b1-17 propeller systems sr

Upload: alexander-mcfarlane

Post on 01-Mar-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 B1-17 Propeller Systems SR

    1/138

    StudentResource

    SubjectB1-17:

    PropellerSystems

    Copyright 2008 Aviation Australia

    Allrightsreserved.Nopartofthisdocumentmaybereproduced,transferred,sold,orotherwisedisposedof,withoutthewrittenpermissionofAviationAustralia.

  • 7/25/2019 B1-17 Propeller Systems SR

    2/138

    ThisPageIntentionallyLeftBlank

  • 7/25/2019 B1-17 Propeller Systems SR

    3/138

    Part 66 Subjec

    t

    IssueB:January2008 Revision2 Page1of6

    B1 17 Propeller Systems

    CONTENTS

    Page

    DEFINITIONS 3

    STUDY RESOURCES 4

    INTRODUCTION 5

    PropellerFundamentals 17.1-1

    PropellerConstruction 17.2-1

    PropellerPitchControl 17.3-1

    PropellerSynchronising 17.4-1

    PropellerIceProtection 17.5-1

    PropellerMaintenance 17.6-1PropellerStorageandPreservation 17.7-1

  • 7/25/2019 B1-17 Propeller Systems SR

    4/138

    Part 66 Subjec

    t

    IssueB:January2008 Revision2 Page2of6

    B1 17 Propeller Systems

    ThisPageIntentionallyLeftBlank

  • 7/25/2019 B1-17 Propeller Systems SR

    5/138

    Part 66 Subjec

    t

    IssueB:January2008 Revision2 Page3of6

    B1 17 Propeller Systems

    DEFINITIONS

    Define

    Todescribethenatureorbasicqualitiesof.

    Tostatetheprecisemeaningof(awordorsenseofaword).

    State

    Specifyinwordsorwriting.

    Tosetforthinwords;declare.

    Identify

    Toestablishtheidentityof.

    List

    Itemise.

    Describe

    Representinwordsenablinghearerorreadertoformanideaofanobjectorprocess.

    Totellthefacts,details,orparticularsofsomethingverballyorinwriting.

    Explain

    Makeknownindetail.

    Offerreasonforcauseandeffect.

  • 7/25/2019 B1-17 Propeller Systems SR

    6/138

    Part 66 Subjec

    t

    IssueB:January2008 Revision2 Page4of6

    B1 17 Propeller Systems

    STUDYRESOURCES

    JeppesenSandersonTrainingProducts:

    A&PTechnicianPowerplantTextbook.

    AircraftGasTurbinePowerplantsTextbook.

    B1-17StudentHandout

  • 7/25/2019 B1-17 Propeller Systems SR

    7/138

    Part 66 Subjec

    t

    IssueB:January2008 Revision2 Page5of6

    B1 17 Propeller Systems

    INTRODUCTION

    Thepurposeofthissubjectistofamiliariseyouwithconstruction,components,operationand

    maintenanceofaircraftpropellersystemsandturbo-propandturbo-shaftengines.

    Oncompletionofthefollowingtopicsyouwillbeableto:

    Topic 17 1 Propeller Fundamentals

    Describebladeelementtheory.

    Describethefollowingandexplaintheireffectonpropellerthrust:

    High/lowbladeangle

    Reverseangle Angleofattack

    Rotationalspeed.

    Describethefollowinginregardstopropellers:

    Propellerslip

    Aerodynamicforce

    Centrifugalforce

    Thrustforce

    Torque

    Relativeairflowonbladeangleofattack

    Vibrationandresonance.

    Topic 17 2 Propeller Construction

    Describeconstructionmethodsandmaterialsusedinwooden,compositeandmetalpropellers.

    Describethefollowingterms:

    Bladestation

    Bladeface

    Bladeshank

    Bladeback

    Hubassembly.

    17.2.3 Describetypicalmountingrequirementsofflanged,taperedandsplinedpropellerinstallations.

    17.2.4 Describetheoperationofthefollowingpropellertypesandidentifytheirspinnerinstallation:

    Fixedpitch

    Controllablepitch

    Constantspeeding.

  • 7/25/2019 B1-17 Propeller Systems SR

    8/138

    Part 66 Subject

    Issue on Page6of6

    B1 17 Propeller Systems

    B:January2008 Revisi 2

    Topic 17 3 Propeller Pitch Control

    Describemethodsusedforpropellerspeedcontrolandpitchchange.

    Describetheoperationofcomponentsusedfortocontrolpropellerfeatheringandreversepitch.

    DescribeStatethepurposeofpropelleroverspeedprotectiondevices.

    Topic 17 4 Propeller Synchronising

    Describetheoperationofcomponentsusedforsynchronisingandsynchrophasing.

    Topic 17 5 Propeller Ice Protection

    Describetheoperationoffluidandelectricalde-icing.

    Topic 17 6 Propeller Maintenance

    Explainthefollowingpropellermaintenance:

    Staticanddynamicbalancing

    Bladetracking.

    Explainassessmentofthefollowingtypesofpropellerbladedamage:

    Erosion

    Corrosion

    Impactdamage

    Delamination.

    Explainrepairschemesusedinpropellertreatment.

    Explainproceduresandprecautionsforpropellerenginerunning

    Topic 17 7 Propeller Storage and Preservation

    Describethepreservationanddepreservationofpropellerandpropelleraccessories/systemscomponents.

  • 7/25/2019 B1-17 Propeller Systems SR

    9/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.1:PropellerFundamentalsIssueB:January2008 Revision1 Page1of14

    TOPIC17.1:PROPELLERFUNDAMENTALS

    Lift

    Liftistheaerodynamicforcecausedbyairflowingoveranaerofoil(Figure1.1).Theaerofoilshapeofanaircraftwingorpropellerisdesignedtoincreasethevelocityoftheairflowoveritscamberedsurface,therebydecreasingpressureabovetheaerofoil.Thiscombinationofpressuredecreaseabovetheaerofoilandahigherpressurebelowtheaerofoilproducesaforceupward.Thisforceistermedlift,andwithpropellersthisformsthebasisofbladeelementtheorywithabladeelementbeinganyrandomlyselectedareaofthebladeaerofoil.

    Figure1-1.Lift

    Drag

    Dragisaforceopposingthrust,causedbythedisruptionorimpactofairflowover,orontoanaerofoil,(Figure1.2).

    Figure1-2.Drag

    Thrust

    Thrustisaforwardactingforce.Itisthereactiontothemassofairbeingaccelerated

    rearwards,(Figure1.2).Thrustisfeltonthebladeface,thisformsthebasisofmomentumtheoryforpropellers(Newtons3rdlawofmotion).

    THRUST

    Figure1-3.Thrust

  • 7/25/2019 B1-17 Propeller Systems SR

    10/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.1:PropellerFundamentalsIssueB:January2008 Revision1 Page2of14

    Total Reaction

    Totalreactionofabladeistheresultantoftwopairsofforces:

    liftanddrag

    thrustandtorque

    Byplottingthevectorsforliftanddrag,itispossibletoderivethetotalreaction(Figure1.4A).

    Itisalsopossibletoderivethetotalreactionbyplottingthevectorsforthrustandtorque,(Figure1.4B).

    (Figure1.4C)depictsbothpairsofvectorsarrivingatthesametotalreaction.

    Figure1-4.BladeRotationalForces

    Anincreaseinrotationalspeedwillincreasethesesforcesequally.

    Rotational speedisrestrictedtoapointwherethebladetipspeedmustremainbelowthe

    speed of sound.

  • 7/25/2019 B1-17 Propeller Systems SR

    11/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.1:PropellerFundamentalsIssueB:January2008 Revision1 Page3of14

    EFFECTS ON PROPELLER THRUST

    Blade ngle

    Ifyoustandsafelytothesideofastationaryaircraftandviewtherotatingpropeller,youwill

    seetheplane(path)thatthepropellerisrotatingin.

    Theanglebetweenthechordline,whichisanimaginarylinedrawnthroughthebladeandtheplaneofrotation,usuallymeasuredindegrees,istermedthebladeangle,asrepresentedinFigure1.5.

    Figure1-5.BladeAngle

    ngle of ttack

    Theanglebetweenthechordlineandbladepath(angleofrelativewind/airflow)istermedtheangleofattack(Figure1.6).

    Forbestresultsthisshouldbe2oto4o.Itiswithinthisangleofattackthattheincomingairiscompressed(shadedarea)thenallowedtoexpandasitleavesthetrailingedgeofthebladeresultinginthrust.

    Figure1-6.AngleofAttack

  • 7/25/2019 B1-17 Propeller Systems SR

    12/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.1:PropellerFundamentalsIssueB:January2008 Revision1 Page4of14

    Pitch

    Pitchisthedistancemovedforwardbythepropellerinonerevolution.Thiscanvarywithdifferentbladeangles,asillustratedinFigure1.7.

    Figure1-7.Pitch

    Blade Twist

    Thefurtherawayfromthehubalongthepropellerblade,thefasterthatsectionofthebladeistravellingandifthetipreachesthespeedofsoundthenthatportionwillnotproduceanythrust.Therefore,ifapropellerhadnotwistalongitslengthwhenviewedfromtheside,thenonlypartofthepropellerwouldproduceanyuseablethrust.

    Toensureallsectionsofthepropellerbladeproduceequalthrust,thebladeismanufacturedwithagradualtwist,fromhubtotip(Figure1.8).

    Maintainingthisgradualtwistalsoensuresthatthecorrectangleofattackismaintainedat2oto4oalongthelengthoftheblade.

    Figure1-8.BladeTwist

  • 7/25/2019 B1-17 Propeller Systems SR

    13/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.1:PropellerFundamentalsIssueB:January2008 Revision1 Page5of14

    Torque Reaction

    Ifthepropellerrotatesanti-clockwise,theforceusedtorotatethepropelleristransferredtostationaryitems,eg.bearinghousings.Transferringtheforcetothestationaryitemswilltendtorotatetheaircraftintheoppositedirection(NewtonsThirdLaw)totherotatingpropeller,

    ie.clockwise,asinFigure1.9.Thistendencytotryandrolltheaircraftistermedtorquereaction.

    Figure1-9.TorqueReaction

  • 7/25/2019 B1-17 Propeller Systems SR

    14/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.1:PropellerFundamentalsIssueB:January2008 Revision1 Page6of14

    PROPELLER SLIP

    Slipisdefinedasthedifferencebetweengeometricpitchandeffectivepitch.

    Slip Geometric pitch - Effective pitch

    Geometricpitchisacalculateddistancethatapropellerwouldadvanceforwardthroughasolidmedium,inonerevolution.

    Effectivepitchisthedistancethatapropelleractuallydoesadvanceforwardinonerevolution.

    Figure1.10showsslipasthedifferencebetweengeometricpitchandeffectivepitch.

    Figure1-10.Slip

  • 7/25/2019 B1-17 Propeller Systems SR

    15/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.1:PropellerFundamentalsIssueB:January2008 Revision1 Page7of14

    EFFECTS ON IRCR FT ST BILITY

    Propeller Torque

    Ifapropellerisbeingdrivenanti-clockwise,thetorquethatisbeingdevelopedtodrivethe

    propellerhasaneffectontheaircraftstructureandwilltendtorolltheaircraftclockwiseandviceversa.

    Figure1-11.EffectsonAircraftStability

    Propeller Slipstream

    Arotatingpropellerwillimpartarotationalmotiontotheslip-streaminthesamedirectionasthepropeller.Thisrotatingoftheairhasanadverseeffectontheaircraftsfin.

    Figure1.11showstwoairflowsflowingrearwards,onedark,onelight.Thedarkportionfirstlycurlsoverthetopoftheaircraft,thenunderit,priortoarrivingatthetail.Thelightportioninitiallycurlsundertheaircraftuntilitreachesthetrailingedgeofthewing.Itthencommencestorotatebackuphittingtherighthandsideofthetail.Thisforceactingonthe

    tailwillcausetheaircrafttoturntotheright.

