artificial intelligence in industrial decision making. …978-94-011-0305-3/1.pdf · artificial...

28
Artificial Intelligence in Industrial Decision Making. Control and Automation

Upload: phungquynh

Post on 28-Aug-2018

233 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

Artificial Intelligence in Industrial Decision Making. Control and Automation

Page 2: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

International Series on

MICROPROCESSOR-BASED AND INTELLIGENT SYSTEMS ENGINEERING

VOLUME 14

Editor

Professor S. G. Tzafestas, National Technical University, Athens, Greece

Editorial Advisory Board

Professor c. S. Chen, University of Akron, Ohio, U.S.A. Professor T. Fokuda, Nagoya University, Japan Professor F. Harashima, University of Tokyo, Tokyo, Japan Professor G. Schmidt, Technical University of Munich, Germany Professor N. K. Sinha, McMaster University, Hamilton, Ontario, Canada Professor D. Tabak, George Mason University, Fairfax, Virginia, U.S.A. Professor K. Valavanis, University of Southern Louisiana, Lafayette, u.S.A.

Page 3: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

Artificial Intelligence in Industrial Decision Making,

Control and Automation

edited by

SPYROS G. TZAFESTAS Department of Electrical and Computer Engineering,

National Technical University oj Athens, Athens, Greece

and

HENKB.VERBRUGGEN Department of Electrical Engineering,

Delft University o/Technology, Delft. The Netherlands

SPRINGER-SClENCE+BUSINESS MEDIA, B.V.

Page 4: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

Library of Congress Cataloging-in-Publication Data

Artificial intelligence in industrial decision making, control, and automation I edited b~ Spyros G. Tzafestas and Henk B. Verbruggen.

p. cm. -- (International series on microprocessor-based and intelligent systems engineering; v. 14)

Includes index. ISBN 978-94-010-4134-8 ISBN 978-94-011-0305-3 (eBook)

DOI 10.1007/978-94-011-0305-3 1. Decision support systems. 2. Intelligent control systems.

3. Automation. 4. Artificial intelligence. 1. Tzafestas, S. G., 1939- 11. Verbruggen, H. B. 111. Series. T58.62.A78 1995 658.4'03--dc20 94-46547

ISBN 978-94-010-4134-8

Printed on acid-free paper

All Rights Reserved © 1995 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 1995 Softcover reprint of the hardcover 1 st edition 1995 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, inc1uding photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner.

Page 5: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

CONTENTS

Preface .......................................... .......................... .................. ......................... xxv

Contributors ....................................................................................................... xxvii

PART! GENERAL ISSUES

CHAPTER 1

ARTIFICIAL INTELLIGENCE IN INDUSTRIAL DECISION MAKING,

CONTROL AND AUTOMATION: AN INTRODUCTION

S. Tzafestas and H. Verbruggen

1. Introduction ......................................................................................................... 1

2. Decision Making, Control and Automation ........................................................ 2

2.1. Decision Making Theory ............................................................................. 2

2.2. Control and Automation .............................................................................. 4

3. Artificial Intelligence Methodologies .................................................................. 6

3.1 Reasoning under uncertainty ......................................................................... 7

3.2 Qualitative reasoning .................................................................................. 14

3.3 Neural nets reasoning ..... : ............................................................................ 16

4. Artificial Intelligence in Decision Making ........................................................ 19

5. Artificial Intelligence in Control and Supervision ............................................ 22

6. Artificial Intelligence in Engineering Fault Diagnosis ..................................... 24

7. Artificial Intelligence in Robotic and Manufacturing Systems ......................... 26

8. Conclusions ....................................................................................................... 30

References ......................................................................................................... 31

Page 6: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

vi

CHAPTER 2

CONCEPTUAL INTEGRATION OF QUALITATIVE AND

QUANTIT ATIVE PROCESS MODELS.

E. A. Woods

1. Introduction ....................................................................................................... 41

2. Qualitative Reasoning ........................................................................................ 42

2.1. Common Concepts .................................................................................... 43

2.2. Qualitative Mathematics ............................................................................ 44

2.3. The notion of state ..................................................................................... 45

2.4. Describing Behaviour ................................................................................ 45

2.5. Components of qualitative reasoning ........................................................ 45

2.6. Towards more quantitative models ............................................................ 47

3. Formal Concepts and Relations in the HPT ...................................................... 48

3.1. Quantities ................................................................................................... 48

3.2. Physical Objects, process equipment, materials and substances ., ............. 48

3.3. The input file ............................................................................................. 49

3.4. Activity conditions ................................................................................... 49

3.5. Numerical functions and influences .......................................................... 50

3.6. Logical relations and rules ......................................................................... 52

4. Defining Views and Phenomena ....................................................................... 52

4.1. Individuals and individual conditions ........................................................ 52

4.2. Quantity conditions and preconditions ...................................................... 54

4.3. Relations .................................................................................................... 56

4.4. Dynamic influences ................................................................................... 56

4.5. Instantiating a definition ............................................................................ 57

4.6. Activity levels ............................................................................................ 57

5. Deriving and Reasoning with an HPT Model ................................................... 59

5.1. Extending the topological modeL ............................................................. 59

5.2. Deriving the phenomenological modeL ................................................... 60

5.3. Activity and state space models ................................................................. 61

6. Discussion and Conclusion ................................................................................ 63

References ........................................................................................................ 64

