6

    x

    f x o x x o x= + = +

    .

    Vy f(x) kh vi ti 0x = v ( )3

    10

    6f = .

    Cu 31Chng minh rng nu hm f(x) kh vi v hn ln trn th hm

    ( ) ( )0 f x f

    x

    c nh ngha thm lin tc ti x = 0 cng kh vi v hn

    ln.

    GiiVi 0x ta c:

    ( ) ( ) ( ) ( )( ) ( )

    ( )1 1

    0 0 0

    00

    x f x f f x f f t dt f ux xdu f ux du

    x

    = = =

    V ( )1

    0

    f ux du kh vi v hn ln vi mi x .

    Vy( ) ( )0 f x f

    x

    c nh ngha thm lin tc ti x = 0 kh vi v hn

    ln.

    Cu 32Cho ( )f x kh vi 2 ln tho ( ) ( )0 1 0f f= = ,

    [ ]( )

    0;1in 1

    xm f x

    = .

    Chng minh rng:[ ]

    ( )0;1

    max 8x

    f x

    .

    Giif lin tc trn [ ] [ ] ( )

    [ ]( )

    0;10;1 0;1 : in 1

    xa f a m f x

    = = .Suy ra c

    ( ) 0f a = , ( )0;1a .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    14/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 14

    Khai trin Taylor ti a: ( )( )( )

    ( )2

    12

    f a x a f x x a

    + = + , 0 1< < .

    + Vi 0x = , ta c: ( ) 210 12

    f ca

    = + , 10 c a< < .

    + Vi 1x = , ta c:( )

    ( )220 1 1

    2

    f ca

    = + , 2 1a c< < .

    Do : ( )1 22

    8f ca

    = nu1

    2

    a ; ( )( )

    22

    28

    1f c

    a =

    nu

    1

    2a .

    Vy[ ]

    ( )0;1

    max 8x

    f x

    .

    Cu 33

    Gi s ( )2011 1sin , x 0

    0 , x = 0

    xf x x

    =

    v hm ( )g x kh vi ti x = 0. Chng minh rng ( )( )g f x c o hm bng0 ti 0x = .Gii

    Ta c: ( )( )( )( ) ( )( ) ( )

    2011

    0 00

    1sin 00

    lim limh hx

    g h gg f h g f d h

    g f xdx h h =

    = =

    ( ) ( )2011 20112011 2011

    0 0 02011 2011

    1 1sin 0 sin 0

    1 1lim . sin lim . lim sin

    1 1sin 0 sin 0

    h h h

    g h g g h gh h

    h hh h

    h hh h

    = =

    V ( )2011 20111

    0 sin 0 0h h hh

    nn 20110

    1lim sin 0h

    hh

    = .

    Do : ( )( ) ( )0

    0 .0 0x

    dg f x g

    dx=

    = =

    Cu 34Hm f xc nh, kh vi trn ( )0; , + . Chng minh rng hm

    ( ) ( ) f x f x + khng gim khi v ch khi ( ) x f x e khng gim.

    Giit ( ) ( ) ( )h x f x f x= + ; ( ) ( ) xg x f x e= .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    15/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 15

    Suy ra: ( ) ( )( )x xe h x e f x = ; ( ) ( )xe g x f x = .

    Khi :( ) ( ) ( ) ( ) ( ) ( )( ) ( )

    0

    0x

    x x t g x e f x h x e f x h x e f t dt f

    = = =

    ( ) ( ) ( )0

    0x

    th x e h t dt f

    = .

    ( ) ( ) ( ) ( ) ( ) ( )0

    0x

    xh x f x f x e g x f t dt f

    = + = + +

    = ( ) ( ) ( )0

    0x

    x te g x e g t dt f

    + + .

    ( ) Gi s ( )h x khng gimKhi vi b > a ta c:

    ( ) ( ) ( ) ( )( ) ( )b

    b a t

    a

    g b g a e h b e h a e h t dt = (1)

    Theo nh l trung bnh ca tch phn tn ti

    ( ) ( ) ( ) ( )( )1

    ; :b b

    t t b a

    a a

    c a b e h t dt h c e dt h c e e

    = = (2)

    Thay (2) vo (1) ta c:

    ( ) ( ) ( ) ( ) ( ) ( )b a b a

    g b g a e h b e h a e h c e h c

    = + ( ) ( )( ) ( ) ( )( ) 0b ae h b h c e h c h a = + vi b c a> > .

    Do g(x) khng gim.( ) Gi s g(x) khng gim

    Khi vi b > a ta c:

    ( ) ( ) ( ) ( )( ) ( )b

    b a t

    a

    h b h a e g b e g a e g t dt = + (3)

    Theo nh l trung bnh ca tch phn tn ti

    ( ) ( ) ( ) ( )( )1; :b b

    t t b a

    a a

    c a b e g t dt g c e dt g c e e

    = = (4)Thay (4) vo (3) ta c:

    ( ) ( ) ( ) ( ) ( ) ( )b a b ah b h a e g b e g a e g c e g c = +

    ( ) ( )( ) ( ) ( )( ) 0b ae g b g c e g c g a = + vi b c a> > .Do h(x) khng gim.Vy bi ton chng minh xong.

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    16/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 16

    Cu 35Gi s ( )f C . Liu c tn ti cc hm s g(x) v h(x) sao cho x

    th ( ) ( ) ( )sin cosf x g x x h x x= + hay khng?GiiC. Chng hn xt cc hm s sau:

    ( ) ( ) ( ) ( )sin , h cosg x f x x x f x x= =

    Ta c: ( ) ( ) ( ) ( ) ( )2 2sin cos sin cosg x x h x x f x x f x x f x+ = + = .