  • 7/25/2019 B1-17 Propeller Systems SR

    16/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.1:PropellerFundamentalsIssueB:January2008 Revision1 Page8of14

    Propeller Gyroscopic Effect

    Therotatingmassofthepropellermaycauseaslightgyroscopiceffect.Arotatingbody(propeller)tendstoresistanychangeinitsplaneofrotation.Instraightandlevelflight,the

    propellerwillresisteitheraturntotheleftorright.Ifsuchachangedoestakeplace,thereisatendencyfortheplaneofrotation(straightandlevel)tochangeinadirectionatrightangles(90o)towheretheforcewasapplied.Ifthepropellerrotatesanti-clockwise,thenosewillyaw(veer)totheright.

    Anexampleofgyroscopiceffectistospinabicyclewheelwhileholdingtheaxle,andthentrytotilttheaxleinonedirectionwhileitisspinning.Youwillnotethatitactuallytiltsat90tothedirectionintended.

    Contra Rotating Effect

    Thefitmentofacontra-rotatingpropellerbasicallyeliminatestheeffectsofpropellertorque,propellerslipstreamandpropellergyroscopiceffect.Thesecondpropellerstraightenstheslipstreamofthefirstandcausesastraighthighspeedflowofairoverthefinandimproves

    control.Propellertorqueiscancelledduetothefactthatthepropellersarespinninginoppositedirections,thereforecancellingoutpropellertorquewhilealsoneutralisingthegyroscopiceffect.

    Forces cting on a Propeller

    Asapropellerisrotating,itisacteduponbycertainforces.Theseforcesare:

    centrifugalforce

    centrifugaltwistingmoment

    aerodynamictwistingmoment

    bendingforces-

    1. thrustanddrag

    Centrifugal Force

    Centrifugalforceisaforcethathasatendencytothrowtherotatingpropellerbladesawayfromthepropellerhub(Figure1.12).Thisforcecanamounttomanythousandsofnewtons.

    Figure1-12.CentrifugalForce

  • 7/25/2019 B1-17 Propeller Systems SR

    17/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.1:PropellerFundamentalsIssueB:January2008 Revision1 Page9of14

    Centrifugal Twisting Moment

    CentrifugalTwistingMoment(commonlyreferredtoasCTM)isaforcewhichtendstorotatepropellerbladestowardafinebladeangle.ThisisillustratedinFigure1.13.

    CTMisaforcethatpropellermanufacturersutiliseonvariablepitchpropellers.Thisforceisusedtoalterbladeanglefromacoarsertoafinerbladeangle.

    Figure1-13.CentrifugalTwistingMoment

    erodynamic Twisting Moment

    AerodynamicTwistingMomentisaforcethattriestomovethepropellerbladestoacoarserbladeangle.AsshowninFigure1.14,thecentreofpressureisforwardoftherotationalaxisoftheblade,whichisatthemidpointofthechordline,thisforcetendstoincreasethebladeangle.

    Somepropellerdesignsusethisforcetoaidinthefeatheringthepropeller.

    Figure1-14.AerodynamicTwistingMoment

  • 7/25/2019 B1-17 Propeller Systems SR

    18/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.1:PropellerFundamentalsIssueB:January2008 Revision1 Page10of14

    Bending Forces

    Bendingforceisdividedintotwocomponents:

    torquebendingforce(causedbydrag)

    thrustbendingforce(causedbythrust)

    Torque Bending Force

    TorqueBendingForceisaresultantforcefromtheloadthatairresistance(drag)placesontheblades.Ithasthetendencytobendthepropellerbladesoppositetothedirectionofrotation.Figure1.15(a)showsanexaggerationoftorquebendingforce.

    Figure1-15.(a)Torque Figure1.15(b)Thrust

    Thrust ending Force

    ThrustBendingForceisaforcewhichhasthetendencytobendthebladesforwardastheaircraftispulledthroughtheair.ThisbendingforwardofthebladesisexertedbythethrustthatpropelstheaircraftforwardasshowninFigure1.15(b).

    Force ccentuation

    BothAerodynamicandCentrifugalTwistingMoments(TorsionalStresses)areincreasedwithanincreaseinRPM,ie.ifRPMisdoubled,thesestressesarequadrupled.

    Force Coupling

    Thecouplingofcentrifugalforceandthrustcreateseverestresseswhicharegreaternearthehub.Thebladefaceisexposedtotensionfromcentrifugalforceaswellastensionfrombending.ThereforethepropellerneedstobedesignedtowithstandthesestresseswhichincreaseproportionallywithRPM.Asimplescratchordentinthebladecanhavesevererepercussions.

  • 7/25/2019 B1-17 Propeller Systems SR

    19/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.1:PropellerFundamentalsIssueB:January2008 Revision1 Page11of14

    EFFECTS ON NGLE OF TT CK

    Tounderstandhowapropellersperformancecanvary,youwillneedtounderstandvectors.Youshouldrememberfromyourstudyofvectorsthatwherealineisdrawntoscale,itshows

    avelocityorforce.Theselinesaredrawntorepresentspeed,ie.thelongeralineisdrawn,thefasteranitemsspeedisrepresented.

    Theperformance(thrust)ofafixedpitchpropellerwillvarywithvariationsineither:

    rotationalvelocity

    aircraftvelocity

    Ifapropellerisdesignedtoproducethecorrectangleofattack(2to4)atsay,1500RPMand50MPHforward,thenitwillproducetherequiredamountofthrustuntileitherrotationalvelocityorforwardvelocityalter(Figure1.16).

    Figure1-16.

  • 7/25/2019 B1-17 Propeller Systems SR

    20/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.1:PropellerFundamentalsIssueB:January2008 Revision1 Page12of14

    Increased Rotational Velocity

    Ifforwardvelocityismaintainedbutrotationalvelocityisincreasedto2000RPM,thenitcanbeseenthattheangleofattackisextremelylargeandinefficient.Figure1.17comparesthisincreaseinvelocitytotheefficientrunningofthepropellerblade.

    Figure1.17

  • 7/25/2019 B1-17 Propeller Systems SR

    21/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.1:PropellerFundamentalsIssueB:January2008 Revision1 Page13of14

    Increased Forward Velocity

    Ifforwardvelocityisincreased,ie.inadive,androtationalvelocitymaintained,thenitcanbeseenthatthebladepathhasmovedfrombeingbehindthechordline(apositiveangleof

    attack)tobeinginfrontofthechordline.ThiscanbeseeninFigure1.18.Thisgivestherotatingbladesanegativeangleofattack,whichproducesnoforwardthrust.Thrustisnowbeingproducedintheoppositedirectionandactslikeabrake.

    Figure1.18

    Therefore,itcanbeseenthatchangingeitherrotationalvelocityoraircraftforwardvelocitywillalterthebladesangleofattack.Varyingapropellerbladesangleofattackwilllowertheefficiencyofthatbladeandthereforethepropellerasaunit.

    Blade Tip Speed Versus Efficiency

    Toallowpropellerstoabsorbtheenormouspowerthatenginescandevelop,largerpropellersweremade.Itwasfoundthattheincreaseinpropellerdiameterdidnotnecessarilyincreaseefficiency.

    Infact,thelargerpropellerslostperformancethroughtipvibrationorflutter.Thisflutterorvibrationiscausedbyshockwavesasthetipofthepropellerapproachesthespeedof

  • 7/25/2019 B1-17 Propeller Systems SR

    22/138

    Part 66 Subject

    B1 17 Propeller Systems

    B:January2008 Revisi 1

    B1-17.1:PropellerFundamentalsIssue on Page14of14

    sound,whichisapproximately1117ft/s(or660knots)atsealevelonastandarddayof15C.

    Itwasthereforenecessarytokeepbladetipspeedbelowthespeedofsound.Thismeantthatthepropellertipshadtobebelowthespeedofsoundandstillbeabletoabsorbthe

    availableenginepower.

    Thiscanbeachievedinseveralwaysbyincreasingthenumberofblades,orbyincreasingbladeshapeandsection.

  • 7/25/2019 B1-17 Propeller Systems SR

    23/138

    Part u c

    66 S bje t

    B1 17 Propeller Systems

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 1of 24

    TOPIC17.2:PROPELLERCONSTRUCTION

    Hub Assembly

    Thehubassembly(Figure2.1)providesameansofattachingthepropellertotheengineand

    supportstheblades.Thehubisdividedintoforwardandrearbarrelhalvestoenablefitmentofthebladesontothespiderwhichprovidesbearingsupportfortheblades.

    Figure21.HubAssembly

    Blade

    Thebladeistheaerofoilpartofthepropellerthatconvertsthetorqueoftheengineintothrust.Figure2.2showsapropellerbladeremovedfromthepropellerassembly.

    Figure22.Blade

    Tip

    Thepropellerbladetipistheportionofthebladethatisthefurthestfromthehubassembly.Itisusuallyreferredtoasthelastsixinchesoftheblade.Figure2.2showsthetipsectionofthebladeshadedblack.

    Figure23.BladeTip

  • 7/25/2019 B1-17 Propeller Systems SR

    24/138

    Part c

    66 Subje t

    B1 17 Propeller Systems

    Root (Blade Butt)

    Theroundbladeroot,whichisalsoknownasthebladebuttispartofthepropellerbladewhichfitsintothepropellerhub(Figure2.4).

    Figure24.BladeRoot

    Blade Shank

    Thisisthecylindricalpartofthebladenearthebladeroot(Figure2.5),itisusuallythickforstrengthandcontributeslittleornothingtothrust.

    Figure25.BladeShank

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 2of 24

  • 7/25/2019 B1-17 Propeller Systems SR

    25/138

    Part c

    B1 17 Propeller Systems

    Cuff

    Propellerbladecuffsaredesignedtorestoretheroundsectionofthebladeshanktoanaerofoilshapeandtherebyincreaseairflowtotheengine.Bladecuffsareusuallyconstructedofmetal,woodorplasticandareeitherclampedorbondedtotheblades.Figure2.2showsplasticcuffsbondedtothebladeshanks.

    Figure26.BladeCuff

    Leading Edge

    Theleadingedgeofablade(aerofoilshape)asillustratedinFigure2.7,isthethickedgethatfirstmeetstheairasthepropellerrotates.

    Trailing Edge

    Afterairhaspassedtheleadingedge,itleavestheaerofoilatthetrailingedge(Figure2.7).Thetrailingedgeofapropellerbladeistherearedgeoftheblade,thepointwherethebladecamberfaceandthebladethrustfacejoin.

    Figure27.BladeTrailingEdge

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 3of 24

  • 7/25/2019 B1-17 Propeller Systems SR

    26/138

    Part c

    66 Subje t

    B1 17 Propeller Systems

    Blade Back (Blade Camber Face)

    Thebladebackistheforwardconvex(outward)curvedfaceofthepropellerbladesaerofoilandjoinstheleadingandtrailingedge,asshowninFigure2.8.

    Figure28.BladeBack

    Blade Face (Blade Thrust Face)

    Theflatsideofapropellerbladeistermedthebladefaceorbladethrustface(Figure2.9).Itisonthisfacethatthethrustproducedbythebladeisfelt.

    Figure29.BladeFace

    Chord Line

    Toassistindeterminingpropellerbladeangles,allaerofoilshaveanimaginarystraightlinedrawnthroughthem.Thisstraightlinecutsthroughthecentreoftheleadingedgeandcentre

    ofthetrailingedge,andisknownasthechordline.Figure2.10illustratesthechordlineonapropellerblade.

    Figure210.ChordLine

    Figure2.11summarisesthetermsrelatingtobladesurface.

    Figure211.BladeTerms

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 4of 24

  • 7/25/2019 B1-17 Propeller Systems SR

    27/138

    Part c

    66 Subje t

    B1 17 Propeller Systems

    Blade Stations

    Toassistmaintenancepersonneltolocaterelevantpositionsonablade,thebladeshavedesignateddistancesalongtheirlengthasmeasuredfromthecentre of the hub,outtothetipofeachblade.