Page 7: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

CHAPTER 3

TIMING PROBLEMS AND THEIR HANDLING AT SYSTEM

INTEGRATION

L. MotDs

vii

1. Introduction ....................................................................................................... 67

2. Essential Features of Control Systems .............................................................. 68

2.1. Essential (forced) concurrency ................................................................... 70

2.2. Truly asynchronous mode of execution of interacting procsses ................. 70

2.3. Time-selective interprocess communication .............................................. 71

3. Concerning Time-Correct Functioning of Systems ........................................... 71

3.1. Performance-bound properties ................................................................... 72

3.2. Timewise correctness of events and data ................................................... 72

3.3. Time correctness of interprocess communication ...................................... 73

4. A Mathematical Model for Quantitative Timing Analysis (Q-Model) ............. 73

4.1. Paradigms used ........................................................................................... 74

4.2. The Q-model ............................................................................................... 74

5. The Q-Model Based Analytical Study of System Properties ............................ 76

5.1. Separate elements of a specification ........................................................... 76

5.2. Pairs of interacting processes ..................................................................... 77

5.3. Group of interacting processes .................................................................. 78

6. An example of the Q-Model Application .......................................................... 79

7. Conclusions ....................................................................................................... 85

References ........................................................................................................ 85

CHAPTER 4

ANAL YSIS FOR CORRECT REASONING IN INTERACTIVE MAN

ROBOT SYSTEMS: DISJUNCTIVE SYLLOGISM WITH MODUS

PONENS AND MODUS TOLLENS

E. C. Koenig

1. Introduction ....................................................................................................... 89

2. Valid Command Arguments .............................................................................. 90

Page 8: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

viii

3. Correct Reasoning: Disjunctive Syllogism ........................................................ 91

3.1. Plausible composite command arguments .................................................. 92

3.2. Plausible composite commands .................................................................. 92

4. Conclusions ....................................................................................................... 96

References ........................................................................................................ 96

PART 2 INTELLIGENT SYSTEMS

CHAPTERS

APPLIED INTELLIGENT CONTROL SYSTEMS

R. Shoureshi, M. Wheeler and L. Brackney

1. Introduction ..................................................................................................... 101

2. A Proposed Structure for Intelligent Control Systems (ICS) ......................... 102

3. Intelligent Automatic Generation Control (IAGC) ......................................... 105

4. Intelligent Comfort Control System ................................................................ 110

5. Control System Development. ......................................................................... 111

6. Experimental Results ....................................................................................... 116

7. Conelusion ....................................................................................................... 116

References ....................................................................................................... 119

CHAPTER 6

INTELLIGENT SIMULATION IN DESIGNING COMPLEX DYNAMIC

CONTROL SYSTEMS

F. Zhao

1. Introducton ....................................................................................................... 127

2. The Control Engineer's Workbench ................................................................ 128

Page 9: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

ix

3. Automatic Control Synthesis in Phase Space .................................................. 128

3.1. Overview of the phase space navigator ................................................... 129

3.2. Intelligent navigation in phase space ........................................................ 129

3.3. Planning control paths with flow pipes .................................................... 130

4. The Phase Space Navigator ............................................................................. 131

4.1. Reference trajectory generation ................................................................ 131

4.2. Reference trajectory tracking .................................................................... 133

4.3. The autonomous control synthesis algorithms ......................................... 135

4.4. Discussion of the synthesis algorithms ..................................................... 137

5. An illustration: Stabilizing a Buckling Column .............................................. 139

5.1. The column model .................................................................................... 140

5.2. Extracting and representing qualitative phase-space structure of

the buckling column ................................................................................. 141

5.3. Synthesizing control laws for stabilizing the column ............................... 143

5.4. The phase-space modeling makes the global navigation possible ........... 148

6. An application: Maglev Controller Design ..................................................... 148

6.1. The maglev model .................................................................................... 148

6.2. Phase-space control trajectory design ....................................................... 150

7. Discussions ...................................................................................................... 155

8. Conclusions ..................................................................................................... 155

References ...................................................................................................... 156

CHAPTER 7

MUL TIRESOLUTIONAL ARCHITECTURES FOR AUTONOMOUS

SYSTEMS WITH INCOMPLETE AND INADEQUATE KNOWLEDGE

REPRESENT ATION

A. Meystel

1. Introduction ..................................................................................................... 159

2. Architectures for Intelligent Control Systems: Terminology, Issues, and a

Conceptual Framework .................................................................................... 161

2.1. Definitions ................................................................................................ 161

2.2. Issues and problems .................................................................................. 165

Page 10: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

x

2.3. Conceptual framework for intelligent systems architecture ..................... 170

3. Overview of the General Results ..................................................................... 171

4. Evolution of the Multiresolutional Control Architecture (MCA): Its Active

and Reactive Components ............................................................................... 173