    Cu 36Gi s :f c o hm cp 2 tho mn: ( ) ( )0 1, f 0 0f = = v

    ( ) ( ) ( ) [ )5 6 0 0; f x f x f x x + + . Chng minh rng:

    ( ) 2 33 2x x f x e e , [ )0;x + .GiiTa c:

    ( ) ( ) ( ) [ )5 6 0 0; f x f x f x x + +

    ( ) ( ) ( ) ( )( ) [ )2 3 2 0 0;f x f x f x f x x +

    t ( ) ( ) ( ) [ )2 , x 0;g x f x f x= + .

    Khi ( ) ( ) [ ) ( )( ) [ )33 0 , x 0; 0 ,x 0;xg x g x e g x + +

    ( )3x

    e g x

    tng trn [ )0;+ ( )( ) [ ) ( )( ) [ )2 22 , x 0; 2 0 x 0; x x x xe f x e e f x e + + +

    ( )2 2x xe f x e + tng trn [ )0;+

    ( ) ( ) [ )2 0 02 0 2 3 , 0;x xe f x e e f e + + = +

    ( ) 2 33 2x x f x e e , [ )0;x + .

    Cu 37Cho ( ): 0;f + c o hm cp 2 lin tc tho mn:

    ( ) ( ) ( ) ( )2

    2 1 2011 f x xf x x f x + + + vi mi x. Chng minh rng:( )lim 0

    xf x

    = .

    Giip dng quy tc Lpitan, ta c:

    ( )( )

    2

    2

    2

    2

    lim lim

    x

    xx x

    e f xf x

    e

    = =

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    17/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 17

    =

    ( )

    ( ) ( )( )

    ( ) ( )( )2 2

    2

    2

    2 2

    2 22

    22 2

    lim lim lim

    x x

    x

    x x x xx x

    e f x e f x xf xe f x xf x

    xee xe

    + +

    = =

    ( ) ( ) ( ) ( )( )

    ( )

    ( ) ( ) ( ) ( )2

    2

    2 22

    222

    2 1 2 1lim lim 0.

    11

    x

    xx x

    e f x xf x x f x f x xf x x f x

    xe x

    + + + + + += = =

    ++

    Cu 38

    Gi s hm s f lin tc trn [ ) ( )0; , 0 0 f x x+ v ( )lim 1x

    f xa

    x+= < .

    Chng minh rng tn ti 0c sao cho ( ) f c c= .

    Gii+ Nu ( )0 0f = th kt lun trn hon ton ng.

    + Nu ( )0 0f >

    t ( ) ( )g x f x x=

    V f lin tc trn [ )0;+ g cng lin tc trn [ )0;+ .

    Ta c: ( ) ( ) ( )0 0 0 0 0 x 0g f f= = > .

    ( ) ( )( )lim 1 0 : 1 0 :

    x

    f x f ba b b f b b

    x b+= < > < > < .

    Khi : ( ) ( ) 0g b f b b= < .

    ( ) ( ) [ ] [ ) ( ) ( )0 0 0; 0; : 0 0 :g g b c b g c c f c c + = = .Cu 39Gi s f c o hm trn mt khong cha [ ]0,1 , ( ) ( )0 0 , f 1 0f > < .

    Chng minh rng tn ti ( ) ( ) ( ) [ ]0 00;1 : x 0;1 x f x f x

    .Giif c o hm trn mt khong cha [ ]0,1

    [ ] ( ) ( )[ ]

    ( )0 0 0,10;1 : maxx x f x f x f x = .

    Ta s chng minh: 0 00, x 1x .Tht vy!

    ( ) ( )( ) ( )

    ( ) ( )( ]

    0

    0 0lim 0 0 0;1 : 0 x 0;x

    f x f f x f f h h

    x x+

    = > >

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    18/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 18

    ( ) ( ) ( ] ( )0 x 0; 0 f x f h f > khng phi l gi tr ln nht ca ( )f x

    trn [ ] 00,1 0x .

    ( ) ( )( ) ( )

    ( ) ( )[ )

    11

    1 1lim 1 0 0;1 : 0 x ;1

    1 1x f x f f x f

    f k k x x

    = < <

    ( ) ( ) [ ) ( )1 x ;1 1 f x f k f < khng phi l gi tr ln nht ca ( )f x

    trn [ ) 0;1 1k x .

    Cu 40Cho mt hm s f xc nh trn tho mn

    ( ) ( )0 0 , f sin x f x x= . Chng minh rng o hm ca f ti 0

    khng tn ti.

    GiiGi s ( )0f tn ti.

    0;2

    x

    ta c:

    ( ) ( )( )

    ( ) ( )0 0

    0 0sin sin0 lim lim 1

    0 0x x f x f f x f x x

    f x x x x

    + +

    +

    = =

    .

    Tng t ta cng chng minh c ( )10 1f <

    iu ny chng t ( )0f khng tn ti.

    Cu 41Gi s ( )f x kh vi trn ( );a b sao cho ( )lim , lim

    x a x bf x

    +

    = + = v

    ( ) ( ) ( )2 1 x ; f x f x a b + . Chng minh rng b a . Cho v d

    b a = .GiiCch 1

    Ta c: ( ) ( ) ( )( )

    ( )( )2 21 x ; 1 0 x ;1

    f x f x f x a b a b

    f x

    + +

    +

    ( )( ) ( ) ( )arctan 0 x ; arctan f x x a b f x x + + tng trn ( );a b

    Chuyn qua gii hn ta c:2 2

    a b b a

    + + .