    AsdepictedinFigure2.12,these"bladestations"arenormallymeasuredinsixinchintervals.Ifyouweretorefertodamageintheleadingedgeofthepropelleratthe20bladestation,youwouldnormallyrefertoitasbeinglocatedbetweenthe18and24bladestations.

    Figure212.BladeStations

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 5of 24

  • 7/25/2019 B1-17 Propeller Systems SR

    28/138

    Part c

    66 Subje t

    B1 17 Propeller Systems

    composite(nonmetallicfibre).

    CONSTRUCTION

    Propellerbladesareusuallymadeofoneofthefollowing:

    wood

    metal1.

    aluminiumalloy2.

    steel

    Timber

    Theearliestpropellersfittedtoaircraftwereconstructedoftimber.Thesepropellersweremadefromanumberoflayersofhardwoodsgluedtogetherwithhighqualitywoodglue.Figure2.13showsatypicalwoodenpropeller.

    Figure213.WoodenConstruction

    Fabric Covering

    Toaidinreinforcingthetipofeachblade,cottonfabricisgluedtothelast12to15(20-28cms).Figure2.14illustratestheareacoveredbyfabriccovering.

    Thefabriccoveringnotonlyassistsinreinforcementofthetipbutaidsinprotectingthetipfrommoistureandreducesthetendencyforittosplitorcrack.

    Figure214.FabricCovering

    Laminating

    Timberusedforthemanufactureofpropellersisspeciallyselected,wellseasoned

    hardwoods.Thetimbershouldbefreefromimperfectionssuchas:

    holes

    looseknots

    decay

    Thetimberislayered,asinFigure2.15,andgivenapreliminaryshapingandfinishing,thenstackedtogetherandglued.

    Figure215.TimberLaminatedConstruction

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 6of 24

  • 7/25/2019 B1-17 Propeller Systems SR

    29/138

    Part c

    66 Subje t

    B1 17 Propeller Systems

    Thepropelleristhenplacedinakilnwherethepressureandtemperaturearecarefullycontrolledforaprescribedtime.Thepropelleristhenshapedtoitsfinalform(Figure2.16),usingtemplatesandprotractorstoensurethatitmeetsdesignspecifications.

    Figure216.BladeShaping

    Aftershaping,thepropellerhasvariousprotectivecoatingsappliedtoit(Figure2.17),suchasfabriccovering,varnishandsheathing.Thesemethodswillbediscussedlaterinthistopic.

    Figure217.ProtectiveCoating

    Varnishing

    Wood,duetochangeinmoisturecontent,issubjectto:

    swelling

    shrinking

    warping

    Aprotectivecoatingofvarnishisappliedtothefinishedpropellertopreventrapidchangesofmoisturecontent.

    Leading Edge Sheathing

    Duringtake-offandtaxiing,damagefromsmallstonesandsandcanoccurtotheleadingedgeofthepropeller.Toprotectwoodenpropellerblades,ametalshieldissecuredaroundthetipandalongtheleadingedge.

    Thismetalshieldisknownaseitherleadingedgetippingorleadingedgesheathing.Smalldrainholesinthetippingnearthebladetipallowmoisturefromcondensationtodrainaway.

    Leadingedgesheathingcanbemadefromeither:

    terneplate

    monel

    brass

    stainlesssteel.

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 7of 24

  • 7/25/2019 B1-17 Propeller Systems SR

    30/138

    Part c

    66 Subje t

    B1 17 Propeller Systems

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 8of 24

    Figure2.18showstheinstallationofmetalsheathingonapropellerblade.

    Figure218.MetalSheathing

    Metal

    Afixed-pitchmetalpropellerisusuallymanufacturedbyforgingasinglebarofaluminiumalloytotherequiredshape.

    Thesepropellersincorporateacentreboretoallowfitmentofvarioussteelhubsoradaptorsprovidingfordifferenttypesofinstallations.Figure2.19showsatypicalfixedpitchaluminiumpropeller.

    Figure219.FixedPitchMetalpropeller

    Aluminium Alloy

    Initially,metalpropellersstartoutasasinglebarofaluminiumalloy.Thesebarsarethenshapedandfinishedtothedesiredaerofoilshapebymachineforging,copyingtheshapeofamasterblade(sometimesreferredtoasaprofile)ontothebarofaluminium.

    Duetothehighstrengthandmalleabilityofaluminiumalloy,theairfoilextendstothepropellerhub.Thiswillnotincreasethrustastheengineislocatedimmediatelybehindthis

    areabutdoesacttoprovideanincreasedflowofcoolingairtotheengine.Shot Peening

    Thisprocessisitselfafinishingtreatmentandnormallyrequiresnoothertreatments.

    Nicks,gougesandotherminorbladedamagescanquicklyleadtostresscracking.Thisispredominantlyevidentonsteelpropellersduetotheirrelativelybrittlecharacteristic.Shotpeeningofmetalsisdesignedtodistributestressesmoreevenlyinthesurface(eg.aroundthebladeshank)andtoincreasefatiguestrength.Figure2.20showstheareaofametalpropellerwhichisusuallyshotpeened.

    Figure220.ShotPeenedAreas

  • 7/25/2019 B1-17 Propeller Systems SR

    31/138

    Part c

    66 Subje t

    B1 17 Propeller Systems

    Shot(beads/ballsofglass,steel,etc.)ofaknownsizearethrownbycentrifugalforceorairblastedthroughanozzleataprescribedpressureontotherequiredarea.

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 9of 24

    Theimpactoftheshotcausesplasticdeformationofthesurfacetoadepthofafewthousandsofaninch.Ifthedepthofworkneedstobeincreased,allthatisrequiredisforthevelocityorsizeoftheshottobeincreased.

    Varioustypesofshotcanbeused;twocommontypesaresteelandglassbeads.

    Anodising

    Anodisingisusedtoaddextraprotectiontoalloyblades.Itisanelectroplatingprocessusedtoprovideahardcoatingwhichis:

    corrosionresistant

    waterproof

    airtight

  • 7/25/2019 B1-17 Propeller Systems SR

    32/138

    Part c

    66 Subje t

    B1 17 Propeller Systems

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 10of 24

    Composite

    Compositebladeconstructioninvolvestheuseofspecialplasticresins.Theseresinsarereinforcedwithfibresorfilamentscomposedofoneofthefollowing:

    glass

    kevlar

    carbon

    boron

    Therearetwowaysofconstructingacompositeblade.

    Figure2.21showshowoneofthematerialslistedaboveisshapedaroundanaluminium-alloysparandfoam.

    Figure221.CompositeConstruction

    Figure2.22showshowacompositematerialshellisusedtoformthebladeprofileintowhichafoamcoreisplacedtoprovideresistancetodistortion.

    Figure222.CompositeConstruction

    Fibre Reinforced Plastic (FRP) Moulding

    TheFRPmouldingisavariationofthecompositeblade.TheFRPbladeconsistsofalaminatedKevlarshellintowhichisplacedafoamcore.

    Toboostthestrengthoftheshell,Kevlarislayerednotonlylengthwisebutalsomulti-directional.TheleadingandtrailingedgesofthebladearereinforcedwithsolidunidirectionalKevlar.

    TwounidirectionalKevlarshearwebsareplacedbetweenthecamberandthethrustfacesurfacesoftheshelltoprovideresistancetoflexingandbuckling.

    Thepolyurethanefoamfillingsuppliesadditionalresistancetoanydistortioncausedbyoperatingstressesthatthepropellerencounters.

  • 7/25/2019 B1-17 Propeller Systems SR

    33/138

    Part c

    66 Subje t

    B1 17 Propeller Systems

    Figure2.23displaystheconstructionofablademadefromthematerialsdescribedabove.

    Figure223.FRPMoulding

    Figure2.23CompositeMaterialRetention

    Compositematerialsarecommonlyretainedontheshankprimarilybyexternalcompositewindings.Thesecondaryformofretentionistheclampingactionofthehubhalves.ReferFigure2.23

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 11of 24

  • 7/25/2019 B1-17 Propeller Systems SR

    34/138

    Part c

    66 Subje t

    B1 17 Propeller Systems

    PROPELLER MOUNTING/INSTALLATION REQUIREMENTS

    Correctinstallationofthepropellerontotheenginepropellershaftiscriticaltosafety(somepropshavecomeoffinflight),andtoavoidvibration.

    TherearebasicallyTHREEtypesofinstallations:-

    flangedshaft

    taperedshaftand

    splinedshaft.

    Generallyspeaking,thesmallerengineshaveeitherofthefirsttwo,whilstthebiggerenginesusuallyhavesplinedshafts.

    Flanged Shaft

    Flangedshaftdescribesathickcircularflangeatthefrontoftheenginecrankshaft,witharingofholes,eitherplain(dowelpins)orthreaded(Figure2.24).Thepropisattachedbybolts.

    Askullcapspinnerisfittedtosmallaircraftasanaerodynamicfairing.

    Figure224.FlangedShaft

    Preinstallationchecksinclude:

    Inspecttheflangefordistortionandsurfacedefects.(doarun-outcheckontheflangeifdistortionissuspected).

    Ensureboltholes/threadsareingoodcondition.

    Applyalightcoatofoiloranti-seizetotheflangeandpropellermountingsurfacestoaidinthenextremoval.

    CloseinspectionofattachmentboltsuseNDTdyepenetrantormagneticparticletobesure.

    Ensureretainingnutsarenewandself-lockingnuts.

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 12of 24

  • 7/25/2019 B1-17 Propeller Systems SR

    35/138

    Part c

    66 Subje t

    B1 17 Propeller Systems

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 13of 24

    Installationchecksinclude:

    Offertheproptotheshaftinthecorrectindexingposition.Usually,thereisadowelholeorpintoensurethis.

    Mostsplinedshaftshaveamasterspline.Onasmallenginewithoutindexing,fitthepropsothatthebladesareatthe4and10oclockpositiontofacilitatehandstarting.

    Insertthebolts,nutsandwasherslightlytightenthenuts.Tightenthenutsprogressively,inthesequencegiveninthemaintenancemanual.

    Notethebalancewashersmaybeinstalledundertheboltheadornut.

    Correctlytorquethepropretentionnuts,tothetensionspecifiedintheManual.

    Forwoodenprops,acircularfaceplateisinstalledatthefrontofthehubbosstospreadthecompressionloadandtherebyprotectthewoodfromcrushing.

    Oncompletionoftheinstallation,atracktestwillshowthatbladetipsaredescribingthesametippathplane(seeinlaterchapter).

  • 7/25/2019 B1-17 Propeller Systems SR

    36/138

    Part c

    66 Subje t

    B1 17 Propeller Systems

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 14of 24

    Tapered Shaft

    Foundmostlyonolderaircraftoflowerhorsepower,theenginecrankshaftisextended,inataperedform,tomatewithasimilarlyshapedprophub.Theinterferencefitofthesetwosurfaceswillprovidetheprimarytransferofpowertothepropeller.Groundthreadsattheend

    oftheshaftaccommodatethepropretentionnut.Thesafetyholesallowforlockingofthenut.(SeeFigure2.25)

    Thekeywayisalongmilledslotinthetaperedshaft,andthematingkeyindexesthehubtotheshafttopreventrotarymotionbetweenhubandshaftduringinstallation.Inservice,thekeywayissubjecttowearandsmallcracksespeciallyinthesharpcorners.Closeinspectionisessentialusingeitherdye-penetrantormagneticparticlemethods.

    Figure225.SafetyHoles

    Thekeytoagoodmatingfitbetweenhubandshaftisafullmetal-to-metalcontact,withthepropretentionnutfullytightened.

    BeforematingthepartsapplyacoatingofPrussianbluetothecrankshaftend.Carefullymatethetwoandfullytorquetheretentionnut.

    Thenseparatethejointandinspecttoseethatthereisatleasta70 transfer of the blue inktothehub.

