ba 7679-13, 1 structural dynamics testing on pulse using me'scope

44
BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

Upload: emiliano-perkinson

Post on 31-Mar-2015

269 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 1

Structural Dynamics Testing on PULSE using ME'scope

Page 2: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 2

Structural Dynamic Testing Term differentiating it from Static Analysis and Testing Modal Analysis and Modal Testing Operational Deflection Shapes

Objectives What is Modal Testing Why do Modal Testing How to do Modal Testing Brüel & Kjær Solution to Modal Testing

Structural Dynamic Testing

Page 3: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 3

Modal Analysis vs Operational Deflection Shapes

Modal Analysis

– artificial excitation (hammer, 1 or more shakers)

– input force is well known (“under our control”)

Operational Deflection Shapes

– investigation (visualisation) of structure behaviour under “running conditions”

– input forces not known and complicated to describe

Structural Dynamic Testing

Input

Output

Page 4: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 4

Present day demands Increasing speed in transportation Higher fuel economy Both demands achieved by reducing the mass of structures

Consequences Structures become inherently weak Resonances move down into frequency regions of excitation

forces Structures fail because of dynamic loads Statics studied for over a century

Introduction to Modal Testing

Page 5: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 5

Modal Testing

What

Why

How

Brüel & Kjær Solution

Page 6: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 6

Definition of Modal Testing

To construct a mathematical model of the vibrational properties and behaviour of a

structure by experimental means

Natural Frequency

Modal Damping

Residues

Page 7: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 7

Modal Parameters

Theoretician Eigenvalue Percent Damping Eigenvector

Experimentalist Natural Frequency Loss Factor Mode Shape

Frequency

Distance

Amplitude

Frequency Domain ViewModal

Domain

V

iew

FirstMode Second

ModeThirdMode

Force

Beam

Page 8: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 8

Modal Testing

What

Why

How

Brüel & Kjær Solution

Page 9: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 9

Frequency Response Function

Trouble Shooting

Vibration responseduring operation

High responses

Page 10: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 10

What if … scenarios

Structural Dynamics ModificationMass

Stiffness

Tuned absorber

Move resonance frequency

Forced Response Simulation

How will a structure behave when one or more forces are applied?

SDM and FRS (Assumes validated Modal Model)

High response Low responsePreviousresponse

Page 11: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 11

Why do Modal Testing

Trouble shooting– To reduce excessive vibration levels

FE-modelling– To ensure resonances are away from excitation frequency

– Validation by testing on prototypes

– Refinement of the mathematical model through inclusion of damping

– Prerequisite in aircraft industry

– Today also commonly used in automotive industry Structural assembly analysis

– To predict the dynamic behaviour of assembled sub-components Simulation of “what if” scenarios

– Determination of forces

– Response to complex excitation

Page 12: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 12

What

Why

How

Brüel & Kjær Solution

Modal Testing

Page 13: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 13

How to do Modal Testing

Modeling Geometry Degree of Freedom definition X or XYZ direction

Measurements Frequency Response Functions Hammer or shaker excitation Coherence Function for validation

Curve fitting Frequency Damping Residues

Validation MAC (Modal Assurance Criteria) Modal Confidence Factor Phase Scatter ........

1

2

3

4

Page 14: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 14

ExcitationResponse

ForceMotion

InputOutput

H() = = =

Determination of the inherent properties of the system

Excitation of the system by a known force Measurement of the Output Relating the Output to the Input

Frequency Response Function:

The FRF shows the inherent properties of a dynamic system — independent of the excitation force and type

System Analysis

Input

Output

Page 15: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 15

Frequency Response Function

Input

Output Time DomainFrequency Domain

Frequency Response H1(Response,Excitation) - Input (Magnitude)Working : Input : Input : FFT Analyzer

0 200 400 600 800 1k 1,2k 1,4k 1,6k

100m

10

[Hz]

[(m/s²)/N]Frequency Response H1(Response,Excitation) - Input (Magnitude)Working : Input : Input : FFT Analyzer

0 200 400 600 800 1k 1,2k 1,4k 1,6k

100m

10

[Hz]

[(m/s²)/N]

Autospectrum(Excitation) - InputWorking : Input : Input : FFT Analyzer

0 200 400 600 800 1k 1,2k 1,4k 1,6k

100u

1m

10m

100m

1

[Hz]

[N] Autospectrum(Excitation) - InputWorking : Input : Input : FFT Analyzer

0 200 400 600 800 1k 1,2k 1,4k 1,6k

100u

1m

10m

100m

1

[Hz]

[N]

Autospectrum(Response) - InputWorking : Input : Input : FFT Analyzer

0 200 400 600 800 1k 1,2k 1,4k 1,6k

1m

10m

100m

1

10

[Hz]

[m/s²] Autospectrum(Response) - InputWorking : Input : Input : FFT Analyzer

0 200 400 600 800 1k 1,2k 1,4k 1,6k

1m

10m

100m

1

10

[Hz]

[m/s²]

Time(Excitation) - InputWorking : Input : Input : FFT Analyzer

0 40m 80m 120m 160m 200m 240m

-200

-100

0

100

200

[s]