    V d: cot , a = 0 , b =y x = .Cch 2

    Ta c: ( ) ( ) ( )( )

    ( )( )2 21 x ; 1 x ;1

    f x f x f x a b a b

    f x

    +

    +

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    19/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 19

    Ly tch phn hai v:( )

    ( ) ( )21 arctan

    1

    b bb

    aa a

    f xdx dx f x a b a b b a

    f x

    + .

    Cu 42

    Cho f l mt hm lin tc trn [ ]0;1 . Tm . Tm ( )1

    0

    lim nn

    f x dx

    .

    Gii

    Cho 0 1< < . Khi ta c: ( ) ( ) ( )1 1 1

    0 0 1

    n n n f x dx f x dx f x dx

    = + .

    + Theo nh l gi tr trung bnh ca tch phn tn ti

    [ ] ( ) ( )( ) ( ) ( )( )1 1

    0 00;1 : 1 lim 0 1n n nnc f x dx f c f x dx f

    = = .

    + t[ ]

    ( )0,1

    supx

    M f x

    = , ta c: ( ) ( )1 1

    1 1

    n n f x dx f x dx M

    .

    Vy ( ) ( )1

    0

    lim 0nn

    f x dx f

    = .

    Cu 43

    Cho f l mt hm lin tc trn [ ];a b v ( ) 0b

    a

    f x dx = . Chng minh rng tn

    ti ( ) ( ) ( ); :c

    a

    c a b f x dx f c = .

    Xt hm: ( ) ( )x

    x

    a

    g x e f t dt

    =

    g lin tc trn [ ];a b , kh vi trn ( );a b

    ( ) ( ) 0g a g b= = .

    Theo nh l Rolle tn ti ( ) ( ); : 0c a b g c = .

    M ( ) ( ) ( )

    x

    x

    ag x e f x f t dt

    = , v th ( ) ( ) ( )

    c c

    a a f c f t dt f x dx= = .

    Cu 44

    Gi s [ ]( );f C a b , a > 0 v ( ) 0b

    a

    f x dx = . Chng minh tn ti ( );c a b

    sao cho ( ) ( )c

    a

    f x dx cf c= .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    20/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUCphn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 20

    Gii

    Xt hm s: ( ) ( )1 x

    a

    g x f t dt x

    =

    g lin tc trn [ ];a b , kh vi trn ( );a b

    ( ) ( ) 0g a g b= = .

    Theo nh l Rolle tn ti ( ) ( ); : 0c a b g c = .

    M ( ) ( ) ( )21 x

    a

    g x xf x f t dt x

    =

    Do tn ti ( );c a b sao cho ( ) ( )c

    a

    f x dx cf c= .

    Cu 45Gi s f, g [ ]( );C a b . Chng minh rng tn ti ( );c a b sao cho

    ( ) ( ) ( ) ( )b b

    a a

    g c f x dx f c f x dx= .

    Gii

    Xt ( ) ( ) ( ) ( ), Gx x

    a a

    F x f t dt x g t dt = =

    Suy ra: ( ) ( )F x f x = , ( ) ( )G x g x =

    p dng nh l Cauhy ta c:

    c ( );a b :( ) ( )

    ( ) ( )

    ( )

    ( )

    F b F a F c

    G b G a G c

    =

    c ( );a b :

    ( )

    ( )

    ( )

    ( )

    b

    a

    b

    a

    f t dt f c

    g cg t dt

    =

    c ( );a b : ( ) ( ) ( ) ( )b b

    a a

    g c f x dx f c f x dx= .

    Cu 46

    Gi s f, g [ ]( );C a b

    . Chng minh rng tn ti ( );c a b

    sao cho( ) ( ) ( ) ( )

    c b

    a c

    g c f x dx f c f x dx= .

    Gii

    Xt hm: ( ) ( ) ( )x b

    a x

    F x f t dt g t dt =

    F lin tc trn [ ];a b , kh vi trn ( );a b v ( ) ( )F a F b= .

    V th theo nh l Rolle ta c: ( ) ( ); : 0c a b F c =

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    21/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 21

    M ( ) ( ) ( ) ( ) ( )b x

    x a

    F x f x g t dt g x f t dt =

    Do : ( ); :c a b ( ) ( ) ( ) ( )c b

    a c

    g c f x dx f c f x dx= .

    Cu 47Gi s f v g l hai hm s dng, lin tc trn [ ];a b . Chng minh rng tn

    ti ( );c a b sao cho( )

    ( )

    ( )

    ( )1

    c b

    a c

    f c g c

    f x dx g x dx

    =

    .

    Gii

    Xt hm: ( ) ( ) ( )x b

    x

    a x

    F x e f t dt g t dt =

    F lin tc trn [ ];a b , kh vi trn ( );a b v ( ) ( )F a F b= .

    Theo nh l Rolle ta c: ( );c a b : ( ) 0F c = .

    M: ( ) ( ) ( ) ( ) ( ) ( ) ( ) x b b x

    x

    a x x a

    F x e f t dx g t dx f x g t dt g x f t dt = +

    Do : ( );c a b : ( ) ( ) ( ) ( ) ( ) ( ) 0c b b c

    a c c a

    f t dx g t dx f x g t dt g x f t dt + =

    ( );c a b : ( )

    ( )

    ( )

    ( )1

    c b

    a c

    f c g c

    f x dx g x dx

    =

    .

    Cu 48Cho [ ]( )1 0;1f C . Chng minh rng tn ti ( )0;1c sao cho:

    ( ) ( ) ( )1

    0

    10

    2 f x dx f f c= + .

    Gii

    Ta c: ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1

    10

    0 0 01 1 1 f x dx f x d x x f x x f x dx= =

    ( ) ( ) ( )1

    0

    0 1 f x f x dx= .