    Ifthereislesstransfer,lappingoftheshaftisallowabletomanufacturersspecifications.Thekeymustbeinsertedintothekeywayeachtimethehubandshaftaremated.

    Tapershaftapplicationsgenerallyincorporateasnapringlocatedintheretainingnutandattachedtothehub.Thisitemactsaspulleraidingintheremovalofthehubbyactingtoovercometheinterferencefit.

  • 7/25/2019 B1-17 Propeller Systems SR

    37/138

    Part c

    66 Subje t

    B1 17 Propeller Systems

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 15of 24

    Taper Bore

    Onvariablepitchapplicationstoprovideabearingsurfaceforthebladestoturnonwhenbladeanglechangesoccur,aremovablebushingisfittedintoaforging(taperbore)atthecentreofthebladebutt.Thisbushingalsoallowsforfitmentofaplugwhichisusedto

    initiallybalanceeachbladeandisshowninFigure2.22.

    Figure 2 26 TaperBoreForging

    Thisforgingalongwiththebushing,permitsfitmentofeachbladeontothespider(Figure2.27),whichislocatedwithinthehubofthepropeller.

    Figure227.SpiderForging

  • 7/25/2019 B1-17 Propeller Systems SR

    38/138

    Part c

    66 Subje t

    B1 17 Propeller Systems

    Splined Shaft

    Commonlyfoundonthelargerturboprops(Figure2.28).Thesplinesareevenlypitched,andthereisusuallyaMASTER(wider)splinewhichmatestheshafttothehubinonlyoneposition.Atight,butsliding,fitisrequiredtopreventfrettingandsubsequentwear.ThiswearischeckedwithaGONO-GOgauge,andcarefulinspectionforsmallcracksespeciallyinsharpcorners(dyepenetrantormag,particlemethods).

    Figure228.SplinedShaft

    PropshaftsplinesonAmericanenginesaredescribedbytheirdiametereg.SAE20,40,50,20inascendingordereg.OntheDC2,itsP&WR1820enginesdriveHamStandard22E50modelpropellers.Inthiscode,Edenotesthebladeshanksize,and50denotesthepropshaftsplinesize.

    Taperedconesareused,frontandback,tocentrethehubontothepropshaft.Therearconeisofbronze:thefrontofsteel,manufacturedintwomatchedhalveswithmatchingserialnumbers(Figure2.29).

    Aswithtaperedshaftinstallations,Prussianblueisusedonconefaces/hubfacestocheckthedegreeofmatingaftertheprop-retainingnuthasbeenfullytorquedtopullthesurfacestogether.

    Sometimesthedatarequirestheconestobefitteddry,whilstothersspecifyalightoilcoating.Whenofferingtheproptotheengineitisgoodpracticetofirstfitaprotectortothepropshaftscrewthreads,asitiseasytodamagethemwhilstinstallingthepropeller.

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 16of 24

  • 7/25/2019 B1-17 Propeller Systems SR

    39/138

    Part c

    B1 17 Propeller Systems

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 17of 24

    Figure229.TaperedConeInstallation

  • 7/25/2019 B1-17 Propeller Systems SR

    40/138

    Part c

    66 Subje t

    B1 17 Propeller Systems

    PROPELLER TYPES

    Tractor Propeller

    Tractorpropellersarethoseconventionallymountedinfrontoftheenginepowerplant.Tractorpropellerspulltheaircraftthroughtheair.Mostaircraftareequippedwiththistype

    ofpropeller.RefertoFigure2.30foratractortypearrangement.

    Figure230.TractorTypePropellers

    Pusher Propeller

    Pusherpropellersaremountedonadriveshaftfromtherearoftheengineproducingthrusttopushtheaircraftforward.

    Manyseaplanesandamphibiousaircraftusepusherpropellers.

    Figure231.PusherTypePropeller

    Toreducethechanceofbladesbeingdamaged,manypusherpropellersaremountedaboveandbehindthewings,(Figure2.31).

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 18of 24

  • 7/25/2019 B1-17 Propeller Systems SR

    41/138

    Part c

    66 Subje t

    B1 17 Propeller Systems

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 19of 24

    Fixed Pitch

    Afixedpitchpropellerisonewhosebladeanglecannotbechanged.

    Afixedpitchpropellerisdesignedforaspecificpurposeie.cruiseoracceleration.Apropellersperformancewilldropoffrapidlywhenoperatedoutofitsdesignedpurpose.

    Figures2.32and2.33showfixedpitchpropellers,beingmetalandwoodenrespectively.

    Figure 2 32 MetalFixedPitchPropeller

    Figure233.WoodenFixedPitchPropeller

    Ground Adjustable

    Theearliestadjustablepropellersoperatedasfixedpitchstylepropellers.Thepitchcouldonlybealteredwhenthepropellerwasnotturning.Thiswasachievedbylooseningtheretainingclampsorboltssecuringeachbladeinplace.

    Withtheclampsorboltsloosened,thebladescanbeadjustedtotheirrequiredanglewiththeaidofaprotractor.

    Aftertheclampshavebeentightened,thepitchofthebladescannotbechangedinflighttomeetvaryingflightconditions.

    Figure2.34showstheretainingclampsonagroundadjustablepropeller.

    Figure234.GroundClampInstallation

    Controllable Pitch

    Acontrollablepitchpropellerallowsbladeangletobechangedwhilethepropellerisrotating.Controllablepitchpropellerscanvaryfromatwopositionpropellertoonethatcanbealteredtoanyanglebetweenminimumandmaximumsettings.

    Thispermitsthepropellerbladeangle(pitch)tobechangedtogivethebestperformanceforparticularflightconditions.

  • 7/25/2019 B1-17 Propeller Systems SR

    42/138

    Part c

    66 Subje t

    B1 17 Propeller Systems

    Constant Speed

    Aircraftfittedwithconstantspeedpropellersallowaselectedenginespeedtobemaintained.IftheengineRPMvaries,thepropellerbladeangleischangedbyaspeedsensitivegovernortobringtheRPMbacktotheselectedspeed.ThistypeofsystemreducespilotworkloadandprotectstheenginefromlargeRPMfluctuations.

    Contra Rotating

    Contrarotatingpropellersaretwoseparatepropellersmountedinlineontwoconcentricshaftswhichrotateinoppositedirections.

    Theprimaryreasonforfitmentofcontrarotatingpropellersistoabsorb(andthereforeefficientlyuse)theoutputofhighpoweredengines.Anadvantageofthistypeofpropelleristhecancellationoftorquereactionandareductionofthespirallingslipstream,ie.muchstraighterairflow.Figure2.35showshowcontrarotatingpropellersaremountedonebehindtheother.

    Figure235.ContraTypePropeller

    Counter Rotating

    Counterrotatingpropellersshouldnotbeconfusedwithcontrarotatingapplications.Thetermcounterrotatingreferstoatwinengineapplicationwherethepropellersoneachengine

    turninoppositedirectionsofrotationtocounteracttorquereactionandgyroscopiceffects.Feathering

    Afeatheredpropellerisofthecontrollablepitchpropellertype.Onmultiengineaircraft,featheringcapabilitiesmustbeutilisedtopreventdestructionofafailedengine(failuretopreventthisdamagecouldresultinlossofaircraftandorlife).

    Thesepropellershaveamechanismtochangethebladeangletosuchapositionthatpropellerrotationstops,ie.thebladechord(atasetdistancefromthehub)isparalleltothedirectionofflight.Thethickedgeofthepropellerfacesinthesamedirectionthattheaircraftisflying,preventingthepropellerfromwindmilling.Featheringthepropelleralsoreducesdragonafailedorshutdownengine.

    Shuttingdownanengineandfeatheringthepropellerisamethodusedonmanymulti-enginedaircrafttoconservefuelonlongflightduration.Figure2.36showsacomparisonofpropellerbladeangles.

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 20of 24

  • 7/25/2019 B1-17 Propeller Systems SR

    43/138

    Part c

    66 Subje t

    B1 17 Propeller Systems

    Figure236.PropellerBladeAngleComparisons

    Reversing

    Reversingpermitsanaircrafttoreduce:

    landingruns

    brakewear

    tyrewear.

    Reversingalsoassistsingroundhandlingbyallowingtheaircrafttobetaxiedbackwards.Whenreversehasbeenselectedinthecockpit,thepropellerbladesrotatefromapositiveanglethatwillmaintainflight(airflowrearward-forwardthrust)toanegativeanglewhere

    thrustisnowbeingproducedrearwards(airflowforward-rearward/negativethrust).Reversecanalsobeusedtoslowtheaircraftdownuponlandingandthereforeshortenthelandingroll.Figure2.37showsacomparisonbetweennegative/reverseangletopositive/forwardangle.

    Figure237.NegativeandPositiveAngleComparisons

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 21of 24

  • 7/25/2019 B1-17 Propeller Systems SR

    44/138

    Part c

    66 Subje t

    B1 17 Propeller Systems

    PROPELLER EFFECTS ON OPERATION

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 22of 24

    Propeller Selection

    Somefactorstobeconsideredwhenselectingapropellerare:

    Engine power-thepropellerneedstobeabletoabsorbtheavailableenginetorque.

    Engine type-themethodofpropellerattachmenttotheengine,i.e.pusher/tractortype,splined/taperedpropellershaft,reciprocating/gasturbineetc.

    Aircraft design-clearancesbetweentheground,fuselage,tailplaneandenginenacelleallneedtobeconsideredaswellastheeffectoftheairflowoverthewings,tailplaneandcontrolsurfacesetc.

    Aircraft performance-aircraftoperatingaltitude,cruisingspeed,landing,take-offrolletc.

    Thesefactorsaswellasotherssuchascostandavailabilityneedtobeconsideredwhenselectingasuitablepropellerforspecificapplications.

    Engine Power Requirements/ Performance Factors

    Thepropellermustbeabletoabsorbthepowergiventoitbytheengine,otherwisethepropellerwillrace(speedup)andbothpropellerandenginewillbecomeinefficient.

    Thefollowingfourfactorsneedtobeconsideredwhenapropelleristobechosenforanenginewithknownpoweroutput:

    propellerdiameter

    numberofblades(onthepropeller)

    propellerbladeshapeandsection

    propellermass(solidity).

    Propeller Diameter- asmentionedearlier,aspowerincreasedsodidpropellerdiameter.Thediameterofpropellershadtobelimitedduetothetipsreachingthespeedofsound.Thislimitationwasovercomebyusingeithercontrarotatingpropellersorincreasingthenumberofbladesfittedtothepropeller.Fittingofcontrarotatingpropellerstoanengineisineffectputtingtwopropellersontotheoneengine,therebyallowingthediameterofthepropellertobereduced.

    Number of Blades- toreducetheoverallsizeofapropelleronemethodusedistoincreasethenumberofbladesfittedtoapropeller.Thisallowsenginepowertobeabsorbedwithoutincreasingthepropellerdiameter.

    Ofthefourfactors,increasingthenumberofbladesisthemostefficientmethodofabsorbingincreasingenginepowerasinFigure2.38.

  • 7/25/2019 B1-17 Propeller Systems SR

    45/138

    Part c

    66 Subje t

    B1 17 Propeller Systems

    B1-17.2:PropellerConstruction

    Issue B: January 2008 Revision 2 Page 23of 24

    Figure238.NumberofBladeConfigurations

    Blade Shape and Section- anothermethodusedtoabsorbpowerfromanengineistoaltertheshapeorcamberofthepropellerblade;thiseffectivelyincreasesthethrustofapropeller.However,ifcamberisincreasedtoproduceextralift,thendragisalsoincreased.Toachieveabalance,acompromisemustbemadeinrelationtothepropellersshapeandsize.

    Figure239.BladeShape

    Addingtotheincreaseddragistheextraweightthateachpropellerbladewouldincur.Anyadvantageinliftwouldthereforebelostbythepenaltyoftheincreaseindragandaddedweightofeachblade.Figure2.39illustratesabladewithanincreaseincambershowingtheproportionalincreaseinsizeandthereforeanincreaseinweight.