4.1. General structure of the controller. ........................................................... 173

4.2. Multiresolutional control architecture (MCA) ......................................... 175

5. Nested Control Strategy: Generation of a Nested Hierarchy for MCA ........... 177

5.1. GFACS triplet: Generation of intelligent behavior .................................. 177

5.2. Off-line decision making procedures of planning-control in MCA ......... 178

5.3. Generalised controller ............................................................................... 180

5.4. Universe of the trajectory generator: Second level .................................. 181

5.5. Representation of the planning/control problem in MCA ....................... 183

5.6. Search as the general control strategy for MCA ...................................... 185

6. Elements of the Theory of Nested Multiresolutional Control for MCA ......... 187

6.1. Commutative diagram for a nested multiresolutional controller .............. 187

6.2. Tessellated knowledge bases .................................................................... 187

6.3. Generalization ........................................................................................... 188

6.4. Attention and consecutive refinement ...................................................... 189

6.5. Accuracy and resolution of representation ............................................... 190

6.6. Complexity and tessellation: t-entropy ..................................................... 194

7. MCA in Autonomous Control System ............................................................ 195

7.1. The multiresolutional generalization of system models ........................... 195

7.2. Perception stratified by resolution ............................................................ 196

7.3. Maps of the world stratified by resolution ............................................... 197

8. Development of Algorithms for MCA ............................................................ 198

8.1. Extensions of the Bellman's optimality principle .................................... 198

8.2. Nested Multiresolutional search in the state space ................................... 198

9. Complexity of Knowledge Representation and Manipulation ........................ 201

9.1. Multiresolutional consecutive refinement: Search in the state space ....... 201

9.2. Multiresolutional consecutive refinement: Multiresolutional search

of a trajectory in the state space ............................................................... 203

9.3. Evaluation and minimization of the complexity of the MCA .................. 205

10. Case Studies ................................................................................................... 208

10.1 A pilot for an autonomous robot (two levels of resolution) .................... 208

Page 11: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

xi

10.2 PILOT with two agents for control (a case of behavioral duality) .......... 211

11. Conclusion ..................................................................................................... 219

References ..................................................................................................... 220

CHAPTER 8

DISTRIBUTED INTELLIGENT SYSTEMS IN

CELLULAR ROBOTICS

T. Fukuda, T. Ueyama and K. Sekiyama

1. Introduction .................................................................................................... 225

2.Concept of Cellular Robotic System ................................................................ 226

3. Prototypes of CEBOT ...................................................................................... 227

3.1. Prototype CEBOT Mark IV ...................................................................... 229

3.2. Cellular Manipulator. ................................................................................ 231

4. Distributed Genetic Algorithm ........................................................................ 234

4.1. Distributed Decision Making .................................................................... 234

4.2. Structure configuration problem ............................................................... 235

4.3. Application of genetic algorithm .............................................................. 236

4.4. Distributed genetic algorithm ................................................................... 239

4.5. Simulation results ..................................................................................... 241

5. Conclusions ..................................................................................................... 245

References ....................................................................................................... 245

CHAPTER 9

DISTRIBUTED ARTIFICIAL INTELLIGENCE IN

MANUFACTURING CONTROL

S. Albayrak and H. Krallmann

1. Introduction ..................................................................................................... 247

2. Tasks of Manufacturing Control.. .................................................................... 248

3. The State-of-the-Art of the DAI Technique in Manufacturing Control .......... 252

3.1. ISIS/OPIS ................................................................................................ 252

Page 12: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

Xll

3.2. SOJA/SONIA .......................................................................................... 254

3.3. Y AMS ...................................................................................................... 255

4. Distributed Artificial Intelligence .................................................................... 259

4.1. Cooperative problem solving .................................................................. 261

4.2. Phases of cooperating problem solving ................................................... 261

4.3. Blackboard metaphor, model and frameworks ....................................... 264

4.4. History of the blackboard model ............................................................. 274

4.5. Advantages of DAI .................................................................................. 276

5. VerFlex - BB System: Approach and Implementation .................................... 277

5.1. Distributed approach to the solution of the task order execution ........... 277

5.2. Why was the blackboard model used? .................................................... 281

5.3. The VerFlex - BB system ........................................................................ 281

References ...................................................................................................... 292

PART 3 NEURAL NETWORKS IN MODELLING, CONTROL AND SCHEDULING

CHAPTER 10

ARTIFICIAL NEURAL NETWORKS FOR MODELLING

A.J. Krijgsman, H.B. Verbruggen and P.M. Bruijn

1. Introduction ..................................................................................................... 297

2. Description of artificial neurons ...................................................................... 298

3. Artificial neural networks (ANN) ................................................................... 299

4. Nonlinear models and ANN ........................................................................... 300

5. Networks .......................................................................................................... 302

5.1. Multilayered static neural networks ........................................................ 302

5.2. Radial basis function networks ................................................................ 303

5.3. Cerebellum model articulation controller (CMAC) ................................ 304

6. Identification of Dynamic Systems Using ANN ............................................. 306

Page 13: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

xiii

6.1. Identification problem definition ............................................................. 306

6.2. Model description for identification ....................................................... 308

7. Hybrid Modelling ............................................................................................ 308

Orthogonal least-squares algorithm.: .............................................................. 309

8. Model Validation ............................................................................................. 313

9. Experiments and Results Using Neural Identification .................................... 314

] O. Conclusions ................................................................................................... 323

References ..................................................................................................... 323

CHAPTER 11

NEURAL NETWORKS IN ROBOT CONTROL

S.G. Tzafestas

1. Introduction ..................................................................................................... 327