    Theo nh l gi tr trung bnh ca tch phn:

    tn ti ( ) ( ) ( ) ( ) ( ) ( )1 1

    0 0

    10;1 : 1 1

    2c x f x dx f c x dx f c = = .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    22/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 22

    Do : tn ti ( )0;1c sao cho: ( ) ( ) ( )1

    0

    10

    2 f x dx f f c= +

    Cu 49Cho [ ]( )2 0;1f C . Chng minh rng tn ti ( )0;1c sao cho:

    ( ) ( ) ( ) ( )1

    0

    1 10 0

    2 6 f x dx f f f c = + + .

    Gii

    Ta c: ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1

    1

    00 0 0

    1 1 1 f x dx f x d x x f x x f x dx= =

    ( )

    ( )

    ( )

    ( )

    ( )

    12 21

    00

    1 1

    0 2 2

    x x

    f f x f x dx

    = + .p dng nh l gi tr trung bnh ca tch phn:

    tn ti ( )( )

    ( ) ( ) ( ) ( )2

    1 12

    0 0

    1 1 10;1 : 1

    2 2 6

    xc f x dx f c x dx f c

    = = .

    Do tn ti ( )0;1c sao cho: ( ) ( ) ( ) ( )1

    0

    1 10 0

    2 6 f x dx f f f c = + + .

    Cu 50

    Gi s [ ]( )1 0;1f C v ( )0 0f . Vi ( ]0;1x , cho ( )x tho mn

    ( ) ( )( )0

    x

    f t dt f x x= . Tm( )

    0limx

    x

    x

    +

    .

    Gii

    t ( ) ( )0

    x

    F x f t dt = .

    Suy ra: ( )0 0F = , ( ) ( ) ( ) ( ), FF x f x x f x = = .

    Ta c: ( ) ( )0 0 0F f = .

    Theo khai trin Taylor ta c: ( ) ( ) ( ) ( )2 210 02

    F x F x F x o x = + +

    ( ) ( ) ( ) ( )0 0F x F F x o x = + + ( ) ( ) ( ) ( )0 0F F F o = + +

    ( )( ) ( ) ( ) ( ) ( )0 0 f x x F x x F F o = = + +

    Khi : ( ) ( ) ( )2 21

    0 02

    F x F x o x + + = ( ) ( ) ( )0 0 x F F o + +

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    23/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 23

    ( )

    0

    1lim

    2xx

    x

    +

    = .

    Cu 51Cho f l mt hm lin tc trn v a b< , k hiu

    ( ) ( )2011b

    a

    g x f x t dt = + . Tnh o hm ca g.

    Gii

    Ta c: ( ) ( ) ( )2011

    2011

    2011b b x

    a a x

    g x f x t dt f u du+

    +

    = + =

    ( ) ( ) ( )2011 2011 2011g x f b x f a x = + + .

    Cu 52Cho f lin tc trn . Tm ( ) ( )( )

    0

    1lim

    b

    ha

    f x h f x dxh

    + .

    Giip dng nh l gi tr trung bnh ca tch phn, ta c:

    ( ) ( )( ) ( ) ( )b b h b

    a a h a

    f x h f x dx f x dx f x dx+

    +

    + =

    ( ) ( ) ( ) ( )b b h a h b

    a h b a a h

    f x dx f x dx f x dx f x dx+ +

    + +

    = +

    , [ ], 0,1 .

    ( ) ( )( ) ( ) ( )0

    1lim

    b

    ha

    f x h f x dx f b f ah

    + = .

    Cu 53

    Cho f l mt hm lin tc trn [ )0;+ tho mn ( ) ( )0

    limx

    x f x f t dt

    +

    c

    gii hn hu hn. Chng minh ( )lim 0x f x = .Gii

    t ( ) ( ) ( ) ( )0

    x

    F x f t dt F x f x= = .

    Khi gi s ( ) ( ) ( ) ( )( )0

    lim limx

    x x f x f t dt F x F x L

    + = + =

    ( ) ( ) ( ) ( )a b h

    a h b

    f x dx f x dx hf a h hf b h +

    +

    = + = + + +

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    24/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 24

    p dng quy tc Lpitan ta c:

    ( )( ) ( )( )

    ( )

    ( ) ( )( )( ) ( )( )lim lim lim lim lim

    x xx

    x x x x x x xx

    e F x e F x F xe F xF x F x F x Le ee

    +

    = = = = + =

    Suy ra: ( ) ( )lim lim 0x x

    f x F x

    = = .

    Cu 54Chng minh rng nu f kh tch Riemann trn [ ];a b th

    ( ) ( ) ( ) ( )2 2

    2sin cosb b b

    a a a

    f x xdx f x xdx b a f x dx

    +

    .

    Gii

    p dng bt ng thc Schwarz, ta c:

    ( ) ( )

    ( ) ( ) ( ) ( )

    2 2

    2 2 2 2 2

    sin cos

    sin cos

    b b

    a a

    b b b b b

    a a a a a

    f x xdx f x xdx

    f x dx xdx f x dx xdx b a f x dx

    +

    + =

    Cu 55Chng minh rng nu f dng v kh tch Riemann trn [ ];a b th

    ( ) ( ) ( )

    2b b

    a a

    dx

    b a f x dx f x .

    Hn na nu ( )0 m f x M < th ( )( )

    ( )( )

    22

    4

    b b

    a a

    m Mdx f x dx b a

    f x mM

    + .

    Gii+ p dng bt ng thc Cauchy Schwarz, ta c:

    ( ) ( )( )

    ( )( )

    2

    2 1.

    b b b

    a a a

    dxb a f x dx f x dx

    f xf x

    = .