  • 7/25/2019 B1-17 Propeller Systems SR

    46/138

    Part c6 Subje t

    B1 17 Propeller Systems

    Issue B: January 2008 Revision 2 Page B1-17.2:PropellerConstruction

    24of 24

    Prop Solidity- thesolidityofapropelleristheratiobetweenthepartofthepropellerdiscwhichwhenviewedfromthefront,issolid(blades,dome,etc.)andthatpartwhichisair.

    Forexample,inFigure2.40thepropellerareamaybe10%ofthetotalareaofthedisc,thereforeitssolidityis1:10.

    Thisratioismeasuredbyaddingupallthebladechordlengthsatacertainbladestation(saythree-quartersofthetipradius)anddividingthissumbythecircumferenceofthatradius.Thegreaterthesolidity,thegreaterthepowerthatcanbeabsorbed.

    Figure240.PropellerSolidity

    Toincreaseapropellerssolidity:

    increasethenumberofblades(takingintoconsiderationpropellerdiameter)

    increasethebladeschordlength(width)

    fitmentofcontrarotatingpropellers.

    Thiswillincreasethepropssolidityandthereforethrust.

  • 7/25/2019 B1-17 Propeller Systems SR

    47/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page1of50

    TOPIC17.3:PROPELLERPITCHCONTROL

    Pitch Changing Mechanisms

    Therearemanyvarioustypesofaircraftoperatingindifferentflyingconditions;noonepropellerwillsuitallaircraftandconditions.Therefore,differentpitchchangingmechanisms/systemsweredevelopedtovarythepropellerbladepitchtosuitaparticularaircraftandoperatingcondition.Fourofthesesystemsare:

    aerodynamic

    aerodynamic&hydraulic

    hydromatic

    mechanical

    electrical.

    Aerodynamic

    Aerodynamicpropellersarenormallyreferredtoas"Automatic"pitchchangingprops.Theyareoccasionallyseenonsomelightaircraft.

    Agoodexampleisthe"Aeromatic"propellerwhichusesthenaturalforcesactingonthebladestochangebladeangle,assistedbycounterweightsattachedtothebladeshanks.Thebladepivotaxisdoesnotalwaysliealongthesamelineasthebladeaxiscentreline.Duringoperation,theselinesleadandlageachother.

    ThedesignoftheAeromaticpropelleractsasfollows:

    ThethrottleisopenedandRPMincreases.

    AlthoughacourserpitchisrequiredtheRPMriseincreasesCTMandthebladesexperienceahigherangleofattack(Figure3.1a).

    Thecentreofpressurepointontheblademovestoapointfurthertendingtowardsafinerpitch.

    Thecounterweightsaretryingtocoarsenthepitch-butatthispointareoverwhelmedbytheotherforces.

    Astheaircraftacceleratesadecreaseinbladeangleofattackresultsandthebladecentreofliftreversesdirection,thustendingtoincreasepitch(Figure3.1b).

    TheriseinairspeedtendstodrivethepropuptohigherRPMandthebladecounterweightscannowcompensatebyforcingthebladestoahigherangle.Thisincreasedpowerabsorptionloadswillallowtheenginetodroptherpmtotheoriginalselectedvalue.

  • 7/25/2019 B1-17 Propeller Systems SR

    48/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page2of50

    Figure31.a Figure31.b

    TheAeromatichasnocockpitcontrolbutisstillratedasaconstantspeed,variablepitchpropeller.Itdoesnotpossessafeatheringcapability.

  • 7/25/2019 B1-17 Propeller Systems SR

    49/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page3of50

    Aerodynamic and Hydraulic Combination

    Two Position Propeller

    Thisisthemostbasicdesignwhichisnotdependantuponanenginedrivengovernor.The

    propellercanbepositionedinafineorcoarsepositionfromthecockpitbyaleverthatcontrolsengineoilpressuretothehub.

    Engineoilpressureoverridesthecounterweightsandresultsinafullfinepitch.Thispressureisdumpedbacktotheenginecrankcaseoncoarseselectionandthecounterweightsmovethebladestoafullcoarsepitch.

    Thissystemutilises:

    CTMtofine

    centrifugalforce(onthecounterweights)tocoarse

    engineoilpressuretofine.

    Figure3.2illustratestheseforcesactingonthetwopositionpropellerandtheirdirections.

    PROPELLER BLADE

    CTM

    ENGINEOIL

    PRESSURE

    GOVERNOROIL

    PRESSURE

    CENTRIFUGALFORCE

    COUNTERWEIGHT

    CYLINDERASSEMBLY

    PISTON

    Figure32.

  • 7/25/2019 B1-17 Propeller Systems SR

    50/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page4of50

    Constant Speed (Bracket Type)

    Governor Oil Pressure

    Oilfromthegovernorpumpforcesthecylinderout(towardsafinebladeangle)againstthe

    centrifugalforceactingonthecounterweightsonarotatingpropeller.Thiskeepsthebladeangleconstant,orcanevenmovethebladestoafineangleifsodesiredbythepilot.

    Fine Blade Angle

    Acombinationofgovernoroilpressureactingtomovethecylinderout,andCTMtendingtomovethebladestoafineangle,overcomethecentrifugalforceactingonthecounterweights,therebyalteringthebladeangletoafinerpitch(Figure3.3).

    Figure33.FinerPitchAngle

    Coarse Blade Angle

    Aspecialportwithinthegovernorisopened,allowingoiltoflowoutofthecylinder.Thecounterweightsarephysicallyattachedtoeachbladeandthemoveablecylinder.Withtheoilpressuredissipatingfromwithinthecylinder,centrifugalforceactingonthecounterweightsisusedtoovercomeCTMandmovethecylinderrearwards.Theblades,beingattachedtothecounterweightswillaltertoacoarserpitch(Figure3.4).

    Figure34.CoarserPitchAngle

    Alltheseoperations,oilin/out,arecontrolledbyagovernorwhichinturncontrolsthepositionofthecounterweights.Thegovernorisattachedto,anddrivenbytheengine.

    ThisHamiltonStandardcounterweightdesigndoesnotsupportafeatheringcapability.

  • 7/25/2019 B1-17 Propeller Systems SR

    51/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page5of50

    McCauley Constant Speed- thisdesignusesgovernoroilpressuretodecreasebladeangle.Theopposingforcesarecounterweightsandaboosterspringlocatedinthehubtoincreasepitch.Themovementoftheinternalpistonistransmittedthroughphenoliclinkstothebladebutt.

    Hartzell Constant Speed- Hartzellpropellersutilisetwomajordesigns.TheSteelHubwhichemploysanexposedpitchchangingmechanismandtheCompactwhichcontainsthemechanismwithinthehub.

    TheSteelmodelshaveacentralspiderhub,whichallowsthehollowshankbladestobespigottedoverthespiderarms,andretainedbysteeltwopiececlamps.

    Thepitchchangingmechanismconsistsofacentrallymountedpistonconnectedtothebladeclampsbysteellinkrods.Steelsinsomeapplicationswillutilisecounterweights.

    Steelswithcounterweightsutilise:

    counterweightstoincreasebladeangle

    governoroilpressuretodecreasebladeangle.

    Steelswithoutcounterweightsutilise:

    governoroilpressuretoincreasebladeangle

    CTMtodecreasebladeangle.

    CompactsalwaysuseCTMtodecreasebladeangleandgovernoroilpressuretoincreasebladeangle.Ifcounterweightsareemployedtheywillacttoassistgovernoroilpressure.

  • 7/25/2019 B1-17 Propeller Systems SR

    52/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    Thepitch-changingmechanismofhydraulic(hydromatic)propellersusesamechanical-hydraulicsystem.Agovernorsensestheenginespeedandcontrolshydraulicflowtoand

    fromeithersideofadomepistonlocatedatthefrontofthepropeller(Figure3.5).(Hydraulicflowcanbeacombinationofengineandgovernoroilpressureorjustgovernoroilpressuretoincreaseanddecreasebladeanglesdependingonpropellertype).Thesehydraulicforcesactingontheinternalpistonaretransformedintomechanicalforces.

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page6of50

    Hydromatic/ Hydraulic

    ThemechanicalforcesrotatethebladestorequiredanglestomaintainengineRPMbyforeandaftmovementofthepiston,whichhasbeenconvertedtorotarymotionbycamtracksandfollowersinthedome.Abevelgearatthebaseoftherotatingcamengageswiththeblade,andthereforealtersthebladeangle.AlteringbladeangleallowsengineRPMtochangebyalteringtheloadonthepropellerandsotherequiredenginespeedmaintained.

    Figure35.PitchChange

    Mechanical

    Anexampleofamechanicalcontrollablepitchdesignisthe"BeechRoby"forlightaircraftwhichneedonlyasmallpitchrange.Thispropiscontrollablefromthecockpit,allowingthepilottosetthebestbladeangleforvaryingconditionsofflight.

    Thereisasmallcrankhandleontheinstrumentpanel.Whenrotated,aconnectingflexiblecablerotatesapiniondrivegear.Thismesheswithalargedrivengearwhichislocatedaroundthecrankshaftandismountedontheenginecrankcase/nosesection.

  • 7/25/2019 B1-17 Propeller Systems SR

    53/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page7of50

    Rotarymotionofthedrivengearistranslatedintoaxialpitchchangingviahelicalslotsinthedrivengearflange.Lugpinsintheactuatorflangeslideintheslots.

    Thetwoarmsoftheactuatorextendforwardintotheprophubandconnecttoanactuating

    pinineachbladebase(Figure3.6).Thus,axialmovementoftheactuatorcausesthebladeangletochange.

    Thereisacockpitgaugewhichdisplaysthebladeangle.

    Itisnotaconstantspeedingprop.

    ThereisnoRPMgovernor.

    Onevariationistouseanelectricmotortodrivethepiniongear.Apairofmicroswitchesisusedtostopthemotoratthehighandlowbladeanglepositions.ThisoperationisdescribedundertheElectricsystemfollowing.

    Figure36.

  • 7/25/2019 B1-17 Propeller Systems SR

    54/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page8of50

    Electric

    Theelectricpitchchangingmechanismenableslightaircraft,aslittleas25horsepower,tobefittedwithcontrollablepitchpropellers.Thissystemisusedbecauseitislessexpensiveandcomplexthanaconstantspeedsystem.

    Thecontrolforanelectricmotorismanagedbythepilotviaathreepositiontoggleswitchwiththesettingsof:

    increaseRPM

    decreaseRPM

    off.

    Theelectricmotorismountedneartherearofthepropellerontoafixedsleeve.Thismotordrivesalargeoutertoothedringgear.Asthisringgearisrotatedbytheelectricmotor,theringgearhasinternalspiralslotsthatengagelugsonthepitch-controlbearing.Thiscausesthebearingtomoveforwardsandbackwardsastheringgearrotates.Theinnerraceofthe

    bearinghastwoarmsthatextendforwardintothehub.Thesearmsconnecttoanactuatorpinonthebladebuttandrotatethebladestoeitherahighorlowbladeangle.ThisinturnaltersengineRPMtoeitheralowerorhigherRPMselection.Figure3.6givesadiagrammaticexplanationoftheaboveprocedures.

  • 7/25/2019 B1-17 Propeller Systems SR

    55/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page9of50

    PROPELLER AUXILIARY SYSTEMS

    NEGATIVE TORQUE SENSING (NTS)

    Purpose

    Torqueisthetwistingforceimpartedtoashaft.Inapropellerinstallation,whentheengineisdrivingthepropeller,thetorqueisconsideredtobepositive.Negativetorqueisaconditionthatwilloccuriftheengineisnotdevelopingenoughpowerandthewindmillingofthepropellerdrivestheengine.

    Figure37.NegativeTorqueSystemSchematic

    Components

    ThecomponentsoftheNTSsystemarethe:

    fixedringgear

    planetarygears

    ringgearcoupling helicalsplinecoupling

    NTSsplinering

    NTSplunger

    NTSbracket.