2. Neurocontrol Architectures ............................................................................. 328

2.1. General issues ........................................................................................... 328

2.2. Unsupervised NN control architectures .................................................... 329

2.3. DIMA II. Neurocontroller for linear systems ........................................... 331

2.4. Adaptive learning neurocontrol for CARMA systems ............................. 336

3. Robot Neurocontrol ......................................................................................... 339

3.1. A look at robotics .................................................................................... 339

3.2. Neural nets in robotics: General review ................................................... 341

3.3. Robot control using hierarchical NNs ...................................................... 343

3.4. Minimum torque-change robot neurocontrol ........................................... 346

3.5. Improved iterative learning robot neurocontroller ................................... 349

4. Numerical Examples ........................................................................................ 352

4.1. Example 1: DIM A II controller for linear systems .................................. 352

4.2. Example 2: Neurocontroller for CARMA systems ................................. 354

4.3. Example 3: Supervised neurocontrol of a broom - balancing system ..... 357

4.4. Example 4: Feedback - error learning robot neurocontrol ..................... 361

4.5. Example 5: Iterative robot neurocontrol.. ................................................ 366

4.6. Example 6: Unsupervised robot-neurocontroller using hierarchical NN 372

5. Conclusions and Discussion ............................................................................ 375

Page 14: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

xiv

6. Appendix: A Brief Look at Neural Networks ................................................. 376

6.1. Single - layer perceptron (SLP) ................................................................ 377

6.2. Multi - layer perceptron (MLP) ................................................................ 378

6.3. Hopfield network ...................................................................................... 381

References ....................................................................................................... 384

CHAPTER 12

CONTROL STRATEGY OF ROBOTIC MANIPULATOR BASED ON

FLEXIBLE NEURAL NETWORK STRUCTURE

M. Teshnehlab and K. Watanabe

1. Introduction ..................................................................................................... 389

2. The Representation of Bipolar Unit Function ................................................. 390

3. Learning Architecture ...................................................................................... 391

3.1. The learning of connection weights .......................................................... 392

3.2. The learning of sigmoid unit function parameters .................................... 393

4. Neural Network - Based Adaptive Controller ................................................. 394

4.1. The feedback - error learning rule ............................................................ 396

4.2. Adaptation of neural network controller .................................................. 396

5. Simulation Example ........................................................................................ 397

6. Conclusion ....................................................................................................... 402

References ....................................................................................................... 402

CHAPTER 13

NEURO - FUZZY APPROACHES TO ANTICIPATORY CONTROL

L.H. Tsoukalas, A. Ikonomopoulos and R.E. Uhrig

1. Introduction ..................................................................................................... 405

2. Issues of Formalism Anticipatory Systems ..................................................... 407

3. Issues of Measurement and Prediction ............................................................ 412

4. Conclusions ..................................................................................................... 417

References ....................................................................................................... 418

Page 15: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

xv

CHAPTER 14

NEW APPROACHES TO LARGE - SCALE SCHEDULING PROBLEMS:

CONSTRAINT DIRECTED PROGRAMMING AND NEURAL

NETWORKS

Y. Kobayashi and H. Nonaka

1. Introduction ..................................................................................................... 421

2. Method ............................................................................................................. 422

2.1. Problem and method description .............................................................. 422

2.2. Knowledge - based method for lower -level problems ............................ 424

2.3. Knowledge - based scheduling method for upper-level problems .......... 431

2.4. Neural networks for upper - level problems ............................................. 432

3. Application Examples ...................................................................................... 439

3.1. Scheduling systems ................................................................................... 439

3.2. Problem ..................................................................................................... 439

3.3. Results ...................................................................................................... 439

4. Conclusions ..................................................................................................... 444

References ....................................................................................................... 445

PART 4 SYSTEM DIAGNOSTICS

CHAPTER 15

KNOWLEDGE - BASED F AUL T DIAGNOSIS OF TECHNOLOGICAL

SYSTEMS

H. Verbruggen, S. Tzafestas and E. Zanni

1. Introduction ..................................................................................................... 449

2. Knowledge Representation and Acquisition for Fault Diagnosis ................... 451

2.1. Knowledge representation ........................................................................ 451

Page 16: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

xvi

2.2. Knowledge acquisition ............................................................................. 454

3. First -and Second - Generation Diagnostic Expert Systems ............................ 456

3.1. General issues ........................................................................................... 456

3.2. First - generation expert systems ............................................................. .456

3.3. Deep reasoning ......................................................................................... 457

3.4. Qualitative reasoning ................................................................................ 458

3.5. Second - generation expert systems .......................................................... 462

4. A General Look at the FD Methodologies and Second - Generation ES

Architectures .................................................................................................... 462

4.1. General issues ........................................................................................... 462

4.2. Diagnostic modelling ................................................................................ 463

4.3 Second - generation FD expert system architectures ................................. 464

5. A Survey of Digital Systems Diagnostic Tools ............................................... 467

5.1. The D - algorithm ..................................................................................... 467

5.2. Davis' diagnostic methodology ................................................................ 468

5.3. Integrated diagnostic model (IDM) .......................................................... 470

5.4. The diagnostic assistance reference tool (DART) ................................... .472

5.5 The intelligent diagnostic tool (IDT) ........................................................ .474

5.6. The Lockheed expert system (LES) ......................................................... 476

5.7. Other systems .......................................................................................... 476

6. A General Methodology for the Development of FD Tools in the Digital

Circuits Domain ............................................................................................... 477