    + V ( )0 m f x M < nn ( )( ) ( )( )( )

    0 , a x b f x m f x M

    f x

    Ta c:

    ( )( ) ( )( )( )

    ( ) ( )( )

    0 0b b b b

    a a a a

    f x m f x M dxdx f x dx m M dx mM

    f x f x

    + +

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    25/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 25

    ( )( )

    ( )( )( )

    ( )( ) ( ) .b b b b

    a a a a

    dx dx f x dx mM m M b a mM m M b a f x dx

    f x f x + + +

    Do : ( )( )

    ( )( ) ( ) ( )2b b b b

    a a a a

    dxmM f x dx m M b a f x dx f x dx

    f x

    +

    Xt hm s: ( ) 2 y g t t kt = = + .

    Hm st cc i ti2

    kt= vi gi tr cc i l

    2

    4

    k.

    Vi ( )( ) ( ), t =b

    a

    k m M b a f x dx= + ta c:

    ( )( ) ( ) ( ) ( ) ( )

    2 22

    4

    b b

    a a

    m M b am M b a f x dx f x dx

    + + .

    Do : ( )( )

    b b

    a a

    dxmM f x dx

    f x

    ( ) ( )2 2

    4

    m M b a+

    ( )( )

    b b

    a a

    dx f x dx

    f x

    ( ) ( )2 2

    4

    m M b a

    mM

    + .

    Cu 56Cho f lin tc trn [ ];a b sao cho vi mi [ ] [ ]; ;a b ta c:

    ( )1

    f x dx M

    +

    vi 0 , >0M > .

    Chng minh rng ( ) 0f x = trn [ ];a b .

    GiiVi mi [ ]0 ; x a b , chn h thuc b sao cho [ ]0 ; x h a b+ .Khi theo nh l trung bnh ca tch phn: tn ti c gia 0x v 0x h+

    sao cho ( ) ( ) ( )0

    0

    1x h

    x

    f c h f x dx h f c M h

    ++

    = .

    Cho 0h ta c ( ) [ ]0 00 x ; f x a b . Suy ra: ( ) 0f x = trn [ ];a b .

    Cu 57

    Cho f lin tc trn [ ];a b . t ( )1 b

    a

    c f x dxb a

    =

    . Chng minh rng:

    ( ) ( )2 2

    b b

    a a

    f x c dx f x t dx t .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    26/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 26

    Gii

    Xt ( ) ( ) ( ) ( )2 2 22

    b b b

    a a a

    g t x t dt b a t f x dx t f x dx

    = = +

    .

    g(t) l tam thc bc hai theo t, g(t) t cc tiu ti ( )01 b

    a

    t f x dx cb a

    = =

    .

    Vy ( ) ( )2 2

    b b

    a a

    f x c dx f x t dx t .

    Cu 58Cho f l mt hm thc kh vi n cp 1n + trn . Chng minh rng vi

    mi s thc , , a < ba b tho mn( ) ( ) ( ) ( )

    ( ) ( )( )

    ( )

    ...ln

    ...

    n

    n

    f b f b f bb a

    f a f a f a

    + + +=

    + + +

    tn ti ( );c a b sao cho ( ) ( ) ( )1n

    f c f c+

    = .

    GiiVi a, b l s thc, a b< ta c

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ...ln

    ...

    n

    n

    f b f b f bb a

    f a f a f a

    + + +=

    + + +

    ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )... ...n na bf a f a f a e f b f b f b e + + + = + + +

    Xt hm s

    : ( ) ( ) ( )

    ( )

    ( )( )...n x

    g x f x f x f x e

    = + + +

    Ta c g(x) kh vi trn v ( ) ( )g a g b= .

    Theo nh l Rolle tn ti ( ) ( ); : 0c a b g c = .

    M ( ) ( ) ( ) ( )( )1nxg x e f x f x+ = .

    Do : ( ) ( ) ( )1n

    f c f c+

    = .

    Cu 59Cho [ ): 0;f + l mt hm lin tc kh vi. Chng minh rng:

    ( ) ( ) ( ) [ ] ( ) ( )

    21 1 1

    3 20,1

    0 0 00 maxx f x dx f f x dx f x f x dx

    .

    Giit

    [ ]( )

    0,1maxx

    M f x

    = .

    Khi ( ) [ ] ( ) [ ]x 0;1 x 0;1 f x M M f x M . Nhn ( ) 0f x

    vo tng v ca bt ng thc ny ta c :( ) ( ) ( ) ( ) Mf x f x f x Mf x , [ ]0;1x

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    27/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 27

    Suy ra: ( ) ( ) ( ) ( )0 0 0

    x x x

    M f t dt f t f t dt M f t dt

    ( ) ( ) ( ) ( )2 20 0

    1 1 02 2

    x x

    M f t dt f x f M f t dt . n y ta tip tc nhn

    ( ) 0f x vo tng v ca bt ng thc ny c:

    ( ) ( ) ( ) ( ) ( ) ( ) ( )3 20 0

    1 10

    2 2

    x x

    Mf x f t dt f x f f x Mf x f t dt , [ ]0;1x .

    Ly tch phn 2 v trn [ ]0;1 ca bt ng thc ny:

    ( )21

    0

    M f x dx

    ( ) ( ) ( ) ( )21 1 1

    3 2

    0 0 0

    0 f x dx f f x dx M f x dx

    ( ) ( ) ( ) ( )21 1 1

    2 2

    0 0 0

    0 f x dx f f x dx M f x dx

    hay ( ) ( ) ( )[ ]

    ( ) ( )1 1 1

    3 2

    0,10 0 0

    0 maxx

    f x dx f f x dx f x f x dx

    .