    Althoughthepropellerwouldgovernonspeed,ahighlevelofdragwouldbepresent.Tominimisedrag,adeviceinthereductiongearboxsensesnegativetorqueandextendsaplungerwhich,throughamechanicallinkage,actuatesthefeathervalve.Thefeatheringsystemoverridesallotherfunctionsandimmediatelyrotatesthebladestowardsincreasepitch.Asthebladeangleincreases,thenegativetorquedecreases.

    Whenthenegativetorquesignalisremoved,thepositionofthefeathervalveisreturnedtonormal;increasepitchactionceasesandbladeanglereturnstowardnormal.Iftheconditioncausingnegativetorqueisnotrectified,thenegativetorquesystemwillcausethepropellerto

  • 7/25/2019 B1-17 Propeller Systems SR

    56/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page10of50

    operateinawindmillingconditionagain,andtheactionwillberepeated,cyclingaboutabladeanglewhichdevelopsarelativelylowlevelofnegativetorque.

    TheresultantdragisfarlessthanthatwhichwouldattendOnspeedgoverninginthewindmillingcondition.Minimumdragcanbeattainedonlybyfeatheringthepropeller.The

    abilitytofeatherisnotaffectedbytheexistenceofnegativetorquesignals.

    Figure38.

  • 7/25/2019 B1-17 Propeller Systems SR

    57/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page11of50

    Operation

    Whentheengineisdrivingthepropeller(positivetorque)thetorqueisfeltonthefixedringgear(whichcanturnasmallamount).Thisthenturnstheringgearandhelicalsplinecouplingwhichisattachedtoit.

    Thehelicalsplinescausethehelicalsplinecouplingtomoverearwardsandthe14springswillpreventtheplungerfromactuatingtheNTSbracket(Figure3.7).

    Whenthetorqueisnegative,thetorquefeltonthefixedringgearisintheoppositedirection.Thehelicalsplinecouplingwillnowbeturnedintheoppositedirectionandthehelicalsplinecouplingwillbeforcedforwardsagainstthe14springs.

    Figure39.NegativeTorqueSignalSystem

  • 7/25/2019 B1-17 Propeller Systems SR

    58/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page12of50

    TheplungerwillthenbeforcedforwardandwillactuatetheNTSbracketwhichwillmovethefeathervalveandincreasethebladeangleofthepropeller.Asthebladeangleincreases,theloadonthepropelleralsoincreasesandwillslowthepropellerandremovethenegativetorquesituation.

    Thetorquehasnowreturnedtonormalandthesystemwillnowreturntonormaloperation.Ifthenegativetorquesituationisstillpresent,thewholeprocesswillberepeated,andwillcontinuetoberepeatedwhileevernegativetorqueispresent.

    Figure310.NTSActuator

  • 7/25/2019 B1-17 Propeller Systems SR

    59/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page13of50

    Manual Feathering

    Manualfeatheringreferstoasysteminitiatedfromthecockpit.

    Whetheritbeasystemwhichelectricallyengagesthefeatherpumpasinthehydromatic

    propellersystemoremployingaliftrodmethodtooverridethespeederspringandflyweightsinthesmallerMcCauleysystem,aslongasaninputisrequiredthesystemwillbereferredtoasmanual.

    Auto Feather

    Purpose

    Somemulti-engineaircraftuseanautomaticfeatheringsystemtofeatherpropellersautomaticallyiftheengineshouldfail.Thissystemisusuallyturnedoffinnormalcruisingflight,andselectedonforbothtakeoffandlanding.

    Components

    Inthecockpitthereisaguarded'automaticfeathering'masterswitch,whenthisswitchis

    selectedtothe'on'positionalightindicatesthatthesystemisarmed.

    Thethrottlewillhaveamicroswitchatapproximately75%offullthrottlemovement(dependingontheaircraft).Whenthethrottleisbelowthissettingtheswitchisopenandtheautofeathersystemwillnotoperate.

    Thesystemalsocontainsatorquepressureswitch,whichisusedtosensethetorqueoutputfromtheengine.Whenthetorquedropsbelowaspecifiedleveltheswitchwillcloseandarmthesystem.

    Mostcircuitsincorporateatimedelayunittopreventautofeatheringifthereisonlyamomentaryinterruptioninenginepower.Thepowerlossmustthenexceedonetotwosecondsforthesystemtoautofeather(thisdelaymayvarywithaircrafttypes).

    Whentheauto-feathersystemisactuated,aredlightinthecockpitisusedtoindicatetothepilotwhichpropellerhasfeathered.Thepilotcanalsooperatethefeathersysteminthenormalmanner.

    Thesystemalsousesablockingrelaytopreventmorethanoneenginebeingfeatheredatatimebytheauto-feathersystem.

    Atestswitchcanbeusedtobypasspartsofthecircuitsothatthesystemoperationcanbecheckedonthegroundwithoutdevelopinghighpower.

    Operation

    Priortotakeoffandlanding,thesystemisarmedbyturningonthesystemmasterswitch.Aspowerisadvancedfortakeofforforamissedlandingapproach,thethrottleswitchclosesand

    thetorquepressureswitchisarmed,butthetorquepressureswitchcontactsareopen.

    Whenalossofenginepoweroccurs,thetorquepressureswitchclosesand,afterasetintervaloftime,thetimedelayunitcompletesthecircuit,energisingthefeathercontrol.

    Theblockingrelayisalsoactuatedtopreventotherenginesfromautofeathering.

    RefertoFigure3.11forabasicautomaticfeathersystem.

  • 7/25/2019 B1-17 Propeller Systems SR

    60/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page14of50

    Figure311.BasicAutomaticFeatherSystemSchematic

  • 7/25/2019 B1-17 Propeller Systems SR

    61/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page15of50

    PROPELLER BRAKING

    Purpose

    Thepropellerbrake(Figure3.12)isdesignedtopreventthepropellerfromwindmillingwhen

    itisfeatheredinflightthuscreatingexcessivedragandtodecreasetherundowntimeaftergroundshutdown.

    Figure312.PropellerBrakeAssemblyInstallation

    Components

    Thepropellerbrakeassembly,whichconsistsofthefollowingcomponents,isinstalledinthereductiongearboxassembly(Figure3.13):

    1.

    innercone

    2. outercone

    3. outermember

    4.

    startershaft5. helicalsplines

    6.

    applysprings.

  • 7/25/2019 B1-17 Propeller Systems SR

    62/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page16of50

    Figure313.PropellerBrakeAssemblyComponents

    Operation

    Thepropellerbrakehasthreepositions.Theseare:

    applied-brakeapplied

    released-nobrakingaction,and

    locked-propellerhasturnedagainstDOR

    Applied -WhenengineRPMdropsbelowapproximately21%,theoilpressureinthereductiongearboxthatholdstheinnerandouterconesapartdropsbelowtheappliedspringpressure.Theapplyspringsthenbringstheinnerandouterconestogetherwhichcausesabrakingaction.

    Released -Duringstart,thebrakehastomovefromthe"applied"tothe"released"position.Thismovementtakesplacewhenthestarterinputshaftisturnedbythestarter.Thehelicalsplinesmachinedontotheshaftwillcausetheinnerandouterconestoseparateagainstthesprings.Whentheoilpressurerisestoahighenoughpressure(approximately21%engineRPM),theinnerandouterconeswillbeheldapartandthebrakeisreleased.

    Locked -Whenthepropelleristurnedagainstthedirectionofrotation,thehelicalsplinescausestheinnerandoutercones(whichareintheappliedposition)tomoveforwardcausingthemtolocktogether.Thespringswillbeovercentredandwilltendtoholdtheconesinthelockedposition.Thepropellerwillnotbeabletobeturnedineitherdirectionuntilthebrakeisreleased.

  • 7/25/2019 B1-17 Propeller Systems SR

    63/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page17of50

    SAFETY COUPLING

    Purpose

    Thesafetycoupling(Figure3.14)isdesignedtodecouplethereductiongearboxfromthe

    powersectionshouldtheNTSsystemfailtolimitnegativetorque.

    Figure314.SafetyCouplingAssemblyInstallation

    Components

    ThesafetycouplingconsistsofthefollowingcomponentsasdetailedFigure3.15:

    innermember

    intermediatemember

    outermember

    setofbellevillesprings.

  • 7/25/2019 B1-17 Propeller Systems SR

    64/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page18of50

    Figure315.SafetyCouplingAssemblyComponents

    Thepinioninputgearissplinedtotheinnermemberwhichissplinedtotheintermediate

    memberbyhelicalsplineswhichareheldengagedbythebellevillesprings.Theintermediatememberisthensplinedtotheoutermemberwithstraightsplines.Theoutermemberisattachedtothetorqueshaftwithbolts.

  • 7/25/2019 B1-17 Propeller Systems SR

    65/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page19of50

    Operation

    IftheNTSsystemshouldfailtolimitnegativetorque,thehelicalsplineswillactagainstthebellevillesprings.Oncethenegativetorquereachesapredeterminednegativetorquevalue

    thehelicalsplineactionwillovercomethebellevillespringsanddisengage,decouplingthereductiongearboxfromtheengine.

    Whentheengineisshutdown,thespringswilltrytore-engagethehelicalteethbetweentheinnerandoutermembers.Thisre-engagementmaycausedamageandoverheatingofthecoupling.

    ThesafetycouplingoperationisshowninFigure3.16.

    Figure316.SafetyCouplingOperation

  • 7/25/2019 B1-17 Propeller Systems SR

    66/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page20of50

    UNFEATHERING ACCUMULATORS

    Somepropellershaveaspecialfeaturethatisusedtoincreasethespeedofunfeathering.Innormaloperationtheaccumulatorstoresgovernoroilpressure.Whenthepropellerisfeatheredtheaccumulatorvalveisclosedandtheoilpressureistrappedintheaccumulator.

    ThesystemisshowninFigure3.17.

    Whenthepropellercontrolisplacedinthenormalpositionthestoredpressureintheaccumulatorisappliedtothepropellertorotatethebladestoalowpitchangle.

    Note: Whenthepropellerisinfeathertheengineisstoppedandgovernoroilpressureisunavailable.Thepressurestoredintheaccumulatorisusedinplaceofthepressurethatwouldbenormallysuppliedbythegovernor.

    Figure317.UnfeatheringAccumulatorSystem

  • 7/25/2019 B1-17 Propeller Systems SR

    67/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page21of50

    TORQUEMETER

    Thetorquedevelopedwithinthepowersectionistransmittedtothereductiongearboxviathetorquemeterinnershaft.

    Thetorquetransmittedtothereductiongearboxisaccuratelymeasuredbythetorquemeterassembly.Itmaybemeasuredininchpoundsorshafthorsepower.

    AttorquemeterassemblyinstallationisdetailedinFigure3.18.

    REDUCTIONGEAR ASSEMBLY

    TIE STRUT

    TORQUEMETERHOUSING

    AIR INLETHOUSING

    TORQUEMETERASSEMBLY

    Figure318.TorquemeterAssemblyInstallation

    Components

    Thetypicalelectro-mechanicaltorquemeterassemblyconsistsofthefollowingmajorcomponentsasdetailedinFigure3.17:

    torquemeterinnershaft

    torquemeteroutershaft

    torquepickupassembly

    torquemeterhousing

    phasedetector

    indicator.

  • 7/25/2019 B1-17 Propeller Systems SR

    68/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page22of50

    Operation

    Thetorquemetermeasurestheangulardeflection(twist)betweenthetorqueshaftandthereferenceshaft(Figure3.19).

    Thetorqueshaftandreferenceshaftarelockedtogetherandsplinedtothepowersection.Atthereductiongearboxend,eachshafthasatoothedwheelknownasanexciterwheel.

    Stock No

    Part No

    Serial No

    CAL A

    TOR

    CAL SW

    S1

    J2CAL A

    CAL B

    PhaseDetector

    Indicator

    Torquemeter Pickup

    TorquemeterHousing

    Torquemeter Outer Shaft(Reference Shaft)

    Torquemeter Inner Shaft(Torque Shaft)

    Figure319.