6.1. Description of the structure ..................................................................... 478

6.2. Description of the behaviour .................................................................... 479

6.3. The diagnostic mechanism ...................................................................... 480

6.4. The constraint suspension technique ........................................................ 482

6.5. Advantages of the deviation detection and constraint

suspension technique ............................................................................... 485

7. A General Methodology for the Development of FD Tools in the

Process Engineering Domain .......................................................................... 486

8. Implementation of a Digital Circuits Diagnostic Expert System (DICIDEX) 489

8.1. Introduction .............................................................................................. 489

8.2. Dicidex description ................................................................................... 490

8.3. Examples of system - user dialogues ........................................................ 496

Page 17: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

xvii

9. Conclusions ..................................................................................................... 501

References ....................................................................................................... 502

CHAPTER 16

MODEL - BASED DIAGNOSIS: STATE TRANSITION EVENTS AND

CONSTRAINT EQUATIONS

K.-E. Arzen, A. Wallen and T.F. Petti

1. Introduction ..................................................................................................... 507

2. Diagnostic Model Processor Method (DMP) .................................................. 509

3. Model Integrated Diagnosis Anaiysis System (MIDAS) ................................ 512

3.1. MIDAS models ......................................................................................... 512

3.2. MIDAS diagnosis ..................................................................................... 515

4. Steritherm Diagnosis ....................................................................................... 518

4.1. DMP Steritherm diagnosis ........................................................................ 518

4.2. MIDAS Steritherm diagnosis ................................................................... 519

5. Comparisons .................................................................................................... 520

6. Conclusions ..................................................................................................... 522

References ....................................................................................................... 523

CHAPTER 17

DIAGNOSIS WITH EXPLICIT MODELS OF GOALS AND FUNCTIONS

J.E. Larsson

1. Introduction ..................................................................................................... 525

2. Basic Ideas in Multilevel Flow Modeling (MFM) .......................................... 526

3. An Example of a Flow Model ......................................................................... 526

4. Three Diagnostic Methods ............................................................................... 528

4.1 Measurement validation ............................................................................ 529

4.2. Alarm analysis .......................................................................................... 530

4.2. Fault Diagnosis ......................................................................................... 531

Page 18: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

xviii

5. Implementation ................................................................................................ 531

6. Complex Systems ............................................................................................ 532

7. Conclusions ..................................................................................................... 532

References ....................................................................................................... 533

PARTS INDUSTRIAL ROBOTIC, MANUFACTURING AND ORGANIZATIONAL SYSTEMS

CHAPTER 18

MULTI-SENSOR INTEGRATION FOR MOBILE ROBOT NAVIGATION

A.Traca de Almeida, H. Araujo, J. Dias and U. Nunes

1. Introduction ..................................................................................................... 537

2. Sensor-Based Navigation ................................................................................ 537

3. Sensory System ................................................................................................ 538

4. Sensor Integration for Localization: Some Methodologies ............................ 540

4.1. Data integration - Intrinsic sensor level.. ................................................. 542

4.2. Data integration - Extrinsic sensor leveL ............................................... 544

5. Experimental Setup .......................................................................................... 547

5.1. Sensors' descriptions ............................................................................... 547

6. Conclusions ..................................................................................................... 553

References ...................................................................................................... 553

Page 19: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

xix

CHAPTER 19

INCREMENTAL DESIGN OF A FLEXIBLE ROBOTIC ASSEMBLY CELL

USING REACTIVE ROBOTS

E.S. Tzafestas and S.G. Tzafestas

1. Introduction ..................................................................................................... 555

2. Description of the Assembly CelL ................................................................. 556

3. Basic Architecture of the Robot ...................................................................... 559

4. Case 1: The minimal Assembly Cell ............................................................... 561

5. Case 2: Extending the Robots Architecture ..................................................... 562

6. Case 3: Using More than one Assembly Robots ............................................. 563

7. Case 4: Combining Cases 2 and 3-Interacting Factors .................................... 565

8. Case 5: The Adaptive Robot - Commitment to Product... ............................... 567

9. Conclusions and Further Work ........................................................................ 569

References ...................................................................................................... 570

CHAPTER 20

ON THE COMPARISON OF AI AND DAI BASED PLANNING

TECHNIQUES FOR AUTOMATED MANUFACTURING SYSTEMS

A.I. Kokkinaki and K.P. Valavanis

1. Introduction ..................................................................................................... 573

2. Traditional Artificial Intelligence Planning Systems ...................................... 575

2.1. Theorem proving based planning systems ............................................... 577

2.2. Blackboard-based architectures ............................................................... 579

2.3. Assembly planning and assembly sequences representations ................. 582

3. Distributed Artificial Intelligence Planning Systems ...................................... 593

3.1. Coordination in multi-agent planning ...................................................... 594

3.2. Theories of belief ..................................................................................... 595

3.3. Synchronization of multi-agents .............................................................. 595

4. Distributed Planning Systems .......................................................................... 596

4.1. Route planning using distributed techniques ........................................... 596

4.2. Distributed NOAH .................................................................................. 600

Page 20: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

xx

5. Distributed Planning Synchronization examples ............................................. 601

5.1. CSP influenced synchronization method ................................................. 601

5.2. Partial plan synchronization .................................................................... 605

5.3. Logic based plan synchronization ........................................................... 606

6. Application of Learning to Planning ............................................................... 608

7. Conclusions ..................................................................................................... 610

References ...................................................................................................... 612

