atomic hidrogen 1

Upload: isnanto-haris

Post on 06-Jul-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Atomic Hidrogen 1

    1/34

    Phy107 Fall 2006 1

    From Last Time…

    • Light waves are particles

    and matter particles are waves!

    • Electromagnetic radiation (e.g. light)

    made up of photon particles

    • Matter particles show wavelike properties like

    interference

  • 8/17/2019 Atomic Hidrogen 1

    2/34

    Phy107 Fall 2006 2

    • Light: Is quantized. Has energy and momentum:

    • Electromagnetic radiation(light) has a dual nature.

    It exhibits both wave and article characteristics

    • The photoelectric effectshows the particle characteristics of light

    • Interference and diffraction

    Photon: particle and wave

     E = hf  = hc

    λ =1240 eV − nm

    λ 

     

     p = E 

    c= hf 

    c= h

    λ 

     

    λ = h

     p

  • 8/17/2019 Atomic Hidrogen 1

    3/34

    Phy107 Fall 2006 3

    Wavelengths of massive objects

    • de"roglie wavelength #

     

    λ =  h p

    •  #mv for a nonrelativistic

    (v $$c) particle with mass.

     

    λ =  h

    mv

    λ =  h p=   hc

    2 mc2  E kinetic

    !ame

    constant as

    be"ore

    #inetic energy 

    rest energy 

  • 8/17/2019 Atomic Hidrogen 1

    4/34

    Phy107 Fall 2006 4

    Wavelength of eV electrons

    • %or an electron&

    λ =1240 eV − nm

    2 × 0.511  MeV 

    1

     E kinetic

    =1.23 eV 

    1/ 2 − nm

     E kinetic

    • ' e electron& λ#'.* nm• '+ e electron λ#+.*, nm• '++ e electron λ#+.' nm

    constant

    #inetic energy rest energy 

  • 8/17/2019 Atomic Hidrogen 1

    5/34

    Phy107 Fall 2006 5

    Wavelength of 100 eV objects

    • %or an electron&

    λ =1240 eV − nm

    2 ×m0 MeV 

    1

    100eV 

    =88 eV 

    1/ 2 − nm

    m0 MeV 

    • '++ e electron& λ#+.' nm• '++ e proton λ#+.++, nm # ., pm• Electron .-'' Me& roton ,/+ Me

    constant

    #inetic energy rest energy 

  • 8/17/2019 Atomic Hidrogen 1

    6/34

    Phy107 Fall 2006 6

    Wave reflection from crstal

    • If electron are waves the0 can interfere• Interference of waves reflecting from different

    atomic la0ers in the cr0stal.

    • 1ifference in path length 2 spacing etween atoms

    side view 

    $e"lection "rom

    to lane$e"lection

     "rom next

     lane

  • 8/17/2019 Atomic Hidrogen 1

    7/34

  • 8/17/2019 Atomic Hidrogen 1

    8/34

    Phy107 Fall 2006 8

    Particle interference• 7sed this interference idea to to learn aout the structure of matter

    • '++ e electrons4 λ # +.'nm8 9r0stals also the atom

    • '+ :e electrons4

    8 Inside the nucleus& *. fermi& '+;

  • 8/17/2019 Atomic Hidrogen 1

    9/34

    Phy107 Fall 2006 9

    Let%s st&d electron waves

    • =ere is a wave4

    >where is the electron?8 @ave eAtends infinitel0 far in B x  and %x  direction

    x

     

    λ = h

     p

  • 8/17/2019 Atomic Hidrogen 1

    10/34

    Phy107 Fall 2006 10

    'nalog with so&nd

    • Cound wave also has the same characteristics

    • "ut we can often locate sound waves

    8 E.g. echoes ounce from walls. 9an make a sound pulse

    • EAample48 =and clap4 duration 2 +.+' seconds

    8 Cpeed of sound # */+ mDs

    8 Cpatial eAtent of sound pulse # *./ meters.

    8 *./ meter long hand clap travels past 0ou at */+ mDs

  • 8/17/2019 Atomic Hidrogen 1

    11/34

    Phy107 Fall 2006 11

    (eat fre)&enc: spatial locali*ation

    • @hat does a sound particleF look like?