[N] Time(Excitation) - InputWorking : Input : Input : FFT Analyzer

0 40m 80m 120m 160m 200m 240m

-200

-100

0

100

200

[s]

[N]

Time(Response) - InputWorking : Input : Input : FFT Analyzer

0 40m 80m 120m 160m 200m 240m

-80

-40

0

40

80

[s]

[m/s²] Time(Response) - InputWorking : Input : Input : FFT Analyzer

0 40m 80m 120m 160m 200m 240m

-80

-40

0

40

80

[s]

[m/s²]

FFT

FFT

Impulse Response h1(Response,Excitation) - Input (Real Part)Working : Input : Input : FFT Analyzer

0 40m 80m 120m 160m 200m 240m

-2k

-1k

0

1k

2k

[s]

[(m/s²)/N/s]Impulse Response h1(Response,Excitation) - Input (Real Part)Working : Input : Input : FFT Analyzer

0 40m 80m 120m 160m 200m 240m

-2k

-1k

0

1k

2k

[s]

[(m/s²)/N/s]

InverseFFT

ExcitationResponse

ForceMotion

InputOutput

H() = = =

FrequencyResponseFunction

ImpulseResponseFunction

Page 16: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 16

Modal Model – Global Parameters

Natural Frequency and Modal Damping

0 = 2f0

FrequencyT

Time

Frequency Domain Time Domain

Damping Ratio:

Natural Frequency: Natural Frequency:

Damping Ratio:

3dB

0

0

T

1f0

3 dB bandwidth= 2

Decay Rate =1

0

Page 17: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 17

Modal Model – Local Parameters Residues

Residue: The “strength” of the mode

Frequency

H(0)

Frequency

Distance

Amplitude

Frequency Domain ViewModal

Domain

V

iew

FirstMode Second

ModeThirdMode

ForceBeam

Residue: R = H(0) ·

Driving point Residue: Riir = a · ir2

General Residue: Rijr = a · ir · jr

The Driving point Residue scales the Mode Shape

0

2

Page 18: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 18

Excitation TechniqueShaker excitation

Small homogenous structures Quick Polyreference technique Fast method - no fixtures required

......................

......................

......................

...H......HH

H

n11211

.............H

...................

.............H

.............H

H

1n

21

11

Out

In Out

In

Multichannel response orresponse points may be moved

Large or complex structures Various excitation signals possible Time consuming - installation work

to be done

Hammer excitation

Excitation moved

Page 19: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 19

Curve Fitting

Single Degree of Freedom (SDOF) Simple structure Few and widely spaced modes

Multi Degree of Freedom (MDOF) Multiple modes Many and close modes

Local Based upon one single DOF

Global Based upon multiple DOF’s

Polyreference Symmetric structures exhibit multiple modes at the same frequency One single peak does not necessarily mean one mode

Frequency Response H1(Response,Excitation) - Input (Magnitude)Working : Input : Input : FFT Analyzer

0 200 400 600 800 1k 1,2k 1,4k 1,6k

100m

10

[Hz]

[(m/s²)/N]Frequency Response H1(Response,Excitation) - Input (Magnitude)Working : Input : Input : FFT Analyzer

0 200 400 600 800 1k 1,2k 1,4k 1,6k

100m

10

[Hz]

[(m/s²)/N]

Page 20: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 20

How to do Modal TestingModeling Geometry Degree of Freedom definition X or XYZ direction

Measurements Frequency Response Functions Hammer or shaker excitation

Curve fitting Frequency Damping Residues

Validation MAC (Modal Assurance Criteria) Modal Confidence Factor Phase Scatter ........

Page 21: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 21

Modal Testing

What

Why

How

Brüel & Kjær Solution

Page 22: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 22

The Brüel & Kjær Solution

PULSE

Modal TestConsultant

ModalSoftware

VibrationData

FileTransfer

PULSE

inside

Page 23: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 23

Brüel & Kjær Solution

Predefined projects for typical hammer, shaker tests

Contains predefined measurement setup trigger conditions, weighting functions, multi-buffer

Easy data display using workbook layouts Time, Autospectra, FRF H1, H2, H3, Coherence FRF Display of Magnitude and Phase, Real and

Imaginary, Nyquist plot

PULSE Software

Page 24: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 24

PULSE Modal Test Consultant

Features and Benefits Geometry driven measurement

– with the option of importing geo- metry from CAD data

Intuitive graphic control of analyzer parameters

Cuts your setup and measurement time in half

Modal data acquisition your way – comprehensive choice of Modal

Post-processing packages

Page 25: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 25

PULSE Modal Test Consultant

The Modal Test Consultant based on PULSE gives the user:

Brüel & Kjær PULSETM

OLE Automation

Openness

Scalability

Modularity

Productivity

Ease of use

Page 26: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 26

Setting up measurements

Transducer mounting guided by geometry model on screen

Graphic supported set-up of

measurement parameters

Audio and visual notification of measurement status

Automatic DOF labeling

– label while measuring

PULSE Modal Test Consultant

Mounting the transducer

Geometry model on screen

Time weighting

Overload indication

Page 27: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 27

Easy Scaling and Set-up of Hammer Excitation

1 Autorange or select Input Range

2 Select Trigger Level

3 Choose Time Weighting

4 Set Pre-trigger

Hit the test object in a number of different places and …..