    Cu 60

    Cho [ ): 0;f + kh vi v tho mn ( ) ( )( )2 2

    11 1 , f f x

    x f x= =

    +.

    Chng minh rng tn ti gii hn hu hn ( )limx f x+ v b thua 1 4

    + .

    Gii

    ( )( )

    [ )2 21

    0 x 0;f x x f x

    = > ++

    f(x) ngbin ( ) ( )1 1 x > 1 f x f > = .

    T ta c: ( ) ( ) 2 11 1

    11 1 arctan 1

    1 4

    x xx

    f x f t dt dt t t

    = + < = + < +

    + .

    Vy tn ti gii hn hu hn ( )limx f x+ v b thua 1 4

    + .Cu 61Tm tt c cc hm ( )f x tho mn iu kin: ( ) ( )1 2 x f x f x + = .

    GiiNhn xt: ( )1 112 2.2 2 2 2 x x x x x + = = Ta c: ( ) ( )1 2 x f x f x + = ( ) ( ) ( )1 1 11 2 2 x

    x x f x f x

    + + + = +

    t ( ) ( ) 12 xg x f x = + ( ) ( )1 xg x g x+ = . Vy ( ) ( ) 12 x f x g x = ,

    vi g l hm tun hon c chu k 1T = .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    28/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 28

    Cu 62Cho f l hm lin tc trn [ )0;+ v tho mn ( )0 3 1 xf x< < ( )0;x + .

    Chng minh rng hm s ( ) ( ) ( )3

    3

    0 0

    3x x

    g x t f t dt tf t dt =

    l hm sng

    bin trn ( )0;+ .

    Gii

    Ta c: ( ) ( ) ( ) ( ) ( ) ( )2 2

    3 2

    0 0

    9 3x x

    g x x f x xf x tf t dt xf x x tf t dt

    = =

    Li c: ( ) ( ) ( )2 2

    2 2

    0 0 0 0

    0 3 1 3 3 0 x x x x

    tf t dt dt x tf t dt x x tf t dt

    < < = < >

    Kt hp vi ( ) ( )0 0; xf x x> + , ta suy ra: ( ) ( )0 x 0;g x > + .

    Vy ( )g x l hm sng bin trn ( )0;+ .

    Cu 63Cho hm s: [ ]( )2 0,2f C v ( ) ( ) ( )0 2010, f 1 2011, f 2 2012f = = = .

    Chng minh rng tn ti ( )0;2c sao cho ( ) 0f c = .

    Gii+ p dng nh l Lagrange cho hm s f trn [ ] [ ]0;1 , 1;2

    ( ) ( ) ( ) ( )1 0 2011 20100;2 : 11 0 1 0

    f fa f a = = =

    ( ) ( )( ) ( )2 1 2012 2011

    0;2 : 12 1 2 1

    f fb f b

    = = =

    + V f kh vi trn [ ]0;2 v ( ) ( ) f a f b = nn theo nh l Rolle tn ti

    ( ) ( )0;2 : 0c f c = .

    Cu 64Tn ti hay khng hm lin tc :f + + tho mn cc iu kin:

    ( ) ( )( ) f 2011 2012i f< ( ) ( )( ) 1fii f xx

    = .

    Gii+ Trc ht ta chng minh f l n nh.

    1 2,x x+ , ta c:

    ( ) ( ) ( )( ) ( )( )1 2 1 2 1 21 2

    1 1f x f x f f x f f x x x

    x x= = = = .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    29/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 29

    + f lin tc v n nh suy ra fn iu. Kt hp vi iu kin (i) suy ra f

    ng bin trn + . Khi ( )( )1

    f f xx

    = cng l hm ng bin. iu ny

    v l v1

    yx

    = l hm nghch bin.

    Vy khng tn ti hm f tho mn yu cu bi ton.Cu 65Cho f xc nh trn [ ]0;1 tho mn: ( ) ( )0 1 0f f= = v

    ( ) ( ) [ ]x, y 0,12

    x y f f x f y

    + +

    .

    Chng minh rng: phng trnh ( ) 0f x = c v s nghim trn on [ ]0,1 .GiiCho x y= , t gi thit ta c: ( ) ( ) ( ) [ ]2 0 x 0,1 f x f x f x .

    Ta c: ( ) ( )1 1

    0 0 1 0 02 2

    f f f f

    + = =

    .

    Ta s chng minh1

    02n

    f

    =

    n (1)

    + (1) ng vi 0, 1n n= = .

    + Gi s (1) ng n n k= , tc l: 1 02kf =

    .

    + Ta c: ( )1 11 1 1

    0 0 0 02 2 2k k k

    f f f f + +

    + = =

    . Do (1) ng

    n n k= .Vy phng trnh ( ) 0f x = c v s nghim trn on [ ]0,1 .

    Cu 66Cho hm s ( )f x lin tc trn tho mn iu kin:

    ( )( ) ( ) 1 xf f x f x = v ( )1000 999f = . Hy tnh ( )500f .Gii

    Vi 1000x = , ta c: ( )( ) ( ) ( )1

    1000 1000 1 999999

    f f f f = = .

    Xt hm s: ( ) ( ) 500g x f x=

    f lin tc trn f lin tc trn [ ]999;1000 g lin tc trn [ ]999;1000 .

    ( ) ( )1

    999 999 500 500 0999

    g f= = <

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    30/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 30

    ( ) ( )1000 1000 500 999 500 0g f= = >

    Suy ra: ( ) ( ) ( ) ( )0 0999 . 1000 0 999;1000 : 0g g x g x< =

    ( ) ( )0 0999;1000 : 500 x f x = .

    Thay 0x x= ta c ( )( ) ( ) ( )0 01

    1 500500

    f f x f x f = = .