    8 Gne eAample is a eat freuenc0F etween two notes

    8 Two sound waves of almost same wavelength added.

    QuickTime™ and a TIFF (LZW) decompressor

    are needed to see this picture.

    QuickTime™ and a TIFF (LZW) decompressor

    are needed to see this picture.

    &onstructiveinter"erence

    Large

    amplitude

    &onstructiveinter"erence

    Large

    amplitude

    'estructiveinter"erence

    Cmall

    amplitude

  • 8/17/2019 Atomic Hidrogen 1

    12/34

    Phy107 Fall 2006 12

    +a,ing a particle o&t of waves

    //+ =6 B

    /*, =6

    //+ =6 B

    /*, =6 B

    /*H =6

    //+ =6 B

    /*, =6 B

    /*H =6 B

    /*3 =6 B

    /*< =6

  • 8/17/2019 Atomic Hidrogen 1

    13/34

    Phy107 Fall 2006 13

    -patial e$tent

    of locali*ed so&nd wave

    ∀ ∆ x spatial spread of wave packetF• Cpatial eAtent decreases as the spread in

    included wavelengths increases.

    -8

    -4

    0

    4

    8

    -15 -10 -5 0 5 10 15J

    ∆ x 

  • 8/17/2019 Atomic Hidrogen 1

    14/34

    Phy107 Fall 2006 14

    -ame occ&rs for a matter wave

    • 9onstruct a locali6ed particle 0 adding together

    waves with slightl0 different wavelengths.

    • Cince de "roglie sa0s λ # h D & each of these

    components has slightl0 different momentum.8 @e sa0 that there is some uncertaint0F in the momentum

    or the energ0

    • nd still donFt know eAact location of the particle!

    8 @ave still is spread over ∆ x (uncertaint0F in position)8 9an reduce ∆ x ut at the cost of  increasing the spread in

    wavelength (giving a spread in momentum).

  • 8/17/2019 Atomic Hidrogen 1

    15/34

    Phy107 Fall 2006 15

    .nterpreting

    • %or sound& we would Just sa0 that the sound pulse is

    centered at some position& ut has a spread.

    • 9anFt do that for a uantum;mechanical particle.

    • Man0 measurements indicate that the electron is

    indeed a point particle.• Interpretation is that the magnitude of electron wave;

    pulseF at some point in space determines the

    probabilit of finding the electron at that point.

    -8

    -4

    0

    4

    8

    -15 -10 -5 0 5 10 15J

  • 8/17/2019 Atomic Hidrogen 1

    16/34

    Phy107 Fall 2006 16

    /eisenberg ncertaint Principle

    • 7sing∆ x  # position uncertaint0∆  momentum uncertaint0

    • =eisenerg showed that the product

     ( ∆ x ) • ( ∆  ) is alwa0s greater than ( h D /π )

    Gften write this as

    where is pronounced h;arF

    lanckFs

    constant

     ∆ x( ) ∆ p( )~ h /2

     h=

      h

    2π 

  • 8/17/2019 Atomic Hidrogen 1

    17/34

    Phy107 Fall 2006 17

    Thin,ing abo&t &ncertaint

    %or a classical particle& #mv & so an

    uncertaint0 in momentum corresponds to an

    uncertaint0 in velocit0.

     ∆ x( ) ∆ p( )~ h /2

     ∆ x( ) ∆v( )~ h /2m

    This sa0s that the uncertaint0 is small for massive oJects&

    ut ecomes important for ver0 light oJects& such as

    electrons.

    Large& massive oJects donFt show effects of uantum

    mechanics.