CHAPTER 21

KNOWLEDGE-BASED SUPERVISION OF FLEXIBLE

MANUFACTURING SYSTEMS

A. K. A. Toguyeni, E. Craye and J.-C. Gentina

1. Supervision and AI-Techniques ...................................................................... 631

2. Piloting Functions ............................................................................................ 632

2.1. Introduction ............................................................................................. 632

2.2. Problems met from design to implementation ......................................... 633

2.3. The knowledge-based system .................................................................. 634

2.4. Conclusion ............................................................................................... 637

3. Manager of Working Modes ............................................................................ 637

3.1. Introduction .............................................................................................. 637

3.2. Representation and modelling of the process ........................................... 638

3.3. The manager framework ........................................................................... 642

3.4. Conclusion ................................................................................................ 648

4. A Model-Based Diagnostic System for On-Line Monitoring ......................... 650

4.1. Introduction .............................................................................................. 650

4.2. The modelling method .............................................................................. 650

4.3. The causal temporal signature or CTS ..................................................... 651

4.4. The multi-agent framework of diagnostic system .................................... 655

4.5. Conclusion ................................................................................................ 660

5. General Conclusion ......................................................................................... 660

References ...................................... : ............................................................... 661

Page 21: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

CHAPTER 22

A SURVEY OF KNOWLEDGE-BASED INDUSTRIAL SCHEDULING

K. S. Hindi and M. G. Singh

xxi

1. Introduction ..................................................................................................... 663

2. Knowlegde Acquisition ................................................................................... 664

3. Knowledge Representation .............................................................................. 665

3.1. Logic-based systems ................................................................................. 665

3.2. Rule-based systems ................................................................................... 666

3.3. Frame-based systems ................................................................................ 667

3.4. Multi knowledge representation systems ................................................. 668

4. Temporal Issues ............................................................................................... 669

5. Control Mechanisms ........................................................................................ 670

5.1. Forward reasoning systems ...................................................................... 670

5.2. Constraint-directed and opportunistic systems ......................................... 671

5.3. Mixed control systems .............................................................................. 673

6. Knowledge Based Scheduling Systems (KBSS) ............................................. 674

6.1. The primary scheduler (PS) ...................................................................... 675

6.2. The heuristic scheduler (HS) .................................................................... 676

6.2. The backtracking scheduler (BS) ............................................................. 677

7. Reactive and Real-Time Scheduling ............................................................... 678

8. Conclusions ...................................................................................................... 679

References ...................................................................................................... 680

CHAPTER 23

REACTIVE BATCH SCHEDULING

V. J. Terpstra and H. B. Verbruggen

1. Introduction ..................................................................................................... 688

1.1. Project ...................................................................................................... 688

1.2. Scheduling ............................................................................................... 688

1.3. Example case ........................................................................................... 689

1.4. Definitions ............................................................................................... 690

Page 22: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

xxii

2. Scheduling strategy .......................................................................................... 691

2. 1. Modelling .................................................................................................. 692

2.2. Modularity ................................................................................................ 692

2.3. Prediction and cycles ................................................................................ 693

2.4. Reactive behaviour ................................................................................... 693

2.5. Robustness ................................................................................................ 694

3. Modelling ......................................................................................................... 694

3.1. The equipment model ............................................................................... 695

3.2. The master recipe ...................................................................................... 697

3.3. Master schedule ........................................................................................ 698

3.4. The degrees of freedom of the scheduler .................................................. 699

4. Planner ............................................................................................................. 699

5. Integer scheduler. ............................................................................................. 700

6. Non-integer scheduler. ..................................................................................... 704

6.1. Ganeration of NLP model. ........................................................................ 704

6.2. Dedicated NLP solver ............................................................................... 707

7. Reactiveness .................................................................................................... 708

7.1. Horizons ................................................................................................... 708

7.2. Sample Rate .............................................................................................. 709

7.3. Three Control Loops in Scheduler ............................................................ 709

7.4 Error Signal. ............................................................................................... 710

7.5. Timing ...................................................................................................... 711

7.6. Progressive Reasoning .............................................................................. 713

7.7. Anticipatory Schedules ............................................................................. 714

7.8. Parallelism ................................................................................................ 716

8. Robustness analysis ......................................................................................... 716

9. Implen1entation and Results ............................................................................ 719

10. Conclusions .................................................................................................. 720

References ....................................................................................................... 720

Page 23: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

CHAPTER 24

APPLYING GROUPWARE TECHNOLOGIES TO SUPPORT

MANAGEMENT IN ORGANIZATIONS

A. Michailidis, P.-I. Gouma and R. Rada

xxiii

1. Introduction ..................................................................................................... 723

2. Groupware ...................................................................................................... 723

2.1. Groups and computer-supported cooperative work. ................................. 724

2.2. Groupware taxonomy .............................................................................. 724

2.3.Review of groupware systems ................................................................... 728

