arroyave - iimec

Upload: aymen-anounee

Post on 07-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/4/2019 Arroyave - IIMEC

    1/10

    Computational Thermodynamics andKinetics of Materials

    Raymundo Arroyave (TAMU, MEEN + MSEN)

    Group:

    Anchalee Junkaew (Thailand)

    Shengyen Li (Taiwan)

    Avinash Chivunkula (India)

    Arpita Chari (India)

    Saurabh Bajaj (India)

    Colton Shannon (USA)

    Min Soo Patk (Postdoc) (S. Korea) Andres Garay (Mexico) (Co-advised student in Mexico)

  • 8/4/2019 Arroyave - IIMEC

    2/10

    2/18

    Materials Modeling---Multiple Length (and time)

    Scaleselectrons atoms

    mesoscale continuum

    From 10From 10--1010 to 10to 1000m, from 10m, from 10--1515 to 10to 1088 ss

  • 8/4/2019 Arroyave - IIMEC

    3/10

    Integrated Computational Materials Engineering

    New paradigm for the efficient design of materials

    Comprehensive Integration of Information for allRelevant Materials Phenomena Across Scales of

    Time and Space Systems design approach

  • 8/4/2019 Arroyave - IIMEC

    4/10

    4

    Current Approaches to Multi-scale Modeling

    Concurrent Multiple length-scales modeled with

    different but coupled numerical tools

    The coupling is performed concurrently

    Example: MD+FE

    Pros: Minimal information loss True multi-scale

    Cons: System specific

    Hand shaking critical

    Still need to fit parameters

    MD Force Fields

  • 8/4/2019 Arroyave - IIMEC

    5/10

    5

    Current Approaches to Multi-scale Modeling (II) Hierarchical

    Relevant properties are calculated at

    proper length scale Information is passed to next scale up as

    parameters and constitutive relations

    Pros: It is possible to go from electronic structure

    level to macro scale

    Robust approach Cheaper computationally

    Cons:

    Information loss when making connectionsbetween length scales

  • 8/4/2019 Arroyave - IIMEC

    6/10

    My Focus: Thermodynamics

    Understanding of phase stability Phase diagram prediction

    Prediction of properties through ab initio methods

    Calculation of driving forces for transformations

    Assist alloy/materials design

    Kinetics

    Prediction of kinetic properties (diffusion rates, for

    example)

    Prediction of time evolution of complexmicrostructures

    Micro/nano-structure design through computation

  • 8/4/2019 Arroyave - IIMEC

    7/10

    7

  • 8/4/2019 Arroyave - IIMEC

    8/10

    Hierarchical Multi-scale Materials Modeling andComputational Materials Design

    Ab Initio/MD Methods

    CALPHAD

    Phase-Field

    Crystal StructuresCrystal Structures

    ThermoThermo--mechanicalmechanical

    PropertiesProperties Kinetic PropertiesKinetic PropertiesBulk/Surface PropertiesBulk/Surface Properties

    DatabasesPhenomenology

    Long-rangedInteractions

    MicrostructuralMicrostructuralEvolutionEvolution

    MesoscaleMesoscalePhenomenaPhenomena

    MicrostructureResponse

    ab

    c

    PowderCell2.0

  • 8/4/2019 Arroyave - IIMEC

    9/10

    Design of light Al-Si Alloys viaFirst-Principles Methods

    Hydrogen Storage in Multi-layeredNanostructured Mg thin films

    Phase Diagram

    Site preference of H in Mg thin films

    Vibrational Properties

    Electronic

    Structure

    Biphase diagram of Mg/Nb multilayers

    Mgbcc/NbbccMghcp/Nbhcp

    Mghcp/Nbbcc

    Biphase diagram of Mg/Nb multilayersBiphase diagram of Mg/Nb multilayers

    Mgbcc/NbbccMghcp/Nbhcp

    Mghcp/Nbbcc

    Bulk-Mg (hcp-Mg)

    Charge Density across Mg plane

    (0 0 )ELF across Mg Plane ELF across O-site ELF across T-site

    Mg Mg

    O-site T-site

    Bulk-Mg (hcp-Mg)

    Charge Density across Mg plane

    (0 0 )ELF across Mg Plane ELF across O-site ELF across T-site

    Mg Mg

    O-site T-site

    Charge Density across Mg plane

    (0 0 )ELF across Mg Plane ELF across O-site ELF across T-siteCharge Density across Mg plane

    (0 0 )Charge Density across Mg plane

    (0 0 )ELF across Mg PlaneELF across Mg Plane ELF across O-siteELF across O-site ELF across T-siteELF across T-site

    Mg Mg

    O-siteO-site T-siteT-site

    Thermodynamic ModelsOf Nuclear Fuel Materials

    Phase Diagram in Np-Zr System

    Phase-Field Simulation of Pb-free Soldering for GreenManufacturing

    Growth of Intermetallic Compounds

    Shape Memory Alloys forActive Materials

    0 . 9 1 . 0 1 . 1 1 . 2 1 . 3 1 . 4

    c / a r a t i o

    0 . 0 0

    0 . 0 2

    0 . 0 4

    0 . 0 6

    0 . 0 8

    0 . 1 0

    0 . 1 2

    0 . 1 4

    e

    n

    e

    r

    g

    y

    ,

    e

    V

    0 %

    1 %

    2 %

    3 %

    4 %

    5 %

    Shape Memory Effects Energy Landscape

    Electronic

    Structure

    Phase Diagrams

    Next GenerationAdvanced High StrengthSteels for Improved Fuel

    Economy

    b

    Multi-component Phase Diagrams

    Multi-component Phase Diagrams

    Microstructural Design ofThermoelectric Materials

    Bi-phase Diagrams

  • 8/4/2019 Arroyave - IIMEC

    10/10

    Current Collaborations Computational-Experimental Synergies:

    Shape Memory Alloys (I. Karaman, TAMU)

    Advanced High Strength Steels (I. Karaman, TAMU)

    Mg-based Multi-layered Hydrogen Storage Materials (X. Zhang, TAMU) Lead-Free Soldering for Green Manufacturing (Eagar, MIT)

    High Temperature Properties of Metals (Radovic, TAMU)

    Computational Synergies across Methods/Scales:

    High Temperature Properties of Metals (Cagin, TAMU)

    Phase Stability in Nuclear Fuel Materials (Turchi, LLNL)

    Development of Open Source Codes:

    The Gibbs project (object oriented materials thermodynamics) (Garcia,Purdue)

    International Collaborations: CINVESTAV (Mexico)

    Multi-scale modeling of solidification in Al-Si-Sr alloys

    Electronic structure of nano-films