  • 8/17/2019 Atomic Hidrogen 1

    18/34

    Phy107 Fall 2006 18

    ncertaint principle )&estion

    Cuppose an electron is inside a oA ' nm in width.There is some uncertaint0 in the momentum of

    the electron. @e then suee6e the oA to make

    it +.- nm. @hat happens to the momentum?

    . Momentum ecomes more uncertain

    ". Momentum ecomes less uncertain

    9. Momentum uncertaint0 unchanged

  • 8/17/2019 Atomic Hidrogen 1

    19/34

    Phy107 Fall 2006 19

    sing )&ant&m mechanics

    • Kuantum mechanics makes astonishingl0

    accurate predictions of the ph0sical world

    • 9an appl0 to atoms& molecules& solids.

    • n earl0 success was in understanding

    8 Ctructure of atoms

    8 Interaction of electromagnetic radiation with atoms

  • 8/17/2019 Atomic Hidrogen 1

    20/34

    Phy107 Fall 2006 20

    Planetar model of atom

    • ositive charge is concentrated inthe center of the atom ( nucleus )

    • tom has 6ero net charge4

    8 ositive charge in nucleus cancelsnegative electron charges.

    • Electrons orit the nucleus like

    planets orit the sun

    • (ttractive) 9oulom force pla0srole of gravit0

    nucleus

    electrons

  • 8/17/2019 Atomic Hidrogen 1

    21/34

    Phy107 Fall 2006 21

    !ifference between atoms

    • 5o net charge to atom8 numer of oriting negative electrons same as

    numer of positive protons in nucleus

    8 1ifferent elements have different numer of

    oriting electrons

    • =0drogen4 ' electron

    • =elium4 electrons

    • 9opper4 , electrons• 7ranium4 , electrons!

    • Grgani6ed into periodic tale of elements

  • 8/17/2019 Atomic Hidrogen 1

    22/34

    Phy107 Fall 2006 22

    Elements in same

    column have similar

    chemical properties

  • 8/17/2019 Atomic Hidrogen 1

    23/34

    Phy107 Fall 2006 23

    • 9ircular motion of oriting electronscauses them to emit electromagnetic radiationwith freuenc0 eual to orital freuenc0.

    • Came mechanism 0 which radio waves are emitted

    0 electrons in a radio transmitting antenna.• In an atom& the emitted electromagnetic wave

    carries awa0 energ0 from the electron.

    8 Electron predicted to continuall0 lose energ0.8 The electron would eventuall0 spiral into the nucleus

    8 However most atoms are stable!

    Planetar model and radiation

  • 8/17/2019 Atomic Hidrogen 1

    24/34

    Phy107 Fall 2006 24

    'toms and photons

    • EAperimentall0& atoms do emit electromagneticradiation& ut not Just an0 radiation!

    • In fact& each atom has its own fingerprintF of

    different light freuencies that it emits.

    =0drogen

    Mercur0

    @avelength (nm)

    /++ nm -++ nm

  • 8/17/2019 Atomic Hidrogen 1

    25/34

    Phy107 Fall 2006 25

    /drogen emission spectr&m

    • =0drogen is simplest atom

    8 Gne electron oriting aroundone proton.

    • The (almer -eries ofemission lines empiricall0

    given 0

    n # *& λ #

  • 8/17/2019 Atomic Hidrogen 1

    26/34

    Phy107 Fall 2006 26

    /drogen emission

    • This sa0s h0drogen emits onl0photons of a particular wavelength& freuenc0

    • hoton energ0 # h" &

    so this means a particular energ0.

    • 9onservation of energ04

    8 Energ0 carried awa0 0 photon is lost 0 theoriting electron.

    h h h d

  • 8/17/2019 Atomic Hidrogen 1

    27/34

    Phy107 Fall 2006 27

    The (ohr hdrogen atom

    • etained planetar0F picture4 oneelectron orits around one proton

    • Gnl0 certain orits are stale

    • adiation emitted onl0 whenelectron Jumps from one staleorit to another.

