arago : stellar uv and visible spectropolarimetry from space

32
Arago : stellar UV and visible spectropolarimetry from space Martin Pertenaïs Paris Observatory (FR) IRAP-CNRS, University of Toulouse (FR) 1 Brussels, 22nd October 2015

Upload: others

Post on 17-Jul-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Arago : stellar UV and visible spectropolarimetry from space

Arago : stellar UV and visible

spectropolarimetry from space

Martin Pertenaïs

Paris Observatory (FR)

IRAP-CNRS, University of Toulouse (FR)

1

Brussels, 22nd October 2015

Page 2: Arago : stellar UV and visible spectropolarimetry from space

Scientific goals

2

• What is the life cycle of matter ? (star formation, evolution and death)

� ISM Characterization

� Young (PMS) stars in accretion

� All kinds of stars (Massive stars, Solar-like stars…)

� Late stages of evolution (Supergiants, supernovae,…)

• How do stars impact the formation of planets and the emergence of life?� Star-Planet interactions (stellar wind, magnetic interaction,…)

� Space weather (irradiation of the planet by the star,…)

High-resolution UV and Visible spectropolarimetry

Page 3: Arago : stellar UV and visible spectropolarimetry from space

Specifications

3

Specification Requirement

Spectral range [119 nm ; 888 nm] for the spectra

[123 nm ; 888 nm] for the polarization

UV Resolution 25 000

Visible Resolution 35 000

S/N 100

Typical exp. time 30 min (OBA stars, V=7)

1h (FGK stars, V=7)

Target Magnitude V=3-10

Vrad accuracy 1 km.s-1 (in absolute)

0.1 km.s-1 (for magnetic fields measurement)

Preparation for ESA M5 call (deadline April 2016)

Page 4: Arago : stellar UV and visible spectropolarimetry from space

Telescope

4

Spec. :

- SNR 100

- V=7 Star

- 30 min exposure time

⇒ 1.3m diameter

Cassegrain telescope

F/13

Page 5: Arago : stellar UV and visible spectropolarimetry from space

Spectrograph

5

Instrument design for M4, will be redesigned for M5

Page 6: Arago : stellar UV and visible spectropolarimetry from space

Focal planes

Frame size 30 x 30 mm

Visible (for M4):

UV (for M4): Frame size 120 x 14 mm

Page 7: Arago : stellar UV and visible spectropolarimetry from space

Challenge

7

Create an efficient polarimeter from FUV to NIR for a space mission

Achromatic plates Liquid crystal Optimized rotating plates

Spatial modulation

Page 8: Arago : stellar UV and visible spectropolarimetry from space

Polarimeter : baseline

• 3 MgF2 stacked wave plates with fast-axis angle and thicknesses:

(α1,d1), (α2,d2),(α3,d3)

• Optimization on these 6 variables

• The stack of the 3 plates takes 6 different angular positions (0°,30°,60°,90°,120° et 150°)

8

Aim : create a polychromatic polarimetric modulator

d1 d2 d3

α1α3α2

Fixed polarizer

Page 9: Arago : stellar UV and visible spectropolarimetry from space

Polarimeter: baseline

• Definition of a demodulation matrix D such as: Sin=D.Iout

• The extraction efficiencies of the Stokes parameters *:

�� � ������

��

��/�

• TheoptimalefficiencyforQ, UandVis � #$ ≈57.7%

• The extraction is achromatized and not the retardance of the plates!

9

Aim : create a polychromatic polarimetric modulator

* Optimum modulation and demodulation matrices for solar polarimetry, JC del Toro Inista and Collados (2000)

Page 10: Arago : stellar UV and visible spectropolarimetry from space

Polarimeter: baseline

10

Page 11: Arago : stellar UV and visible spectropolarimetry from space

Polarimeter: baseline

11

Page 12: Arago : stellar UV and visible spectropolarimetry from space

Polarimeter:

R&D on a new concept

12

Page 13: Arago : stellar UV and visible spectropolarimetry from space

Concept

x

Polarizer

ξ 2ξ %&'( � 0,5+%, -+cosΦ/01234 15�Φsin2Φsin2θ7, Ucos2Φsin2θ, V+cosΦsin2Φsin2θ, sinΦcos2θ77

)()tan(4 λ

λ

ξπ n

x

∆⋅

Φ=

Sparks et al. (2012)

Pertenais et al. (2015)

Wavelength (nm)

x (m

m)

Page 14: Arago : stellar UV and visible spectropolarimetry from space

Star simulation

14

λ (nm)

x (

mm

)

656 658 660 662 664 666 668

−1.5

−1

−0.5

0

0.5

1

1.5

Simulation of the image obtained with a synthetic spectrum

- Teff= 30 000K

- Log g = 4.0

- 1000 G dipolar magnectic field

Pertenais et al. (2015)