Hit the test object once and …..

Page 28: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 28

Create Test Model from geometry

Geometry creation Import geometry via DXF and

UFF file format Easy-to-use geometry

drawing tools

Test Model Assign DOFs to geometry

Export Geometry model DOF information

PULSE Modal Test Consultant

Page 29: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 29

PULSE Modal Test Consultant

Measurements are guided by a geometrical model

Page 30: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 30

Set up of signal parameters using tables*

PULSE Test Consultant for Modal

* The tables can be customizer to suit individual needs

Page 31: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 31

Auto-ranging signals using graphic support

Set up Measurement conditions

PULSE Test Consultant for Modal

Time weighting Transient Exponential Hanning, ...

Automated TransducerCalibration

Trigger conditions Trigger level (impact test) Pre-trigger

Page 32: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 32

Data transfer to modal software

Data transfer of geometry model and DOF

information measurement data

Via file transfer Universal File ASCII Universal File Binary Star Binary SDF

Via OLE automation Automatic transfer to ME´scope

PULSE Modal Test Consultant

Page 33: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 33

Via file transfer Universal File ASCII Universal File Binary Star Binary SDF

Via OLE automation Automatic transfer to ME´scope

(Bridge to ME’scope)

Measurement data transfer to modal software

Page 34: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 34

PULSE Modal Test Consultant

Automatic Data Transfer to modal software

Page 35: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 35

PULSE Modal Test Consultant

The Modal Test Consultant link PULSE to major modal analysis post processing tools

File Transfer

Brüel & Kjær PULSETMOLE Automation

ME’scopeTM

OLEAutomation

STAR, I-DEASTM

Reuse of existing software Post-processing of modal data as an integral part of

Modal Testing

Page 36: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 36

Create test model from geometry Set up measurement conditions Perform measurements Transfer data to modal software

Geometry driven reliable Modal Testing results

PULSE Modal Test Consultant

Page 37: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 37

Brüel & Kjær PULSETM ME’scopeTM

PULSE Bridge to ME’scope

Page 38: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 38

Automatic Measurement Data Transfer

Load PULSE Project Export to MEScope

Page 39: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 39

Modal Software

Available through Brüel & Kjær:

STAR (Spectral Dynamics)

The STAR SystemTM Modal and Structural Analysis - Type 7750

ME’scopeTM (Vibrant Technology, Inc)

Brüel & Kjær ME’scope - Type 7754

I-DEASTM Master Series (MTS) I-DEAS Test

Openness to other software:

ICATS (Imperial College, London)

LMS

Page 40: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 40

Modal Analysis software

Beyond Modal Testing

Obtain modal parameters Natural Frequency Modal Damping Residues (Mode shape)

Validate modal parameters Phase Scatter MAC Modal Confidence Factor

Simulations Add mass Change stiffness Tuned absorbers

Validate FEM Models

Page 41: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 41

Conclusion to Modal Testing

Obtain Modal Model

Trouble shooting, FE Modeling, Structural assembly analysis, SDM and FRS

Modeling, System Analysis Measurements,Curve fitting, Validation of Modal Model

PULSE Modal Bridge to ME’scope Modal Test Consultant

Brüel & Kjær Solution

Why

How

What

Page 42: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 42

Investigation (visualisation) of structure behaviour under “running conditions”

Powerfull trouble-shooting tool

Phase information needed Data to be measured:

– phase assigned spectra (f.ex.between response point and tacho (reference))

or

– FRF between response point / reference point

or

– Cross spectra

No Curve - fitting

Operational Deflection Shapes

Page 43: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 43

Via file transfer Universal File ASCII Universal File Binary Star Binary SDF

Via OLE automation Automatic transfer to ME´scope

(Bridge to ME’scope)

Measurement data transfer to ODS /modal sw

Page 44: BA 7679-13, 1 Structural Dynamics Testing on PULSE using ME'scope

BA 7679-13, 44

Literature for Further Reading

Frequency Analysis by R.B.Randall(Brüel & Kjær Theory and Application Handbook BT 0007-11)

Modal Analysis of Large Structures - Multiple Exciter Systems by K. Zaveri(Brüel & Kjær Theory and Application Handbook BT 0001-12)

Modal Testing: Theory and Practice by D.J. Ewins(Brüel & Kjær Theory and Application Handbook BT 0015-12)

Dual Channel FFT Analysis by H. Herlufsen(Brüel & Kjær Technical Review No. 1 & 2, 1984)

Structural Testing, Part 1: Mechanical Mobility Measurement by O. Døssing

(Brüel & Kjær Theory and Application Booklet BR 0458-12)

Structural Testing, Part 2: Modal Analysis and Simulation by O. Døssing

(Brüel & Kjær Theory and Application Booklet BR 0507-11)