    • =ere& the emitted photon has anenerg0 of E initial%E final

    Ctale orit

    Ctale orit '

    E initial

    E  "inal

    hoton

  • 8/17/2019 Atomic Hidrogen 1

    28/34

    Phy107 Fall 2006 28

    nerg levels

    • Instead of drawing orits& we can Just indicate the energ0

    an electron would have if it were in that orit.Nero energ0

    n#'

    n#

    n#*n#/

     E 1= −

    13.6

    12

     eV 

     

     E 2= −

    13.6

    22

     eV  

     E 3= −

    13.6

    32

     eV 

       E  n  e  r  g  0

      a  A   i  s

    Energ0 uanti6ed!

  • 8/17/2019 Atomic Hidrogen 1

    29/34

    Phy107 Fall 2006 29

    mitting and absorbing light

    hoton is emitted when electrondrops from one uantumstate to another

    Nero energ0

    n#'

    n#

    n#*n#/

     

     E 1 = −13.6

    12  eV 

     

     E 2= −

    13.6

    22

     eV  

     E 3 = −

    13.6

    32

     eV 

    n#'

    n#

    n#*n#/

     

     E 1 = −13.612   eV 

     

     E 2= −

    13.6

    22

     eV  

     E 3= −

    13.6

    32

     eV 

    soring a photon of correct

    energ0 makes electron Jump to

    higher uantum state.

    hoton

    asored

     h" #E *%E +

    hoton

    emitted

    h" #E *%E +

  • 8/17/2019 Atomic Hidrogen 1

    30/34

    Phy107 Fall 2006 30

    Photon emission )&estion

    n electron can Jump etween the allowed uantum states

    (energ0 levels) in a h0drogen atom. The lowest threeenerg0 levels of an electron in a h0drogen atom are;'*.< e& ;*./ e& ;'.- e.

    These are part of the seuence E n %'*.

  • 8/17/2019 Atomic Hidrogen 1

    31/34

    Phy107 Fall 2006 31

    • Each orit has a specific energ0

    E n=-13.6/n2

    • hoton emitted when electron

    Jumps from high energ0 to low

    energ0 orit.E i – E  f  = h f 

    • hoton asorption induces

    electron Jump fromlow to high energ0 orit.

    E  f  – E i = h f 

    • grees with eAperiment!

    nerg conservation for (ohr atom

  • 8/17/2019 Atomic Hidrogen 1

    32/34

    Phy107 Fall 2006 32

    $ample: the (almer series

    • ll transitions terminate atthe n# level

    • Each energ0 level has

    energ0 E n#;'*.< D n) e

    • E.g. n#* to n# transition

    8 Emitted photon has energ0

    8 Emitted wavelength

     E  photon = −13.6

    32

      

       − −

    13.6

    22

      

       

     

     

      =1.89 eV 

     E  photon = hf  = hc

    λ , λ =

      hc

     E  photon

    =1240 eV − nm

    1.89 eV = 656 nm

  • 8/17/2019 Atomic Hidrogen 1

    33/34

    Phy107 Fall 2006 33

    9ompare the wavelength of a photon produced from

    a transition from n#* to n#' with that of a photon

    produced from a transition n# to n#'.

    -pectral 2&estion

    n=2

    n=3

    n=1

    . λ31 < λ21

    ". λ31 = λ21

    9. λ31 > λ21

    E31 > E21  so λ31 < λ21

  • 8/17/2019 Atomic Hidrogen 1

    34/34

    Ph 107 Fall 2006

    (&t wh3

    • @h0 should onl0 certain orits e stale?• "ohr had a complicated argument ased on

    Ocorrespondence principleP

    8 That uantum mechanics must agree with classicalresults when appropriate (high energies& large si6es)

    • "ut incorporating wave nature of electron gives

    a natural understanding of these

    uanti6ed oritsF