    Cu 67Cho hm s :f tho mn iu kin:

    ( ) ( ) ( )2 x, y

    3

    f x f y f xyx y

    = + + (1) . Hy xc nh gi tr c th

    c ca ( )2011f .

    GiiCho 0x y= = thay vo (1) ta c:

    ( ) ( )( ) ( )

    ( )

    ( )

    22

    0 20 02 0 0 6 0

    3 0 3

    ff ff f

    f

    = = =

    =

    + Xt ( )0 2f = . Khi :( ) ( ) ( )

    ( )0 0 3

    2 23 2

    f x f f x f x x

    = + = .

    Thay vo (1) thy khng tho.+ Xt ( )0 3f = , khi ( ) 3 f x x= + . Thay vo (1) thy tho mn.

    Vy ( )2011 2011 3 2014f = + = .

    Cu 68Cho hm s :f tho mn iu kin

    ( ) ( )3 32 2 x, y f x y f y x+ = + .Chng minh rng f l hm hng.GiiVi mi a, b thuc , chng minh tn ti ,x y sao cho:

    3 32 , y 2 x y a x b+ = + = .

    R rng ( ) ( ) f a f b f

    =

    l hm hng.

    Xt h phng trnh:

    323 3

    33

    22 02

    222

    a x x y a y a x

    x b y x b

    y x b

    + = =

    + = + = + =

    .

    y l phng trnh a thc bc l ( bc 9) i vi x nn lun c nghimtrn . Suy ra h trn lun c nghim (x, y).Vy f l hm hng.

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    31/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 31

    Cu 69Tm gi tr ca k sao cho tn ti hm lin tc :f tho mn:

    ( )( ) 9 x f f x kx= .Gii- Trng hp: k = 0 th hm ( ) 0 f x x= tho mn yu cu bi ton.

    - Trng hp: 0k + fn iu+ f l mt n nh. Tht vy! ,x y ,

    ( ) ( ) ( )( ) ( )( ) 9 9 9 9 f x f y f f x f f y kx ky x y x y= = = = = .V f lin tc v l n nh nn fn iu thc s

    Nu f tng thc s.Khi :

    ( ) ( ) ( )( ) ( )( ) ( )( )x y f x f y f f x f f y f f x< < < tng thc s. Nu f gim thc s

    ( ) ( ) ( )( ) ( )( ) ( )( )x y f x f y f f x f f y f f x< > < gim thc s.

    Vy ( )( ) f f x l hm tng thc, v th 9 y kx= cng l hm tng thc s.Do 0k > .

    Ngc li vi k > 0, ta lun tm c hm ( ) 34 x f x k x= .

    Cu 70Tn ti hay khng hm s :f sao cho vi mi x, y thuc ta c:

    ( ) ( ){ } ( )( )max , min , f xy f x y f y x= + .GiiThay 1x y= = ta c

    ( ) ( ){ } ( ){ } ( )1 max 1 ,1 min 1 ,1 1 1 0 1 f f f f = + = + = ( V l).Vy hm f khng tn ti.Cu 71

    Tm ( ) ( )1 2 2

    0

    min 1f

    K x f x dx

    = + , y [ ]( ) ( )1

    0

    0,1 : 1 f C f x dx = =

    .

    Gii p dng bt ng thc Schwarz ta c:

    ( ) ( ) ( ) ( )221 1 1 1

    2 2 2

    220 0 0 0

    11 1 1 .

    1 41

    dx f x dx x f x dx x f x dx K

    xx

    = = + + =

    + +

    Suy ra: ( ) ( )1

    2 2

    0

    4min 1

    fK x f x dx

    = + .

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    32/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 32

    Cu72 Gi s rng f v g l cc hm kh vi trn [ ]a;b ; trong

    ( ) ( )g x 0 , g x 0 . Chng minh rng tn ti ( )c a;b sao cho:

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( )

    f a f b f c g cdet det

    g a g b f c g c

    g b g a g c

    =

    .

    Gii

    Xt hai hm s: ( )( )

    ( )( )

    ( )

    f x 1h x , k x

    g x g x= = kh vi trn [ ]a;b .

    p dng nh l Cauchy ta c:

    ( ) ( ) ( )( ) ( )

    ( )( )

    h b h a h cc a;b : k b k a k c =

    ( )

    ( )

    ( )

    ( )

    ( )

    ( ) ( )

    ( ) ( ) ( ) ( )

    ( )( )( )

    ( )( )

    2

    2

    f c g c f c g cf b f ag cg b g a

    c a;b :1 1 g c

    g b g a g c

    =

    Cu 73 Chng minh rng: ( )f x arctan x= tho mn phng trnh:

    ( )

    ( )

    ( ) ( )

    ( )

    ( ) ( )( )

    ( )

    ( )

    n n 1 n 22

    1 x f x 2 n 1 f x n 2 n 1 f x 0

    + + + = v

    i x

    vn 2 .Gii

    ( )f x arctan x=

    ( ) ( ) ( )221

    f x 1 x f x 11 x

    = + =+

    (1)

    Ly o hm hai v ca (1) suy ra: ( ) ( ) ( )21 x f x 2xf x 0 + + = .Bng quy np ta chng minh c:

    ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )n n 1 n 221 x f x 2 n 1 xf x n 2 n 1 f x 0 + + + =

    ( )x , n 2

    + Mnh ng trong trng hp n = 2.+ Gi s mnh ng n n k= tc l: ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )k k 1 k 221 x f x 2 k 1 xf x k 2 k 1 f x 0 + + + = (*)Ly o hm hm hai v ca (*) ta c

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    33/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 33

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    ( )

    ( )

    ( ) ( )( )

    ( )

    ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    k k 1 k 12

    k k 1

    k 1 k k 12

    2xf x 1 x f x 2 k 1 f x

    2 k 1 xf x k 2 k 1 f x 0

    1 x f x 2kxf x k 1 kf x 0

    +

    +

    + + +

    + + =

    + + + =

    Cu 74 Cho f l hm kh vi n cp n trn ( )0;+ . Chng minh rng vi

    x 0> ,

    ( ) ( )( )n

    nn n 1

    n 1

    1 1 1f 1 x f

    x x x

    +

    =

    Gii+ Mnh ng trong trng hp n 1= .