3. Management .................................................................................................... 729

3.1. Organizations ............................................................................................ 730

3.2. Managing organizations ........................................................................... 733

3.3. IT Systems for management-support in organizations ............................. 735

3.4. Comparing R&D department with organizations ..................................... 737

4. Case Study ....................................................................................................... 738

4.1. Modelling the organizational structure .................................................... 739

4.2. The activity model environment (AME) model ....................................... 739

4.3. The modified version of AME ................................................................. 740

5. Implementation- The MUCH System .............................................................. 745

6. Conclusion ....................................................................................................... 747

References ....................................................................................................... 748

INDEX ................................................................................................................. 757

Page 24: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

PREFACE

This book is concerned with Artificial Intelligence (AI) concepts and techniques as

applied to industrial decision making, control and automation problems. The field of AI

has been expanded enormously during the last years due to that solid theoretical and

application results have accumulated. During the first stage of AI development most

workers in the field were content with illustrations showing ideas at work on simple

problems. Later, as the field matured, emphasis was turned to demonstrations that

showed the capability of AI techniques to handle problems of practical value. Now, we

arrived at the stage where researchers and practitioners are actually building AI systems

that face real-world and industrial problems.

This volume provides a set of twenty four well-selected contributions that deal

with the application of AI to such real-life and industrial problems. These contributions

are grouped and presented in five parts as follows:

Part 1: General Issues

Part 2: Intelligent Systems

Part 3: Neural Networks in Modelling, Control and Scheduling

Part 4: System Diagnostics

Part 5: Industrial Robotic, Manufacturing and Organizational Systems

Part 1 involves four chapters providing background material and dealing with

general issues such as the conceptual integration of qualitative and quantitative models,

the treatment of timing problems at system integration, and the investigation of correct

reasoning in interactive man-robot systems.

Part 2 presents a number of systems with built-in intelligence. It starts with an

introduction to the concept of intelligent control systems and continues with the

demonstration of an autonomous control synthesis system (called phase space

xxv

Page 25: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

xxvi

navigator) for nonlinear control systems. Then, an overview of the hierarchical and

behavioural approaches to autonomous robotic systems is provided, and a combined

(behavioural plus planning) approach is developed which possesses a multiresolutional

hierarchy of behaviours. Then, a study on distributed intelligent systems in robotics is

provided, which is based on an intelligent cellular robotic system (CEBOT) that

consists of a number of autonomous robotic units called cells. This part finishes with

a contribution showing that subtasks of manufacturing control are so complex and

interconnected that cannot be modelled by a single agent system. The problem solution

can be achieved using only intensive goal oriented cooperation with other experts.

Part 3 is devoted to artificial neural networks (ANN). First, the application of

ANNs to systems modelling and identification is examined including some

experimental results. Then, the application of ANNs to robot control is reviewed. The

basic architectures of neural control are described, and several illustrative robotic

exampes are included. Then, a robotic neurocontroller is described which makes use

of bipolar neurons to learn the inverse model of the system. The backpropagation

algorithm is used to learn the inverse dynamic model, and the feedback-error-Iearning

scheme is employed as a learning method for the feedforward controller. A 2-link

robotic example is included. Next, the neuro-fuzzy approach to anticipatory control is

considered. Anticipatory systems can utilize fuzzy predictions about the future in

regulating their behaviour through "virtual measurement" which is mapped using

ANNs. Finally, the class of large-scale scheduling problems is investigated through

interactive and automated approaches. The ANN here is used to treat the combinatorial

optimization problems resulting from the scheduling problems.

Part 4 contains three contributions on fault diagnosis. The first contribution

provides an overview on the knowledge-based approach to the fault diagnosis of

technological systems. First-generation and second-generation diagnostic expert

systems are discussed, a survey of digital systems diagnostics tools is presented, and

two general methodologies for the development of fault diagnostic tools are

developed. The second, presents and compares two methods for model-based

diagnosis, namely the diagnostic model processor (DMP) and the model integrated

diagnosis analysis system (MIDAS). Finally, the third contribution describes the

multilevel flow model (MFM) which belongs to the class of means-end models. The

basic ideas of MFM are outlined, and three diagnostic reasoning methods which can

Page 26: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

xxvii

be efficiently implemented with the aid of MFM are developed. These methods have

been implemented on the G2 programming tool.

Part 5 involves a number of useful applications of AI. The first contribution is

concerned with the problem of multisensor integration for mobile robot navigation. In

particular, a mobile platform navigating in a 2D environment with unknown obstacles

is considered. The second, is concerned with the use of reactive robots for incremental

design of flexible robotic assembly cells. A layered reactive architecture for assembly

robots that possesses robustness, reactivity and incrementality is proposed, and a

series of simulation experiments are described. The next contribution provides a

comparative review of AI and DAI (distributed AI) based planning techniques for

manufacturing systems. Planning is a central function in all automated systems, and

consists in the selection of the sequence of compatible tasks/actions by which the

system goals are achieved. This part continues with a contribution on knowledge-based

supervision of flexible manufacturing systems (FMS), and a survey of knowledge­

based techniques for industrial scheduling. Supervision of FMSs covers different

kinds of activities such as the piloting, the management of working models and the

monitoring of the failures. Knowledge-based techniques, in contrast to operational

research techniques, are suitable for generating on-line dynamic schedules based on the

actual system state. Then a contribution on reactive on-line batch scheduling is

presented. A design method for a robust on line scheduler is provided that makes a

prediction of the effects of the schedule and tries to optimize the global plant

performance. This scheduler is composed by a planner, an integer scheduler and a

non-integer scheduler, and was implemented on the real-time expert system shell G2.