    Onlythetorqueshaftisboltedtothereductiongearboxleavingthereferenceshaftto"freewheel".Whentorqueisappliedtothetorqueshaftitwilltwistinrelationtothereferenceshaft.

    Thiswillcausetheteethonthetorqueshaftexciterwheeltolagbehindtheteethonthereferenceshaftexciterwheel.Thetotaldeflectionbetweenexciterwheelteethatfullpowerwouldbeonlyminute.

    Thislagismeasuredbythetorquemeterpickupandsenttothephasedetector.Thephasedetectorconvertsthesignaltoavoltage.

    Thevoltageisthentransmittedtothecockpitindicator.Thegreaterthetorque,thegreaterwillbethedeflectionbetweenexciterwheelteeth,thegreaterthevoltagethatistransmittedtotheindicator.

  • 7/25/2019 B1-17 Propeller Systems SR

    69/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page23of50

    THRUST SENSITIVE SYSTEM

    Thethrustsensitivesystemisdesignedtoremovethedragcausedbyawindmillingpropellerbymonitoringenginethrustoutput.

    Ifapowerdeclineissensedthesystemwilloperatetomovethepropellertoacoarsebladeangleorthefeatherpositionandallowforamoreslipstreamedcondition.

    Onesystemutilisesaplungerswitchrunningonthepropshaftthrustbearingwithinthereductiongearbox.Aspringloadedassemblybetweenthepropellerthrustandaxialbearingsallowsformovementoftheshaftafterpositivethrustisachieved.

    Anydropinthrustbelowthepredeterminedpositivethrustvalueoperatestheplungerswitchandbringstheautofeathercircuitonline.

    Anotherlesscommonsystemsamplespitot(dynamic)pressurebehindthepropeller.

    Adropbelowapredeterminedpressurewillsendasignaltothepropellercontrolsystemtoautofeatherorfullcoarsedependingonthecapabilityofthesystem.

  • 7/25/2019 B1-17 Propeller Systems SR

    70/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page24of50

    GOVERNORS

    Purpose

    Thepurposeofthegovernoronaconstantspeedpropelleristomaintainconstantengine

    speed.ItwillmaintainasetengineRPMwithchangesinthrottlepositionandaircraftspeed.

    Single Acting Governors

    ThepropellergovernorisanRPMsensingdevicethatcontrolsoilflowtothepistonofthepropeller.Themainparts(Figure3.20)ofthesingleactinggovernorare:

    governoroilpump

    speederspring

    pilotvalve

    flyweights

    rackandpinion.

    Governor Oil Pump

    ThegovernorsrotatingflyweightsaredrivenviaadriveshaftthatisconnectedtotheenginedrivetrainandisdrivenataspeedproportionaltotheengineRPM.Drivenfromthissameshaftisthegovernorpump(Figure3.20).

    Thegovernoroilpumptakesengineoilpressureandboostsittothepressureneededtooperatethepropeller,andisthenknownasgovernoroilpressure.Excesspressurefromthepumpisreturnedtotheinletsideofthepumpbyapressurereliefvalve.

    Pilot Valve

    Thegovernorboostedoilisdirectedthroughpassagesinthegovernortoapilotvalvewhichsitsinthecentreofthehollowdriveshaft(Figure3.20).

    Thepilotvalvemovesupanddowninthehollowdriveshaftundertheinfluenceoftherotatingflyweights.Theupanddownmovementdirectsoilthroughportsinthedriveshafttoorfromthepropeller,toalterthebladeangle.

    Thepositionofthepilotvalveisdeterminedbytheactionofthegovernorflyweightsandspeederspring.TherotatingflyweightstiltoutwardundercentrifugalforcewhenRPMincreasesandinwardunderspeederspringpressurewhenRPMdecreases.

    Thismovementoftheflyweightsadjuststhepilotvalvetodirectoilflowtoalterbladeangle,therebymaintainingtheselectedRPM.

  • 7/25/2019 B1-17 Propeller Systems SR

    71/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page25of50

    Figure320.SingleActingGovernor

  • 7/25/2019 B1-17 Propeller Systems SR

    72/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page26of50

    Operation

    Theactionoftheflyweightstilting(in-out)toraiseandlowerthepilotvalve,isopposedbyasimplecoilspringcalledthespeederspring,thatislocatedabovetheflyweights(3.20).Thetensionofthespringcanbealteredbythepilotthrougharackandpinionassembly(Figure

    3.20).

    WhenthepilotrequiresahigherRPM,thepitchcontrolleverinthecockpitismovedtocompressthespeederspring.Thisincreasedspeederspringcompressiontiltstheflyweightsinwardandforcesthepilotvalvedown.

    Pushingthepilotvalvedownpermitsgovernoroilpressuretoflowoutoftheinboardsideofthepiston,allowingengineoilpressureandCTMtocombinetomovethebladestoafinerangle.

    DecreasingthebladeangleallowstheengineRPMtoincrease,untilthecentrifugalforceontheflyweightsequalstheforceofthespeederspring,stabilisingthepilotvalvetoaneutralposition.

    Ifthepilotalterstensionontothespeederspring,thentheenginesresponsewillbetoincreaseordecreaseRPM.

    Onlywhenflyweightforceisequaltospeederspringtensionwillthepilotvalvereturntoitsneutralposition(ONSPEED).

    Somegovernorsincorporateabalancespringabovetherack,thisspringsetsthegovernortocruiseRPMifthecontrolcableweretobreak.

  • 7/25/2019 B1-17 Propeller Systems SR

    73/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page27of50

    On Speed

    ONSPEEDiswhentheengineRPMisattherequiredsettingassetonthepropellercontrolbythepilot.NotetheflyweightsintheneutralpositionasinFigure3.21.

    Figure321.OnSpeed

    Over Speed

    OVERSPEEDiswhentheengineRPMisabovetherequiredsettingassetonthepropellercontrolbythepilot.NotetheflyweightsintheoutwardpositionasinFigure3.22.

    SPEEDERSPRING

    DRIVEGEARSHAFT PILOT

    VALVE

    Figure322.OverSpeed

  • 7/25/2019 B1-17 Propeller Systems SR

    74/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page28of50

    Under Speed

    UNDERSPEEDiswhentheengineRPMisbelowtherequiredsettingassetonthepropellercontrolbythepilot.NotetheflyweightsintheinwardpositionasinFigure3.23.

    SPEEDERSPRING

    DRIVEGEARSHAFT PILOT

    VALVE

    Figure323.UnderSpeed

    Pitch stops

    Thepurposeofpropellerpitchstopsistolimitbladeanglemovementtoaknown

    specification;theselimitsaresetbythemanufacturer.Thepitchstopsoperatebyprovidingamechanicalmeansoflimitingbladetraveltoaknownbladeangle.

    Counterweight Propeller

    Toenablemaintenancepersonneltocheckandadjustpropellerbladeangles,alladjustablepropellershaveprovisiontopermithighandlowbladeanglelimitchangestobemade.Onthecounterweightpropeller,stopnutssetthetravelofthepropellercylinderandtherebycontrolthecoarseandfinebladeangles.

    AnadjustmentmechanismforuseinacounterweightpropellerisillustratedinFigure3.24.

    Figure324.AdjustmentMechanics

  • 7/25/2019 B1-17 Propeller Systems SR

    75/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page29of50

    Hydraulic Propellers

    Pitchstopsareusedtolimitfine (low), coarse, orifthedesignfeatureisfitted,featherbladeangles.

    Low-Pitch Stop-Lever Assembly

    Thelow-pitchstop-leverassembly,whichisfittedtoreversingpropellers,providesthemeansformaintainingasetminimumbladeangleforflight.

    Accessthroughthedomeplugpermitstheassemblytobescrewedintothepropellerdome(Figure3.25).

    Figure325.LowPitchStop

    Theassemblyincorporateswedgeswhich,whenengaged,lockthestopleversintheoutwardposition(Figure3.26),preventingthepropellerpistonfromdecreasingbelowasetangle.

    Thesetangleistheminimumpositivebladeanglethatiscapableofmaintainingflight.

    Figure326.StopLeverPosition

  • 7/25/2019 B1-17 Propeller Systems SR

    76/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page30of50

    Feather/Coarse Pitch Stop

    Onfeatheringpropellersthecoarsepitchstopisreplacedbythefeatherpitchstop.

    Thefeatherstopsonahydromaticpropellerusuallyconsistsofan(indexed)stopringfittedto

    therotatingcamatthebaseofthedome,andtwofeatherstopsfixedtothebaseofthedomeassemble.Whenthepropellerbladesreachthefeatherangle,thefeatherstopringcontactsthefeatherstopsthuspreventingfurtherbladeangleincrease.

    Figure3.27(A)showsthefeatherstopringatthebaseofthedomeapproachingthefeatherstops.Figure3.27(B)showsthefeatherstopringonthebaseofthedomeatthefeatherposition.

    Figure327.FeatherPitchstop

    Pitch Stop Settings

    Ifapropellerhasitsbladeanglesettoolow(fine)ataworkshop,thenthatenginewillover-revoroverspeedand,iftheengineover-revstoomuch,itmaycausedamagetothatengine.

    Ifapropeller'sbladeangleissettoohigh(coarse),thenitmaynotproduceenoughthrusttomaintain/attaintherequiredspeed.

    Ifthefeatherangleisincorrectthenthepropellermaywindmill(continuetorotate)whenits

    enginehasbeenshutdown.Awindmillingpropeller,ifleftunchecked,cancauseextradamagetotheshutdownengine.

  • 7/25/2019 B1-17 Propeller Systems SR

    77/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page31of50

    DOUBLE ACTING GOVERNOR

    Thedouble-actinggovernorusedwiththereversingpropeller,issimilarinbasicdesigntothesingleactinggovernor,ie.pump,speederspringandpilotvalve.

    Thegovernorcanalsohaveanelectricallydrivenheadwhichregulatesforconstantspeedoperationswithmulti-engineaircraft.

    Thedouble-actinggovernordiffersinoperationfromthesingleactingasitcontrolsgovernoroilflowtobothsidesofthepiston(Figure3.28).

    GovernorFlyweights

    SpeederSpring

    Oil Drain

    Back toPump

    Pilot Valve

    CamPiston

    Prop Shaft

    Oil PumpReliefValve

    Oil fromReeservoir

    Direction of PropRotation

    Direction of PropRotation

    Direction of PropRotation

    Onspeed

    UnderspeedOverspeed

    Figure328.DoubleActingGovernorConditions

  • 7/25/2019 B1-17 Propeller Systems SR

    78/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page32of50

    GOVERNOR/PROPELLER OPERATING CONDITIONS

    Theintroductionofthevariablepitchpropellermeantthatthepropellerbladeanglecouldbeselectedtosuittheflyingconditionsandthusmaintainefficientoperation.Thebasicmodesofoperationofaconstantspeedvariablepitchpropelleraredescribedbelow.

    On Speed

    ONSPEEDiswhentheengineRPMisattherequiredsettingassetonthepropellercontrolbythepilotfeathering.

    Over Speed

    OVERSPEEDiswhentheengineRPMisabovetherequiredsettingassetonthepropellercontrolbythepilot.

    Under Speed

    UNDERSPEEDiswhentheengineRPMisbelowtherequiredsettingassetonthepropellercontrolbythepilot.

    Feathering

    FEATHERINGistheprocessofmovingthepropellerbladesuntiltheyareapproximatelyparalleltothedirectionofflighttostoptheenginefromwindmillingaftertheengineisshutdowninflight.

    Unfeathering

    UNFEATHERINGistheprocessofdecreasingthepropellerbladeanglefromthefeathertoananglewherethepropellerwillstartwindmillingandassiststhestartertorestarttheengine.