    + Gi s mnh ng trong trng hp n k , tc l:( ) ( )

    ( )kkk k 1

    k 1

    1 1 1f 1 x f

    x x x

    +

    =

    + Ta s chng minh mnh trn ng vi n k 1= + .Tht vy!

    ( )( )

    ( )

    ( )

    ( )( )

    kk 1 k

    k 1 k k 1k k k 1 k 21 1 1 11 x f 1 x f 1 kx f x f x x x x

    +

    + +

    = =

    = ( )

    ( )

    ( )( )k k

    k 1 k 1k 1 k 21 11 k x f 1 x f x x

    + +

    ( ) ( )( )k

    k 1k k 2

    k 1

    k 1 1f 1 x f

    x x x

    +

    =

    .

    Li c: ( )( )

    ( )( )k k 1

    k 1 k 1k 2 k 21 11 x f 1 x f x x

    =

    Theo gi thit quy np vi trng hp n k 1= ta c:( ) ( )

    ( )k 1

    k 1k k 2

    k

    1 1 1f 1 x f

    x x x

    =

    .

    T suy ra( )( )

    ( )

    k 1k 1 k 1k

    k 2

    1 1 11 x f f

    x x x

    +

    + +

    +

    =

    .

    Vy bi ton c chng minh xong

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    34/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    VN PH QUC, SV. HSP TON KHO K07, H QUNG NAM WWW.MATHVN.COM 34

    Cu 75 Cho f kh vi trn ( )a;b sao cho vi ( )x a;b ta c:

    ( ) ( )( )f x g f x = , trong g ( )C a;b . Chng minh f C ( )a;b .GiiTa c: ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )f x g f x f x g f x f x g f x g f x = = =

    ( ) ( )( ) ( )( )( ) ( )( )( ) ( )( )2 2

    f x g f x g f x g f x g f x = +

    Do f , f u lin tc trn ( )a;b .

    Chng minh bng quy np ta c ( ) ( )nf n 3 u l tng cc o hm( ) ( )kg f vi k 0;n 1= . T suy ra iu phi chng minh.

    Cu 76 Cho [ ]f : ; 1;12 2

    l mt hm kh vi c o hm lin tc v

    khng m. Chng minh tn ti 0x ;2 2

    sao cho

    ( )( ) ( )( )2 2

    0 0f x f x 1+ .

    Gii

    Xt hm s:

    ( )

    g : ; ;2 2 2 2

    x arctan f x

    g l hm lin tc trn ;2 2

    . Nu ( )f x 1 th g kh vi ti mi x v

    ( )( )

    ( )( )

    f xg x

    1 f f x

    =

    .

    Nu tn ti 0x ;2 2

    sao cho

    ( )

    ( )

    0

    0

    f x 1

    f x 1

    =

    = th0x l cc tra phng

    ca hm f nn theo nh l Fermat ta suy ra c ( )0f x 0 = . V th ta c:

    ( )( ) ( )( )2 2

    0 0f x f x 1+ = .

    Nu ( )f x 1 x ;2 2

    th p dng nh l Lagrange cho hm g trn

    on ;2 2

    :

  • 8/2/2019 Bi tp gii tch v lin tc hm s

    35/35

    www.MATHVN.com- N THI OLYMPIC TON SINH VIN TON QUC phn GII TCH

    ( )

    ( )( )

    00 2

    0

    f xx ; : g g

    2 2 2 2 2 21 f x

    =

    .

    D thy:( )

    ( )( )

    0

    2

    0

    f x0

    1 f x

    .

    Vy ta chng minh c ( )( ) ( )( )2 2

    0 0f x f x 1+ .

    Cu 77Cho f kh vi trn [ ]a;b v tho mn:

    a) ( ) ( )f a f b 0= = b) ( ) ( ) ( ) ( )f a f a 0 , f b f b 0+ = > = > .

    Chng minh rng tn ti ( )c a;b sao cho ( )f c 0= v ( )f c 0 .GiiT gi thit suy ra f bng 0 ti t nht mt im trong khong ( )a;b .

    t ( ) ( ){ }c inf x a;b : f x 0= = , ta c ( )f c 0= .

    V ( )f a 0 > nn ( ) ( )f x 0 x a;c> . Hn na ( )f c tn ti nn

    ( )( ) ( ) ( )

    h 0 h 0

    f c h f c f c hf c lim lim 0

    h h + +

    = = .

    Cu 78

    Cho ( )f x l hm s c o hm ti im 0x 2011= v n . Chng minh

    rng: ( ) ( )n

    1 2011nlimn f f 2011 f 2011

    n+

    =

    .

    GiiV f c o hm ti im 0x 2011= nn theo nh ngha ta c:

    ( ) ( )( )0 0x 0

    f 2011 x f xlim f x

    x +

    =

    Xt ring: Nu ly1

    x

    n

    = , ta c x 0 khi n .

    Ta c:

    ( )( )

    ( )n n

    1f 2011 f 2011

    1 2011n nlimn f f 2011 lim f 20111nn

    + + = =

    .