Finally, a contribution is given on technological support which becomes a "must" in

modern organizations and extends the area of management. Here the groupware

technology is adopted, which can provide the kind of support the manager needs to

deal with uncertainty and ambiguity, and a tool is developed that can supervise and

coordinate the overall use of the system and mediate the interactions among its users.

Taken together the contributions of the book provide a well balanced and

representative picture of the capabilities of current AI techniques to treat important

decision-making and control problems in real-scale robotic, manufacturing and other

industrial systems. These techniques which are in the center of the computer revolution

relieve us of a great deal of a mental effort, in the same way that the techniques of the

industrial revolution relieve us of a great deal of physical labour. The results on the

Page 27: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

xxviii

actual applications of AI are widely sparse in the literature, and only a few books of a

nature similar to the present book exist on the subject. Thus the editors feel that this

book provides an important addition, since it presents in collective form several angles

of attack, methodologies and applications. Each chapter is self-contained, and in many

cases includes review material and how-to-do issues.

The book is suitable for the researcher and practitioner of the field, as well as for

the educator and senior graduate student. The editors are indebted to all contributors for

their high quality contributions, and to Kluwer's (Dordrecht) editorial staff members

for their particular care throughout the editorial and printing process.

Spyros G. Tzafestas

Henk B. Verbruggen

Page 28: Artificial Intelligence in Industrial Decision Making. …978-94-011-0305-3/1.pdf · Artificial Intelligence in Robotic and Manufacturing Systems ..... 26 8. Conclusions ... Introducton

ALBA YARAK S. ARAIJOH. ARZEN K.-E. BRACKNEYL. BRUIJN P. M. CRAYEE. DIAS J. FUKUDAT. GENTINA J.-C. GOUMA P.-I. HINDI K.S. IKONOMOPOULOS A KOBA Y ASH! Y. KOENIG E.C. KOKKINAKI AI. KRALLMANN H. KRIJGSMAN AJ. LARSSON J.E. MEYSTELA. MICHAILIDIS A MOruSL. NONAKAH. NUNES U. PETTIT. RADAR. SEKIYAMAK. SHOURESHI R. SINGH M.G. TERPSTRA V.J. TESHNEHLAB M. TOGUYENI AK.A TRACA de ALMEIDA A TSOUKALAS L. TZAFESTAS E.S. TZAFESTAS S.G. UEYAMA T. UHRIG R.E. V ALA V ANIS K.P. VERBRUGGEN H.B. WATANABEK. WALLEN A WHEELERM. WOODSE.A ZHAOF.

CONTRIBUTORS

T.U. Berlin, Berlin, Germany Univ. of Coimbra, Coimbra, Portugal Lund Inst. of Technology, Lund, Sweden Purdue Univ. West Lafayette, U.S.A Delft Univ. of Technology, Delft, The Netherlands Ecole Centrale de Lille, Lille, France Univ. of Coimbra, Coimbra, Portugal Nagoya Univ., Nagoya, Japan Ecole Centrale de Lille, Lille, France Univ. of Liverpool, Liverpool, U.K. Dept. of Computation, UMIST, Manchester, U.K. The Univ. of Tennessee, Knoxville, U.S.A Energy Res. Lab., Hitachi Ltd., Ibaraki-ken, Japan CS Dept., Univ. of Wisconsin-Madison, U.S.A Univ. of Southwestern Louisiana, Lafayette, U.S.A T.U. Berlin, Berlin, Germany Delft Univ. of Technology, Delft, The Netherlands Lund Inst. of Technology, Lund, Sweden Drexel Univ., Philadelphia, U.S.A Univ. of Liverpool, Liverpool, U.K. Tallinn Techn. Univ., Tallinn, Estonia Energy Res. Lab., Hitachi Ltd., Ibaraki-ken, Japan Univ. of Coimbra, Coimbra, Portugal Washington Res. Center, Columbia, MD, U.S.A Univ. of Liverpool, Liverpool, U.K. Nagoya Univ., Nagoya, Japan Purdue Univ., West Lafayette, U.S.A Dept. of Computation, UMIST, Manchester, U.K. Delft Univ. of Technology, Delft, The Netherlands Saga Univ., Graduate School, Japan Ecole Centrale de Lille, Lille, France Univ. of Coimbra, Coimbra, Portugal The Univ. of Tennessee, Knoxville, U.S.A Univ. P. et M. Curie, Paris, France Natl. Tech. Univ. of Athens, Athens, Greece Nagoya Univ., Nagoya, Japan The Univ. of Tennessee, Knoxville, U.S.A Univ. of Southwestern Louisiana, Lafayette, U.S.A Delft Univ. of Technology, Delft, The Netherlands Saga Univ., Mech. Eng. Dept., Saga, Japan Lund Inst. of Technology, Lund, Sweden Purdue Univ., West Lafayette, U.S.A SINTEF Automatic Control, Trondheim, Norway CIS Dept., Ohio State Univ., Ohio, U.S.A

xxix