    Reversing

    REVERSINGiswherethebladeangleisalteredtoanegativevalueduringoperationsothe

    propellerwillproducenegativethrust,actingasabrakeandtherebyreducingaircraftlandingroll.

    Alpha Mode

    ALPHAMODEcontrolsthepropellergovernorduringairborneoperationbyselectionofaconditionlevertomaintaincorrectproppitchthroughfull fine to full coarse.

    Beta Mode

    BETAMODEcontrolsthepropellergovernorduringgroundoperationbyselectionofaconditionlevertomaintainselectedproppitchthroughfull fine to full reverse.

  • 7/25/2019 B1-17 Propeller Systems SR

    79/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page33of50

    HYDROMATIC PROPELLER

    Thebasichydromaticpropellerisafeathering,non-reversingpropeller.Thehydromaticdomeisseparatedintotwochambers.Theoutboardchamberreceivesengineoilpressure

    constantlyandassistedbyCTMwillacttomovethebladestoafinepitch.Theinboardchamberreceivesgovernoroilpressureat200200psiandwillacttoovercomeengineoilpressureandCTMtomovethebladestoacoarserpitch.

    On speed

    IfengineRPMmovesawayfromtherequiredsetting,thegovernorwillalterbladeangletobringtheRPMbacktotherequiredsetting.WhentheengineRPMisattherequiredsettingthenitissaidtobeONSPEED.

    Withtheflyweightsstraightupanddown(vertical)andthepilotvalveinaneutralposition,thentheengineisalsosaidtobeONSPEED(Figure3.29).

    Fluidisheldinahydrauliclockduetotheneutralpilotvalveposition.

    GOVERNORPITCH

    LINE

    Engine Oil

    Return

    Figure329.

  • 7/25/2019 B1-17 Propeller Systems SR

    80/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page34of50

    Overspeed

    IftheengineisoperatingabovetheRPMforwhichthegovernorisset,itisOVERSPEEDING;thebladeswillbeataloweranglethanthatrequiredforconstant-speedoperation.

    Duringtheoverspeedconditionthegovernorsflyweightscanbeseentomoveoutwardagainsttheforceofthespeederspring,raisingthepilotvalve(Figure3.30).Thisopensthepropeller-governorport,allowinggovernoroilfromtheboosterpumptoflowthroughinternallinestotheinboardsideofthepiston,movingthebladestoacoarserangleuntilanONSPEEDconditionisrestored.

    GOVERNORPITCHLINE

    Engine Oil

    NilReturn

    Figure330.

  • 7/25/2019 B1-17 Propeller Systems SR

    81/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page35of50

    Under Speed

    UNDERSPEEDINGresultswhenthebladeshavemovedtoahigherbladeanglethanthatrequiredforanONSPEEDcondition.WhentheenginespeeddropsbelowtheRPMforwhichthegovernorisset,thedecreaseincentrifugalforceexertedontheflyweightsallows

    thespeederspringtoforcethepilotvalvedown(Figure3.31).

    Thisopensthepropeller-governorport,allowinggovernoroilpressuretodrainawayfromtheinboardsideofthepiston.EngineoilpressureontheoutboardsideofthepistonandCTM,pushthepistoninwardandtakethebladestoafinerangle.

    GOVERNORPITCHLINE

    Engine Oil

    Return

    Figure331.

    AsRPMincreases,thecentrifugalforcefromtheflyweightsliftsthepilotvalveuntiltheforce

    ofthespeederspringandthecentrifugalforceoftheflyweightsareinequilibrium.TheenginereturnstotherequiredspeedandisagaininanONSPEEDcondition.

  • 7/25/2019 B1-17 Propeller Systems SR

    82/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page36of50

    Feather

    ToinitiatethefeatherfacilityofthebasichydromaticpropelleritisonlynecessarytodepresstheFeatherbutton.

    RefertoFigure3.32forfeathercircuitoperation.ThePSIfiguresusedwithinthistextisfordescriptiononly.

    Whenthefeatherbuttonispressed,aholdingrelayformsacircuitandholdsthebuttonin.Withthebuttonheldin,anelectricalcircuitisactivatedandenergisesthefeatheringpumpmotor.

    Figure332.

    Thefeatheringpumpsupplieshighpressureoiltothesystem,whichisfeltatthehighpressuretransfervalveinthegovernor.Asthehighpressuretransfervalveislifteditsseat,itisolatesthegovernorfromthesystemsothatittakesnootherpartinproceedings.

    Highpressureoilthenpassesthroughthedistributorvalveintotheinboardsideofthepistonanddrivesthebladestoahighangle.Asthebladeangleincreases,thepistonwilltravel

    untilthedoglegintherotatingcamsisreached.Pressurefromthefeatheringpumpthenmustbuildtoapproximately200PSItoforcethepistonpastthedoglegandonintofeather.

    Whenthepistonhasattainedfulltravel,thepressurebuildsuptoapproximately225PSI,wherethepressurecut-outswitchopens,breakingtheholdingcircuitforthefeatherbuttonwhichpopsout.

    Withthebladesinthefeatherposition,thecircuittothefeatherpumpmotorisopen,stoppingthepumpfromsupplyinghighpressureoil.

  • 7/25/2019 B1-17 Propeller Systems SR

    83/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page37of50

    Unfeather

    Tounfeatherthepropeller,thepilotmustdepressthefeatherbuttonandholditin.Ifitisnotheldin,pressurefromthefeatheringpumpwillquicklyriseto225psiandde-energisethe

    circuitviathepressurecut-outswitch.

    Withthefeatheringbuttonheldin,pressurefromthefeatheringpumpisstillfeltontheinboardsideofthepiston.Asthepistonisalreadyatfulltravel,thepistondoesnotmoveandthepressurerisesrapidlyto250psi.

    At250psi,thespringpackinthedistributorvalveassemble(DVA)isovercome,andthedistributorvalveispushedawaytoopenportstoreversethedirectionofoilflowintothedome(Figure3.33).Highpressureoilisthenportedtotheoutboardsideofthepistonandthepistonisforcedrearwards,bringingthebladestoafinerangle.

    Figure333.

    Oncethebladeshavemovedfromthefeatherposition,thepilotmustpullthefeatherbuttonout.Thisistoavoidthebladesbeingmotoredbackintofeather,becauseasthepressuredropsfrom250PSItheDVAvalvewillassumeitsnormalposition.

    Asthepressuredropsfromunderthehighpressuretransfervalve,thevalveisrelievedandresumesitsseat.Theengineandpropellerarethenagaininthecontrollingmodeandareselfgoverninginthenormalmanner.

  • 7/25/2019 B1-17 Propeller Systems SR

    84/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page38of50

    INTEGRAL OIL CONTROL HYDROMATIC PROPELLER

    Integraloilcontrol(IOC)propellersareanadvancedversionofthebasichydromaticpropellerandarebothfeatheringandreversing.

    TheIOCpropellerisafullyselfcontainedunitwithallnecessaryoil,pumpsandvalvestocontrolbothengineRPMandpropellerbladeangles.

    TheIOCpropellerspistonoperatesoppositetothebasichydromaticpropellerinthatitmovesinboardtoincreasepitchandoutboardtodecreasepitch.

    On Speed

    IfengineRPMstraysfromtherequiredsetting,thegovernorsensesthismovement(viaflyweight-speederspringassembly),anddirectsgovernoroilflowtotherequiredsideofthepiston.

    ForOVERSPEED,thepistonwouldbemovedinboardandviceversaforUNDERSPEED,untiltherequiredangleisreachedtobringtheengineRPMbacktoONSPEED.Theoilon

    theothersideofthepistonisallowedtodrainthroughadrainlinetotheoilreservoir.

    Figure3.34showstheoilflowtothedomeforoverspeed(A)andunderspeed(B).

    Figure334.OnSpeedCondition

  • 7/25/2019 B1-17 Propeller Systems SR

    85/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page39of50

    Overspeed

    Whilegovernoroilpassesthroughtheincreaseline,oilpressurefromtheinboardsideisallowedtodrainaway.Withthegovernoroilpressureactingontotheoutboardside,andreducingoilpressureontheinboardsideofthepiston,thepistonwillmoveinboardtoa

    coarserangle(Figure3.35).

    Thisplacesaloadontotheengine,slowingtheRPMdown.ThisdecreaseinengineRPMdecreasestherotatingspeed(andthereforecentrifugalforce)ofthegovernorflyweights.Asaresult,theflyweightsmoveinwardbytheforceofthespeederspring.

    Thepilotvalveislowered,closingthegovernormeteringport.Withthisportclosed,thepropellerpistonishydraulicallylockedpermittinganONSPEEDconditiontoexist.

    Figure335.OverspeedCondition

    Underspeed

    Whilegovernoroilpassesthroughthedecreasepitchline,oilpressurefromtheoutboardsideisallowedtodrainaway.Withgovernoroilpressurenowbeingdirectedontotheinboardside,andreducingoilpressureontheoutboardsideofthepiston,thepistonwillmoveoutboardtoafinerangle(Figure3.36).Thisreducestheloadontheengine,permittingRPMtoincrease.TheincreaseinengineRPMincreasestherotatingspeed(andthereforethecentrifugalforce)onthegovernorflyweights.Asaresult,theflyweightsmoveoutward,liftingthepilotvalveandclosingthegovernormeteringport.Withthisportclosed,thepropellerpistonishydraulicallylockedpermittinganONSPEEDconditiontoexist.

    Figure336.UnderSpeedCondition

  • 7/25/2019 B1-17 Propeller Systems SR

    86/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page40of50

    Feather

    Featheringapropellerstopsitfromrotating,therebyreducingdrag.Theleadingedgeofthebladesareturnedsotheyfaceintothedirectionofflight,makingthebladeangleapproximately90o.

    Atthisangle,airpressureonbothsidesofthebladearesimilarandthereforestoppingthepropellerfromrotating.

    ForagraphicalexplanationofthefollowingfeatheroperationrefertoFigure3.37.

    FeatheringisinitiatedbythepilotpushingintheFeatherbuttonlocatedinthecockpit(theFeatherbutton,beingpartofthefeathercircuit,remainsin).

    Thisenergisesthefeatheringcircuits,allowingthefeatherpumptodeliverhighpressureoiltothepositioningchamber,movingitintowhatthegovernorsensesasanoverspeedcondition.

    Withthepilotvalvepositionedintotheoverspeedposition,oilfromthefeatherpumpisthen

    directedtotheoutboardsideofthepropellerpiston.Thispressureforcesthepistonrearward,drivingthebladestoacoarserangle.

    Whenthebladesreachthefeatheredangle,thefeatherpumpcontinuestosupplyoilpressureuntilapre-setpressureisattained.

    Atthispre-setpressure,apressurecut-outswitchopens,cuttingpowertothefeatherpump,andpoppingthefeatherbuttonout,therebycompletingthefeatheringcycle.

  • 7/25/2019 B1-17 Propeller Systems SR

    87/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page41of50

    Figure337.FeatheredCondition

  • 7/25/2019 B1-17 Propeller Systems SR

    88/138

    Part 66 Subjec

    t

    B1 17 Propeller Systems

    B1-17.3:PropellerPitchControlIssueB:January2008 Revision1 Page42of50

    Unfeather

    Ifthepilothasfeatheredapropellertoconservefuel,butlaterdecidestorestarttheengine,theunfeatheringproceduremustbeassimpleasthefeatheringprocedure.

    ForagraphicalexplanationofthefollowingunfeatheroperationrefertoFigure3.37.Tounfeatherapropeller,thepilotmustpullthepropellersFeatherbuttonOUT.Thisenergisesanelectricrelay,earthedthroughapropellerbladeswitch.Thisrelaycompletesthecircuittothefeatherpumpandenergisestheselectorvalvesolenoid.

    Thefeatherpumpthendelivershighpressureoiltothepositioningchamberpositioningitintowhatthegovernorsensesasanunderspeedcondition.

    Withthepilotvalvepositionedintheunderspeedcondition,oilfromthefeatherpumpisthendir