Page 15: Arago : stellar UV and visible spectropolarimetry from space

Star simulation

15

656 658 660 662 664 666 6680.6

0.7

0.8

0.9

1

1.1

I

656 658 660 662 664 666 668

−2

−1

0

1

2

x 10−3

λ (nm)

V

Retrieved Stokes I and V

Pertenais et al. (2015)

Page 16: Arago : stellar UV and visible spectropolarimetry from space

16Pertenais et al. (2015)

Page 17: Arago : stellar UV and visible spectropolarimetry from space

17

First results

Pertenais et al. (2015)Wavelength (nm)

Page 18: Arago : stellar UV and visible spectropolarimetry from space

Lab results

500 550 600 650 700−3

−2

−1

0

1

2

3

Wavelength (nm)

Po

lari

zati

on

an

gle

)

18Pertenais et al. (2015)

Page 19: Arago : stellar UV and visible spectropolarimetry from space

Lab results

19Pertenais et al. (2015)

Page 20: Arago : stellar UV and visible spectropolarimetry from space

Lab results

20

± 3.10-2 accuracy

Page 21: Arago : stellar UV and visible spectropolarimetry from space

Conclusions

• High-resolution spectropolarimetry

• Precise Full Stokes (IQUV) measurement– Baseline: polychromatic rotating modulator

– R&D on innovative polarimeter concept

• From FUV (119 nm) to NIR (888 nm)

• Exciting science !

21

Thank you for your attention !

Contacts : [email protected]

[email protected]

Acknowledgment : COST Action MP1104

Page 22: Arago : stellar UV and visible spectropolarimetry from space

22

Page 23: Arago : stellar UV and visible spectropolarimetry from space

23

Back-up slides

Page 24: Arago : stellar UV and visible spectropolarimetry from space

Tolerancing

24

δx d

• Relative decenter

Φ Φ2=2Φ−δΦ, with 8Φ � 8:; tan < Δ�+;78>

• Birefringence uncertainty

• Apex angle uncertainty

Page 25: Arago : stellar UV and visible spectropolarimetry from space

Tolerancing

25

Decenter δx=±0.05 mm

I=1, Q=1, U=0, V=0

Page 26: Arago : stellar UV and visible spectropolarimetry from space

Tolerancing

26

Apex angle ξ=1.5° ± 0.25°

I=1, Q=0, U=0, V=1

Page 27: Arago : stellar UV and visible spectropolarimetry from space

Issues

27

• Large orders -> large detectors

• Calibration

• Transmission

� To limit the number of interfaces :

ξ2ξ

α=0° α=π/4

Φ1Φ2

Page 28: Arago : stellar UV and visible spectropolarimetry from space

Birefringence MgF2

28

Page 29: Arago : stellar UV and visible spectropolarimetry from space

Efficiency

29

10 20 30 40 50 60 70 800.2

0.3

0.4

0.5

0.6

0.7

0.8

Analyzer angle θ (°)

Eff

icie

ncy

Q

U

V

To be compared with 40-60% efficiency for polychromatic rotating modulator

Page 30: Arago : stellar UV and visible spectropolarimetry from space

Application to Arago

30

Fourier analysis-> periods of 2π, π et 2π/3

We have to sample at π/3 (Nyquist) over a 2π signal (to have at least 1 period of the

low frequency part)

At the minimal space gap (145nm) with a wedge angle ξ=1.5°, a phase difference of

π/3 corresponds to 32µm. On the other side, a phase difference of 2π at 888nm

corresponds to 1440µm

If the magnification of the spectro is set to 0.7, we can sample the signal correctly on

the detector with 20 µm pixels. This implied an order thickness of 0.7*1.44=1mm

-> CCD of ~45 mm for the visible

-> 2 MCP detectors of ~85mm for the UV

(x2 if we want dual-beam …)

Page 31: Arago : stellar UV and visible spectropolarimetry from space

Targets

31

Legacy survey:

�5490 stars with V>3 and V or B <6

�observed twice during the mission

�SNR ≥ 100

Mapping of stars and their environment (3<V<10):

�Cartography of ~100 stars monitored during a stellar rotation period

�Solar-type stars mapped every year→ cycle

�SNR = 100 for V=7

Focused surveys (3<V<15):

�Statistical samples of stars (e.g. O stars, planet-hosting stars,...)

�observed once each

Target of Opportunity (ToO): supernovae, outbursts,...

�Observations triggered by external alerts

Page 32: Arago : stellar UV and visible spectropolarimetry from space

32

Survey program:

�statistical sample of several thousands stars

�each star is observed twice during the mission → variability

�including a magnitue-limited (B=6) Legacy survey

�other samples (50%) chosen through calls for proposals

Mapping program:

�about 100 well-chosen stars (all types,

�all evolutionary stages, hosts of exoplanets,...)

�each star is observed during a full rotation period

�→ full 3D cartography of its surface and

�environment

�from calls for proposal

Target of Opportunity program:

�supernovae

�outbursts of Be stars

�...

Observing program